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The interaction of surface erosion (e.g., fluvial incision) and tectonic uplift shapes the
landform in the Tibetan Plateau. The Lhasa River flows toward the southwest across
the central Gangdese Mountains in the southern Tibetan Plateau, characterized by a
low-relief and high-elevation landscape. However, the evolution of low-relief topography
and the establishment of the Lhasa River remain highly under debate. Here, we
collected thermochronological ages reported in the Lhasa River drainage, using a 3D
thermokinematic model to invert both late Cenozoic denudation and relief history of
the Lhasa River drainage. Our results show that the Lhasa River drainage underwent
four-phase denudation history, including two-stage rapid denudation at ∼25–16 Ma
(with a rate of ∼0.42 km/Ma) and ∼16–12 Ma (with a rate of ∼0.72 km/Ma). In the
latest Oligocene–early Miocene, uplift of the Gangdese Mountains triggered the rapid
denudation and the formation of the current main drainage of the Lhasa River. In the
middle Miocene, the second stage of the rapid denudation and the high relief were
associated with intense incision of the Lhasa River, which is probably due to the
enhanced Asian summer monsoon precipitation. This later rapid episode was consistent
with the records of regional main drainage systems. After ∼12 Ma, the denudation rate
decreases rapidly, and the relief of topography in the central Gangdese region was
gradually subdued. This indicates that the fluvial erosion resulting from Asian monsoon
precipitation increase significantly impacts on the topographic evolution in the central
Gangdese region.

Keywords: tectonic geomorphology, low-temperature thermochronology, Lhasa River, Tibetan Plateau,
thermokinematic modeling, relief development

INTRODUCTION

The landscape evolution of the orogenic belt results from the complex interaction between tectonic
uplift and surface erosion (e.g., fluvial incision). However, surface erosion is also influenced by
tectonic forcing and climatic change on the different temporal scales (Davis et al., 1983; England
and Molnar, 1990; Whipple et al., 2000; Schildgen et al., 2009; Whipple, 2009). For example, the
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tectonic uplift creates a topographic gradient that increases
fluvial incision and triggers landslides (Ahnert, 1970; Wilson
and Fowler, 2011; Wang et al., 2012; Tian et al., 2015).
An intensified monsoon precipitation or increased amplitudes
of glacial–interglacial climatic fluctuations could also enhance
fluvial incision (Zhang et al., 2001; Pan et al., 2003; Clift et al.,
2008; Wang et al., 2012, 2015; Nie et al., 2018), which may
in turn have an impact on tectonic activity (Zeitler et al.,
2001; Whipple, 2009). Thus, how tectonics, climate, and surface
erosion are coupled to control the evolution of topography is a
fundamental question.

The Tibetan Plateau, created by the India–Asia collision since
the Cenozoic (Molnar et al., 2010), is a natural laboratory for
examining the coupling of tectonics, climate, and erosion in
shaping the landscape. Previous studies have important findings
in the Himalayas (Beaumont et al., 2001; Bookhagen et al.,
2005; Clift et al., 2008; Zhang et al., 2012) and the southern
and southeastern Tibetan Plateau (Lang and Huntington, 2014;
Liu-Zeng et al., 2018; Nie et al., 2018; Shen et al., 2019).
However, these studies have not reached a consensus about
the mechanism of the landscape evolution in some regions,
such as the Gangdese region, a low-relief and high-elevation
landscape in the southern Tibetan Plateau (Figure 1). In the
Gangdese region, quantitative inversion of thermochronological
ages of Gangdese batholith suggests a rapid exhumation stage
from the Oligocene to the Miocene or ∼22–18 Ma due to
the activity of the Gangdese Thrust system (Copeland et al.,
1995; Yin et al., 1999; Dai et al., 2013). In contrast, other
thermochronology studies suggest that the rapid denudation
since ∼23 or 20–10 Ma was linked to regional river incision
or the intensification of the Asian monsoon (Li et al., 2016;
Ge et al., 2017). Tremblay et al. (2015) indicated that a rapid
exhumation stage at ∼12 Ma has been interpreted as river
incision in the Gangdese region. Thus, distinguishing the effects
of regional tectonic, the fluvial incision, and intensification
of the Asian monsoon on the landscape evolution of the
central Gangdese region since the early Miocene remains the
major ramifications.

The Lhasa River is one of the large rivers that cross the
central Gangdese Mountains in southeastern Tibetan Plateau.
The formation of the Lhasa River and its incision could influence
on the evolution of low-relief landscape on the central Gangdese
Mountains. However, the time of significant incision of the
Lhasa River remains highly debated. One view indicates that the
Lhasa River probably formed and incised before 80 Ma based
on the age of sediment accumulation near Lhasa River outlet
(Laskowski et al., 2019). The study of the evolution of the Yarlung
River into which Lhasa flows suggests that the current Lhasa
River possibly formed at 26–19 Ma (Wang et al., 2013; Li et al.,
2017). Based on the numerical simulations and the inversion of
thermochronological ages, Tremblay et al. (2015) believe that the
current river in the southern Tibetan Plateau formed at ∼12–
11 Ma. Thus, the timing of the Lhasa River initial flowing across
the central Gangdese which could affect the landform evolution
in this area is still unclear.

Low-temperature thermochronology may be able to provide
information to solve this problem by carefully quantifying rates

and transition time of denudation of the Lhasa River drainage.
However, previous studies in the Lhasa River drainage have only
considered one-dimension cooling, neglecting potential effects of
temporally varying topography and laterally varying denudation
(Braun, 2002; Gallagher et al., 2005a,b; Luszczak et al., 2018).
A numerical simulation method for inverse thermal history
modeling, three-dimensional (3D) thermal kinematic model
Pecube (Braun, 2002, 2003; Braun et al., 2012) coupled with the
neighborhood algorithm (Sambridge, 2010a,b), has considered
these limiting factors of one-dimension cooling. This method
has been successfully applied to the inversion of denudation and
topographic evolution in orogenic regions (Braun et al., 2012;
Wang et al., 2016; McDannell et al., 2018; Shen et al., 2019; Yang
et al., 2019). Here, we used this 3D thermokinematic modeling
approach to invert both denudation and topographic evolution
history in the Lhasa River drainage using low-temperature
thermochronologic data from the Lhasa River Valley. The aims
of this work are (i) to constrain the timing of the establishment
of the modern Lhasa River and the evolution history of relatively
low-relief topography in the southern Tibetan Plateau and (ii) to
distinguish the respective roles that tectonics and climate played
on the topographic evolution through numerical modeling of
both thermal and relief histories in a drainage, using the Lhasa
River drainage in the southern Tibetan Plateau as a case.

REGIONAL SETTING

The Cenozoic India–Asia collision created the high-elevation
topography of the Tibetan Plateau, consisting of five different
east–west-trending terranes, namely the Himalaya, Lhasa,
Qiangtang, Songpan-Ganze, and Qaidam from south to north
(Yin and Harrison, 2000; Figure 1A). The Lhasa terrane, located
in the southern Tibetan Plateau, is bounded by the Bangong-
Nujiang suture to the north and by the Indus-Yarlung suture
to the south (Li et al., 2016). The Lhasa River headwaters
originate in the eastern portion of the Lhasa terrane. The main
trunk of the Lhasa River drains to the southwest across the
Gangdese Mountains and merges into the east-flowing Yarlung
River, forming a so-called barbed junction (Figure 1B). Our study
area is located in the Lhasa River drainage within the Lhasa
terrane (Figure 1B).

The extensive and widely exposed Late Triassic–Eocene
Gangdese batholith intruded into the Paleozoic–Mesozoic
sedimentary units in the study area (Ji et al., 2009; Zhu et al.,
2011), which should record the later crustal thermal history. In
the southern and central Lhasa River drainage, the Gangdese
region exposes the lower Jurassic volcano-sedimentary sequence
of the Yeba Group (Zhu et al., 2011), the lower Cretaceous
volcanic rocks of the Sangri Group, and the Cretaceous–Tertiary
volcanic rocks of the Linzizong Group (Mo et al., 2008; Figure 2).
The widely distributed Paleozoic sedimentary strata in the Lhasa
River drainage consist of Ordovician and Carboniferous to
Cretaceous clastic sediments (Wei et al., 2014), and the middle–
late Jurassic deposits mainly distribute on the upper reaches
of Lhasa River. However, the Paleocene–Eocene sedimentary
rocks in the Lhasa River drainage are limited or apparently
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FIGURE 1 | Tectonic frame and regional topography of the southern Tibetan Plateau. (A) Five different east–west-trending terranes in the Tibetan Plateau. Orange
rectangular shows the extent of (B). (B) The main faults and rivers and the topography of the southern Tibetan Plateau. The black box shows the extent of Figure 2.
White dashed box indicates the locations of elevation swath profiles in (D). IYS, Indus-Yarlung suture zone; BNS, Bangong-Nujiang suture zone; NB: Namche
Barwa. (C) Topographic relief of the southern Tibetan Plateau. The black line indicates the locations of the relief profile in (D). (D) Relief and elevation swath profiles
across the Lhasa River drainage.

absent (Yin and Harrison, 2000). The Quaternary sediments
expose along the lower reaches of the Lhasa River and the Rift
valley (Figure 2).

The main faults in the study area since the Cenozoic include
the Gangdese Thrust (GT), the Great Counter Thrust (GCT), and
the north–south-trending normal fault (Figure 2). The north-
dipping Gangdese Thrust activated between ∼30 and 23 Ma
and has an estimated 50–60 km of shortening along the Indus-
Yarlung Zangpo suture zone (Yin et al., 1999; Wei et al., 2014).
The south-dipping Great Counter Thrust belt juxtaposed the
passive continental margin sediments of northern India over the
Indus-Yarlung ophiolites (Yin et al., 1999; Li Y. L. et al., 2015).
The isotopic dating of Gangdese batholith in southern Tibetan
Plateau constrains that the activity of GCT was between∼25 and

10 Ma (Yin et al., 1999; Harrison et al., 2000). The north–south-
trending Yangbajing-Yardong graben system developed during
the late Miocene, which reflects the E–W extensional regime in
the Tibetan Plateau (Harrison et al., 1992; Li Y. L. et al., 2015).

The climate in the Lhasa River drainage is substantially
influenced by the South Asian summer monsoon (Figure 1).
Global monsoon systems are generally considered to be
associated with seasonal changes in the land–sea thermal contrast
and the shift of Intertropical Convergence Zone (Gadgil, 2003;
Wang et al., 2017). During the boreal summer when the sensible
heating of the Asian continent by solar insolation is at a
maximum, the Intertropical Convergence Zone is located over
the Indian continent, where the SE trade winds in the Southern
Hemisphere change direction to NE after crossing the equator
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FIGURE 2 | Simplified geologic map and locations of the collected thermochronological data of the Lhasa River drainage in the southern Tibet Plateau [modified
from Zhang et al. (2012)]. The black box shows the extent of Figure 3B. GT, Gangdese Thrust; GCT, Great Counter Thrust. The number in the black box represents
the position of the compiled sample.

(Wang et al., 2017). The SE trade winds bring air masses
carrying abundant moisture from the Bay of Bengal to the north
and northwest (Bookhagen et al., 2005). When these vortexes
encounter the frontal terrain of the Himalaya, they were released
to produce a large amount of topographic precipitation, and only
a small part of the water vapor can be transported further to
high-altitude areas on the Tibetan Plateau through the valleys of
the Himalayan transverse river (Bookhagen and Burbank, 2010).
The precipitation of modern Lhasa River drainage do not exceed
500 mm (Bookhagen and Burbank, 2010).

ANALYSIS METHODS

Data and Age–Elevation Relationship
In order to constrain the timing of rapid denudation of the
Lhasa River, the published thermochronological ages in Lhasa
River valley were compiled (Figure 2). This low-temperature
thermochronological dataset includes 9 apatite (U-Th)/He (AHe)
ages, 24 apatite fission-track (AFT) ages, and 4 zircon (U-Th)/He
(ZHe) ages (Copeland et al., 1995; Tremblay et al., 2015; Li
et al., 2016; Figure 2 and Supplementary Table 1). Five AHe
ages ranging from 14.2 ± 1.8 to 16.5 ± 2.7 Ma are from
the middle reaches and along a 1.2-km elevation transect in the
eastern tributary of the Lhasa River (Tremblay et al., 2015), and
four AHe ages ranging from 18.0 ± 1.3 to 21.2 ± 1.5 Ma
are from the eastern tributary valley of the Lhasa River (Li
et al., 2016; Figure 2 and Supplementary Table 1). AFT ages,

ranging between 15.0 ± 0.9 and 41.1 ± 3.4 Ma, are
mainly from the middle and lower reaches of the Lhasa River
valley, but two are from the Yarlung River valley (Figure 2 and
Supplementary Table 1). ZHe ages, ranging between 43 ± 3.0
and 51.9 ± 3.8 Ma, are from the valley-wall transects in the
middle and lower reaches of the Lhasa River (Li et al., 2016;
Figure 2 and Supplementary Table 1). However, six ZHe ages
from the tributary of Lhasa River reported in Tremblay et al.
(2015) are much younger than the ZHe and AFT and AHe ages in
the region reported in Copeland et al. (1995) and Li et al. (2016).
This is probably caused by the locally structural/thermal effect.
In order to avoid the uncertainty, these data are not selected.
All thermochronological ages, at elevation between 3,600 and
5,478 m, were collected from Mesozoic and Early Cenozoic
Gangdese batholith granites.

In order to provide first-order estimates of the denudation
parameters in Pecube, the age–elevation relationship (AER) was
plotted from thermochronological data from river valleys. Here,
we assume that the Lhasa River drainage underwent the history
of uniform denudation in space, and then the variable slopes of
the different AERs can be interpreted as reflecting a change in
the denudation rate of this region (Gallagher et al., 2005a,b; Beek
et al., 2010). The ZHe data suggest a relatively rapid denudation
rate of 0.09 km/Ma between ∼47 and ∼43 Ma, but a lower
rate of 0.01 km/Ma between ∼43 and ∼15 Ma from the AFT
data (Figure 3A). The steeper age–elevation relationship from
AHe data implies an increase in regional denudation rates to
∼0.289 km/Ma from∼23 to∼16 Ma and∼0.331 km/Ma between
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FIGURE 3 | (A) Denudation rates estimated from the age–elevation relationship from the Lhasa River drainage according to least-square fitting. (B) Model setup for
the 3D thermokinematic model (parameters are given in Table 2). The model calculates the evolving thermal field of a 50-km-thick crustal block using a combination
of geothermal, rock denudation, and landscape evolution parameters.

∼16 and∼12 Ma (Figure 3A). Varying denudation rates are also
suggested by the AFT data, which indicates a rapid denudation
phase at around∼23 Ma. These data were used to set the possible
variation range of the parameters in the modeling (see details
in the following).

In fact, the estimation from the AER is simply one-
dimensional, which possibly under- or overestimates the
denudation rate (Braun et al., 2012), because of neglecting
the possible effects of temporally varying topography on
underlying isotherms, and/or neglecting possible effects of relief
development. Moreover, the internal consistency between the
different datasets and their inferred interpretation has not been
assessed. Thus, we will analyze these data using Pecube (Braun
et al., 2012) to more quantitatively infer the denudation and relief
history of Lhasa River drainage.

Thermokinematic Modeling
Pecube is a finite-element thermokinematic modeling that solves
the 3D heat transport equation (Braun, 2003):

ρc
(

∂T
∂t
+ ν

∂T
∂z

)
=

∂

∂x
k
∂T
∂x
+

∂

∂y
k
∂T
∂y
+

∂

∂z
k
∂T
∂z
+H (1)

where T(x,y,z,t) is the temperature (◦C), ρ is the rock density
(kg/m3), c is the heat capacity (J/kg/K), v is the vertical
velocity of the rock particle relative to the base of the crust
(km/Ma), k denotes conductivity (W/m/k), and H is the
radioactive heat production (W/m3). In a crustal block, the
thermal properties such as rock conductivity, heat capacity,
density, and heat production were assumed to remain constant
through time, and then Eq. (1) was solved to reflect a
crustal block undergoing lateral and vertical rock particle
transport, denudation, and surface change. The surface change
is incorporated here using the relief factor R, defined as the ratio
between the relief amplitude (1hi) when rocks passed through
the closure isotherms and the modern-day relief amplitude

(1h0) (Valla et al., 2010):

R =
1hi
1h0

(2)

when R = 0, the initial topography is a plateau at the maximum
present-day elevation; when R = 1, the paleo-relief was the same
as the modern topography; for R < 1, the paleo-relief is lower
than today, while for R > 1, the paleo-relief is higher than today.

During a Pecube model inversion, a two-step neighborhood
algorithm was used (Sambridge, 2010a,b). The first step involves
an iterative search in the multidimensional parameter space
in order to find sets of input parameters that minimize the
misfit between observed and predicted data. The misfit was
calculated as

m =
1
n

√√√√ n∑
i=1

(
pi − oi

)2

σ2
i

(3)

where m is the misfit value; n is the number observed data; and
for each data point i, is the age predicted by Pecube; oi and σi are
the observed age and its error, respectively. The second step of
the neighborhood algorithm is an appraisal of the search results
to define statistical limits on the ranges of input parameters that
provide a good fit to the observed age data (Sambridge, 2010b),
and Bayesian inference is used to produce posterior probability
density functions (PPDFs) for each individual parameter using a
likelihood function L,

L = exp

−n
2

√√√√ n∑
i=1

(
pi − oi

)2

σ2
i

 (4)

The appraisal yields 1D and 2D PPDFs for the model parameters
that are presented for each set of model parameters in Table 1.

The input thermokinematic parameters used in Pecube are
listed in Table 2. We set a 50-km depth model, and the basal
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TABLE 1 | Values of parameters of input and inversion results.

Parameters Denudation (three-phase) Denudation (four-phase) Denudation (five-phase) Relief scenario

Range Best-fit parameter Range Best-fit parameter Range Best-fit parameter Range Best-fit parameter

Basal temperature (◦C) 500–1,000 665 500–1,000 646 500–1,000 617 646 –

R 0–2 0.61 0–2 0.38 0–2 0.9 0–1.5 0.49

T1 (Ma) 30–10 16 30–20 24.6 40–30 31.5 24.6 –

E1 (km/Ma) 0–1.5 0.29 0–1.5 0.07 0–1.5 0.09 0–1.5 0.09

R1 – – – – – – 0–2 0.85

T2 (Ma) 20–10 12.1 25–15 15.5 30–20 23.8 15.5 –

E2 (km/Ma) 0–2 1.75 0–2 0.39 0–1.5 0.02 0–2 0.42

R2 – – – – – – 0–2 0.82

T3 (Ma) 0 0 15–10 12.3 25–15 17.2 12.3 –

E3 (km/Ma) 0-2 0.18 0–2 1.22 0–2 0.41 0–2 0.72

R3 — – – – – – 0–2 1.58

T4 (Ma) – – 0 0 15–10 13.3 0 –

E4 (km/Ma) – – 0–2 0.08 0–2 0.71 0–2 0.16

T5 (Ma) – – – – 0 – –

E5 (km/Ma) – – – – 0–2 0.22 – –

Number of models 7,100 – 7,100 – 10,800 – 10,800 –

Free parameters 7 – 9 – 11 – 8 –

Resample rate 71% – 71% – 90% – 90% –

Misfit – 0.74 – 0.35 – 0.40 – 0.35

Notes: T1, T2, T3, and T4 represent the first, second, third, and fourth transition time, respectively; E1, E2, E3, E4, and E5 represent the denudation rate of the first,
second, third, fourth, and fifth phase, respectively; R, R1, R2, and R3 represent the topographic relief of the initial, first, second, and third transition time, respectively.

temperature of the model is a free parameter ranging between
500 and 1,000◦C, which is equivalent to an initial geothermal
gradient of ∼10–20◦C/km. The initial geothermal gradient in
the Lhasa River drainage should be lower than the present-day
(∼20–30◦C/km), because the late Cenozoic denudation should
have increased the thermal gradient to the current values (Ehlers,
2005). The starting time of the model was set as 41 Ma, as the
reported oldest thermochronological age in the main trunk of the
Lhasa River valley is ∼41 Ma. Cenozoic faults are absent within
the selected simulation area (Figure 2); thus, the faults are not
considered in our model. The geometry of the surface topography
was extracted from 90-m resolution DEMs (Figure 3B).

TABLE 2 | Thermokinematic and elastic parameters used in this study.

Parameter name Parameter range Units Reference

Thermal conductivity 2.5 W/m/K Whipp et al. (2007)

Crustal density 2,700 kg/m3

Thermal diffusivity 25 km2/My

Mean annual surface
temperature

15 ◦C

Atmospheric lapse rate 6 ◦C/km Naito et al. (2006)

Model time step Optional years

Basal temperature 500–1,000 ◦C

Horizontal node
spacing

0.9 km

Vertical node spacing 0.9 km

Model domain 140 × 90 × 50 km

Model starting time 41 Ma

In order to obtain a more robust and detailed view of the
denudation rate, transition time, and topographical relief in
the Lhasa River drainage, two scenarios were modeled as the
“denudation scenario” and the “relief scenario.” Here, we defined
the “denudation scenario” as a steady evolution of topography
scenario considering only spatially and temporally varying rock
denudation rates, without considering the complex evolution of
topography, and the initial topography changes linearly through
time to modern. Based on previous studies for the denudation
history in the Gangdese region, we have known apparently more
than two-stage denudation history since 41 Ma in the Lhasa River
drainage (Li et al., 2016). Thus, the assumption of three-phase,
four-phase, and five-phase denudation history in the “denudation
scenario” since 41 Ma was tested, respectively.

The inverted parameters are preliminarily set based on the
AER, including the slope of AHe and AFT ages with uncertainty
(Figure 3A). The parameters of the three-phase denudation
history include (1) first and second transition time (T1, 30–
10 Ma, and T2, 20–10 Ma, the reference basis for boundary setting
shown in Supplementary Table 2); (2) denudation rates of the
first, second, and third phase (E1 = 0–1.5 km/Ma, E2 = E3 = 0–
2 km/Ma, referring from the slope of AHe and AFT in AER);
and 3) initial relief (R, 0–2). The parameters of the four-phase
denudation history include (1) first, second, and third transition
time (T1, 30–20 Ma; T2, 25–15 Ma; and T3, 15–10 Ma); (2)
denudation rates of the first, second, third, and fourth phase
(E1 = 0–1.5 km/Ma; E2 = E3 = E4 = 0–2 km/Ma); and (3)
initial relief (R, 0–2). For the five-phase denudation history, the
parameters include (1) first, second, third, and fourth transition
time (T1, 40–30 Ma; T2, 30–20 Ma; T3, 25–15 Ma; and T4,
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15–10 Ma); (2) denudation rates of the first, second, third, fourth,
and fifth phase (E1 = E2 = 0–1.5 km/Ma; E3 = E4 = E5 = 0–
2 km/Ma); and (3) initial relief (R, 0–2).

The incision of the Lhasa River will affect the topographical
relief. We also define a “relief scenario” to consider not only
spatially and temporally varying rock denudation rates, but also
the multistage evolution of topography due to the impact of
the fluvial incision. The detailed parameters of this scenario
were set according to the results of the “denudation scenario,”
including four-phase denudation and topographic evolution
history (Table 1, see section “denudation Scenario” for details).
Inverted parameters of this scenario include the following: (1)
the first, second, and third transition time set as 24.6, 15.5,
and 12.3 Ma, respectively, according to the simulation result of
the four-stage denudation in the “denudation scenario”; (2) the
range of denudation rates of the first, second, third, and fourth
phase, which are the same as four-phase denudation history
in the “denudation scenario”; and (3) topographic relief of the
initial, first, second, and third transition time (R = R1 = 0–1.5,
R2 = R3 = 0–2). The input parameters of the modeling under
different denudation stages and different scenarios are shown in
Table 1.

MODELING RESULTS

Denudation Scenario
The results for best fitting of the three-phase denudation are
shown in Table 1. We found the slow denudation at a rate of
0.29 km/Ma from 41 to 16 Ma, the rapid denudation at a rate of
1.75 km/Ma between 16 and 12 Ma, and a slow rate of 0.18 km/Ma
since ∼12 Ma (Table 1 and Supplementary Figure 1). However,
a rapid phase of denudation since ∼23 Ma reported by Li et al.
(2016) is not reproduced in this modeling. For the inversion of
five-phase denudation history, the denudation rates of best fitting
of the first phase (a rate of 0.09 km/Ma from ∼41 to 31.5 Ma)
and second phase (a rate of 0.02 km/Ma from ∼31.5 to 23.8 Ma)
are not more than 0.1 km/Ma (Table 1 and Supplementary
Figure 2), which can be considered as a slow denudation phase.
Moreover, the minimum misfit value of the forward result for
the three-phase and five-phase denudation history is 0.74 and
0.40, respectively, which is higher than the four-phase denudation
history (0.35) (Table 1). Therefore, the assumption of four-
phase denudation is much more possible for the Lhasa River
drainage since 41 Ma.

The results for the inversion of four-phase denudation are
shown in Figure 4. The best-fitting model shows that the
transition time of four-phase denudation is 24.6, 15.5, and
12.3 Ma, respectively. The slow denudation phases are the episode
between ∼40 and 24.6 Ma with a rate of 0.07 km/Ma and the
episode of ∼12 Ma to the present with a rate of 0.08 km/Ma.
The rapid denudation rates were the second and third phases that
were 0.39 km/Ma from 24.6 to 15.5 Ma and 1.22 km/Ma from 15.5
to 12.3 Ma. Note that 1.22 km/Ma from 15.5 to 12.3 Ma from
the modeled denudation rate was higher. The age of the best-
fit forward model in this scenario is also basically close to the
observed age, except that ZHe is slightly younger (Figure 5A).

Relief Scenario
The incision of the Lhasa River valley leads to rapid denudation
and changes in topographic relief. However, the simulation of the
denudation scenario only inverted the initial relief. Therefore,
we set the topography scenario with three additional relief
parameters to invert the change of denudation rates and the
evolution of topographic relief under the four-phase denudation
(Table 1). The best-fitting model shows that the denudation
rate of the four phases was 0.09, 0.42, 0.72, and 0.16 km/Ma,
respectively (Figure 6). The denudation rate of the third stage
in the relief scenario was lower than that of the denudation
scenario, and the denudation rate in the other stages is close
to the denudation scenario. The best fitting of the relief factor
was 0.49 at 41 Ma, 0.85 at 24.6 Ma, 0.82 at 15.5 Ma, and 1.58 at
12.3 Ma, respectively. The relief factors at 41 and 25 Ma are not
well converging and their errors are relatively large (Figures 6, 7),
but the obvious changes in the relief after∼25 Ma have been well
constrained (Figure 6). All ages of forwarding simulation under
the relief scenario are basically consistent with the observed
ages (Figure 5B).

DISCUSSION

The Timing of Establishment of the
Modern Lhasa River
In this study, we found that the thermochronological ages
in the main trunk are 41–14 Ma according to published
thermochronological ages. The denudation history result of
the modeling shows that rapid denudation started at ∼25 Ma
(Table 1 and Figure 4). The establishment of rivers will definitely
cause rapid denudation of the valley. Of course, other factors
such as increased tectonic uplift and rainfall and related discharge
could also lead to the enhancement of river incision and rapid
denudation. However, we suggest that the rapid denudation of
the Lhasa River valley before 25 Ma may be also recorded by
thermochronological data if the modern Lhasa River exists before
25 Ma. In fact, we only found that the rapid denudation of
the Lhasa River valley started at ∼25 Ma, probably suggesting
that the modern Lhasa River in its modern extent did not exist
prior to 25 Ma. In addition, the paleoaltimetric studies (e.g.,
carbon and oxygen stable isotopes) suggest that the northern
portion of the Lhasa terrane where the Lhasa River originates
was uplifted to near-modern elevations since around 25–23 Ma
or much earlier (Rowley and Currie, 2006; DeCelles et al., 2007;
Tian et al., 2013; Ding et al., 2014). If the Lhasa River did
not start to develop at ∼25 Ma, the rapid denudation might
imply that the northern Lhasa terrane must have the rapid rock
uplift, and thus, it can maintain the current elevation. However,
the northern Lhasa terrane did not undergo rapid rock uplift
since the late Oligocene (Hetzel et al., 2011; Li et al., 2016),
which suggested that this rapid denudation episode is most
likely associated with the initial incision of the upper reaches of
the Lhasa River.

In addition, the main trunk of the Lhasa River drains to
the southwest across the Gangdese Mountains and merges
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FIGURE 4 | Scatterplots of Pecube inversion misfits for the four-stage denudation scenario model of the Lhasa River drainage. Colored dots represent individual
forward-model runs plotted in 2D projections of the parameter space with color corresponding to misfit values. Posterior probability density functions for parameter
values are plotted along the axes. The best-fit solution is represented by a yellow star with 2σ (black) and 1σ (light blue) confidence contours. (A–D) Transition time
and denudation rate during the four stage (transition time T1, T2, and T3; denudation rate E1, E2, E3, and E4); (E) basal temperature T and relief factor of initial
topography R.

into the Yarlung River (Figure 1B). Gangdese conglomerates
are exposed discontinuously along the Yarlung River, and
the depositional age of the Gangdese conglomerates is

26–23 Ma in the Xigaze forearc basin near the Lhasa River
outlet (Wang et al., 2013; Carrapa et al., 2014). Paleocurrent
measurements and provenance data indicate that the initial
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FIGURE 5 | Comparison of observed and predicted thermochronological data for the best-fit parameters. (A) Comparison of observed and predicted
thermochronological data under the “denudation scenario” with four-stage denudation. (B) Comparison of observed and predicted thermochronological data under
the “relief scenario.”

FIGURE 6 | Scatterplots of Pecube inversion misfits for the relief scenario model of the Lhasa River drainage. Colored dots represent individual forward-model runs
plotted in 2D projections of the parameter space with colors corresponding to misfit values. Posterior probability density functions for parameter values are plotted
along the axes. The best-fit solution is represented by a yellow star with 2σ (black) and 1σ (light blue) confidence contours. (A–D) Relief factor and denudation rate
during the four stage (relief factor R, R1, R2, and R3; denudation rate E1, E2, E3, and E4).
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detritus of the Gangdese conglomerates were entirely derived
from the north (mainly from the Gangdese arc) (Wang et al.,
2013; Li et al., 2017), suggesting that the southward-draining
relatively large rivers existed in the Gangdese region at least
before ∼23 Ma, and a large amount of material from the
Gangdese arc can be transported southward. Furthermore,
Laskowski et al. (2019) proposed that the paleo-Lhasa River
may form since the Late Cretaceous based on the sedimentary
provenance analysis. However, Li et al. (2018) summarized
the incision history of modern tributaries of the Yarlung
River and showed that tributaries on the north side of the
Yarlung River (originating from the Lhasa terrane, including
the Lhasa River) have only recorded progressively northward
cooling episodes since the early Miocene. This could also
verify the result of thermal history modeling. The southward-
draining paleo-Lhasa River proposed by Laskowski et al.
(2019) probably did not follow the current Lhasa River
channel. In summary, according to these thermochronological,
sedimentological, and paleoaltimetric evidence, the modern
Lhasa River was probably established during the latest
Oligocene–earliest Miocene.

Forcing for the Late Cenozoic
Denudation and Topographic Evolution
of Lhasa River Drainage
The Latest Oligocene–Early Miocene
Our best-fit model shows that the Lhasa River drainage
underwent a rapid denudation from 24.6 to 15.5 Ma (with
a rate of 0.42 km/Ma) (Figure 7C). The onset of rapid
denudation occurred slightly earlier compared with the previous
reported rapid exhumation timing (∼23 or 20–10 Ma) (Li
et al., 2016; Ge et al., 2017). The topographic relief did not
change significantly with the increase of denudation during
this stage (Figure 7C), suggesting a possible overall uplift
in a large area including the Lhasa River drainage during
this phase. The Gangdese Thrust is a north-dipping fault
developed at the southern margin of the Lhasa River drainage
(Figure 2), and it was active during late Oligocene–early
Miocene (Yin et al., 1994; Li G. W. et al., 2015). Thus,
the rapid denudation and relatively stable relief in this stage
are most likely associated with the activity of the Gangdese
Thrust (Figure 7A).

FIGURE 7 | A comparison of the geologic events in south Tibet and Himalaya, the Asian summer monsoon, and the denudation rate and relief history of the Lhasa
River drainage since ∼40 Ma. (A) The black horizontal lines represent the main deformation events for tectonic units of southern Tibet and Himalaya (Li Y. L. et al.,
2015). MCT, Main Central thrust; MBT, Main Boundary thrust; MFT, Main Frontal thrust. The yellow line represents that growing season precipitation modeled from
CLAMP (Climate-Leaf Analysis Multivariate Program) for the eastern Himalayan Siwalik fossil leaf assemblages (Khan et al., 2019). The red line represents the
Southeastern Asian offshore sedimentary accumulation rate (SR) (Clift, 2006). (B) The benthic oxygen and carbon isotope record is represented by black and blue
lines, respectively (Zachos et al., 2001). (C) Continuous black and yellow lines represent the best-fit denudation rate and relief of the Lhasa River drainage,
respectively. The shaded line represents 1σ uncertainty on these estimates.
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Moreover, we also compared the denudation rate with climate
change (Figure 7B) and found that the rapid denudation
in this stage also corresponds to the intensification of the
Asian monsoon. Recent studies have shown that climatic
change (precipitation or glacier development) determines the
denudation of a large-scale area (Montgomery et al., 2001; Clift
et al., 2008), but the orogenic tectonics could only trigger the
erosion of the relatively local region (Beaumont et al., 2001;
Luszczak et al., 2018; Yang et al., 2019; Shen et al., 2019). Based
on this hypothesis, we have summarized the cooling history
of five large rivers in the southeastern Tibetan Plateau from
∼40 Ma to the present to identify the possible effect of climate
on the denudation (Figure 8). This result suggests that not all
rivers on the southeastern Tibetan Plateau underwent a rapid
cooling at this period (Figure 8B), indicating that the rapid
denudation at this stage is not dominated by climate, which
further validates our viewpoint.

The Gangdese Thrust leads to the further uplift of the
Gangdese Mountains, which could cut off the external
paleodrainage from north to south in the southern Tibetan
Plateau (Zhang et al., 2012; Han et al., 2019). At the same
time, the southward paleodrainage in the southern Gangdese
Mountains also rapidly incised in response to the uplift of the

Gangdese Mountains, leading to the formation of the initial
Lhasa River. In the early Miocene, the development of the GCT
system caused the uplift of the southern terranes (the Xigaze
forearc basin, YTSZ, and Tethyan Himalaya) that might block
the originally southward paleoflows (Wang et al., 2013; Li et al.,
2018). The westward-flowing paleo-Yarlung River initiated at
∼22 Ma (Wang et al., 2013) and captured the initial paleo-Lhasa
River, possibly leading to the formation of the so-called barbed
junction with southwestward-flowing tributaries (modern
Lhasa River) of the Yarlung River (Figure 2). Theoretically, the
formation of the modern Lhasa River will definitely lead to an
increase in topographic relief, but the result of our simulation
suggests that the topographic relief did not change significantly
with the increase of denudation during this stage (Figure 7). This
is probably related to the overall uplift of the central Gangdese
Mountains during this phase due to the development of the GT
and GCT (Figure 7A).

The Middle Miocene
Although previous studies have generally estimated a rapid
denudation stage of the Gangdese region at ∼23–0 or 20–
10 Ma (Dai et al., 2013; Li et al., 2016; Ge et al., 2017), our
modeling shows that a period of intense denudation existed

FIGURE 8 | Cooling history of large rivers in the southern Tibet Plateau retrieved by Hefty (Ketcham, 2005) or QtQt (Gallagher, 2012). (A) Sampling sites of the river
detrital or bedrock low-temperature thermochronology in the southern Tibetan Plateau. The letters a, b, c, d, and e represent the study sites of the Yarlung River,
Mekong River, Yangtze River, Indus River, and Yalong River, respectively. (B) 2D thermal history modeling (Hefty or QtQt) results of thermochronological ages from the
large rivers in the southern Tibetan Plateau (data from van der Beek et al., 2009; Tremblay et al., 2015; Shi et al., 2016; Zhang et al., 2016; Carrapa et al., 2017; Nie
et al., 2018; Song et al., 2018; Liu-Zeng et al., 2018; Gourbet et al., 2019). MMCO, middle Miocene climate optimum.
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at ∼15.5–12.3 Ma (with a rate of 0.72 km/Ma) (Figure 7C).
The topographic relief in Lhasa River drainage also increased
significantly (Figure 7C). An important climate event, the middle
Miocene climate optimum (MMCO, ∼17–14 Ma) happened,
which is characterized by the warmest climate and highest
atmospheric CO2 concentrations during this period (Zachos
et al., 2001; Tripati et al., 2009). The MMCO corresponds to
a phase of enhanced East and South Asian summer monsoon
precipitation with large amplitude variability as recorded by
offshore Southeastern Asian sediment accumulation rates (Clift,
2006; Yang et al., 2020). Meanwhile, the activity of the south-
dipping GCT caused uplift and denudation of the Xigaze forearc
basin, YTSZ, and Tethyan Himalaya in the southernmost Lhasa
terrane (Wang et al., 2013; Li Y. L. et al., 2015). However,
the middle reach of the Lhasa River is close to the central
Lhasa terrane, and the tectonic activity of GCT should have
a little impact on the denudation of the Lhasa River. Thus,
we suggest that the intense denudation in this stage is more
likely to be related to the large increasing Asian summer
monsoon precipitation.

Furthermore, the cooling history of five large rivers in the
southeastern Tibetan Plateau also underwent rapid cooling at
this stage (Figure 8B), and this spatially large-scale synchronous
rapid denudation including in the Lhasa River drainage should be
dominated by climate (Montgomery et al., 2001; Clift et al., 2008).
This is consistent with the fast incision of the Lhasa River, which
leads to the topographic relief to increase rapidly (R3 = 1.6),
which resulted in a relatively high-relief landscape (Figure 7C).

After ∼12 Ma
The denudation rate and relief in the Lhasa River drainage
significant decreased after ∼12 Ma. The geological evidence
suggested that the Himalaya experienced significant rock uplift
since the late Miocene (Figure 7, e.g., MBT and MFT); thus,
the orographic barrier to precipitation in the southern Tibetan
Plateau would have strengthened (Tremblay et al., 2015), but
the Lhasa River valley could be the only access for moisture
penetration to the north and the precipitation decreased here.
Therefore, the denudation rate significantly decreased. Another
possibility was that a stationary knickzone results from coupling
between focused rock uplift and rapidly fluvial incision within
the Namche Barwa Syntaxis during the late Miocene (Lang and
Huntington, 2014; Zeitler et al., 2014), creating a high-elevation
base level for the drainage network upstream which inhabited the
incision of the upper reaches of the Yarlung River. The decreasing
of incision and low transport capacity in the upper Lhasa River
might have led to the accumulation of the Lhasa River and
reduced the topographic relief.

CONCLUSION

Based on a set of thermochronological ages reported in the
Lhasa River valley, we have used a 3D thermokinematic model
to carefully quantify rates and transition time of denudation
under different scenarios. Two-stage rapid denudation rates at
∼25–16 Ma (with a rate of 0.42 km/Ma) and ∼16–12 Ma

(with a rate of 0.72 km/Ma) are revealed. Furthermore, the
results of the drainage denudation history were combined with
the data of topographic evolution to distinguish the tectonic
and climate controls on geomorphic evolution of the Lhasa
River drainage. The rapid denudation of the first phase (∼25–
16 Ma) could be caused by the activity of the Gangdese Thrust,
which led to the overall uplift of the Gangdese Mountains. This
might result in the reorganization of southward paleodrainage
in the southern Tibetan Plateau, and the modern Lhasa River
started to develop. The second stage of the fast denudation
and high relief which correspond to a ubiquitous increase
of fluvial incision in the southern Tibetan Plateau should
be related to enhanced Asian summer monsoon precipitation
during the middle Miocene. After that, the denudation rate
decreased rapidly due to the uplift of the Himalayas barrier to
precipitation, and a low-relief landscape gradually developed in
the Gangdese region.
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