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The study of induced seismicity at sites of fluid injection is paramount to assess the seismic
response of the earth’s crust and to mitigate the potential seismic risk. However statistical
analysis is limited to events above the completeness magnitudemc, which estimation may
significantly vary depending on the employed method. To avoid potential biases and
optimize the data exploitable for analysis, a better understanding of completeness,
detection capacity and censored data characteristics is needed. We apply various
methods previously developed for natural seismicity on 16 underground stimulation
experiments. We verify that different techniques yield different mc values and we
suggest using the 90% quantile of the mc distribution obtained from high-resolution
mapping, withmc defined from themode of local magnitude frequency distributions (MFD).
We show that this distribution can be described by an asymmetrical Laplace distribution
and the bulk MFD by an asymmetric Laplace mixture model. We obtain an averaged
Gutenberg-Richter parameter b � 1.03 ± 0.48 and a detection parameter
k � 3.18 ± 1.97 from mapping, with values subject to high uncertainties across
stimulations. We transfer Bayesian mc mapping developed for natural seismicity to the
context of induced seismicity, here adapted to local three-dimensional seismicity clouds.
We obtain the new prior parameterization mc,pred � 1.64log10(d3) − 1.83, with d3 the
distance to the 3rd nearest seismic station. The potential use of censored data and of mc

prediction is finally discussed in terms of data mining to improve the monitoring, modeling
and managing of induced seismicity.

Keywords: enhanced geothermal system, earthquake detection, earthquake monitoring, completeness magnitude,
magnitude frequency distribution, bayesian inference, mixture modeling

INTRODUCTION

The evaluation of the completeness magnitudemc, above which the Gutenberg-Richter law is verified
as all the data is by definition observed, is a prerequisite to virtually all statistical analyses of
seismicity. This includes the study of induced seismicity at sites of underground stimulation by fluid
injection. Underestimating mc yields to biased estimates of the slope of the Gutenberg-Richter law,
the b-value, and overestimating it may lead to unnecessary under-sampling. Selection of mc has
therefore indirect consequences on seismic hazard assessment. Most published works provide an estimate
of mc but rarely explain how it has been calculated and rarely, if ever, provide a sensitivity analysis.

The present study aims at filling this gap by an in-depth analysis of the magnitude frequency
distribution (MFD) at multiple sites. To the best of our knowledge, this is the first study dedicated to
completeness magnitude analysis in the induced seismicity context. We will test different mc
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techniques (e.g., Wiemer and Wyss, 2000; Amorèse, 2007) and
transfer two recent models originally developed by the author for
natural seismicity: The Asymmetric Laplace MFD model to
describe the incomplete part of seismicity (Mignan, 2012;
Mignan, 2019), and the Bayesian Magnitude of Completeness
(BMC) method for robust mc mapping (Mignan et al., 2011),
based onmc being the mode of local MFDs, in agreement with the
Asymmetric Laplace formulation.

The BMC method has been successfully applied in various
regions of the world, but so far only in the context of natural
seismicity: Taiwan (Mignan et al., 2011), Mainland China (Mignan
et al., 2013), Switzerland (Kraft et al., 2013), Lesser Antilles arc
(Vorobieva et al., 2013), California (Tormann et al., 2014), Greece
(Mignan and Chouliaras, 2014), Iceland (Panzera et al., 2017),
South Africa (Brandt, 2019) and Venezuela (Vásquez and Bravo de
Guenni, n.d.)1. It becomes urgent to apply it to induced seismicity,
which requires a reformulation of the model. Based on the new
parameterization and additional information on incomplete (so-
called censored) data, we will discuss how such information could
improve induced seismicity data mining, or in other words, how it
could improve knowledge on the underground feedback activation
and the management of the associated risk.

MATERIALS AND METHODS

Induced Seismicity Data
We consider 16 underground stimulations by deep fluid
injection (Table 1), all of which are publicly available and
often available from dedicated data portals (e.g., EOST and
GEIE EMC, IS EPOS): the Soultz-sous-Forêts stimulations at the

GPK1 well in 1993 [S93] (Cornet et al., 1997), GPK2 well in 2000
[S00] (Cuenot et al., 2008), GPK3 well in 2003 [S03] (Calò and
Dorbath, 2013) and GPK4 well in both 2004 [S04] and 2005
[S05] (Charléty et al., 2007), the KTB deep drilling site [KTB94]
(Jost et al., 1998), the Paradox Valley continuous injection from
1994 to 2008 [PV94] (Ake et al., 2005), the 2006 Basel 1 well
stimulation [B06] (Häring et al., 2008; Kraft and Deichmann, 2014),
the 2007–2014 Geysers [G07] Prati-9 and Prati-29 well injections
(Kwiatek et al., 2015), the 2008 Groß Schönebeck injection [GS07]
(Kwiatek et al., 2010), the Cooper Basin Habanero 4 well
stimulation of 2012 [CB12] (Baisch et al., 2015). the Newberry
Volcano EGS demonstration 2012 stimulation and 2014
restimulation [NB12] (Cladouhos et al., 2013; Cladouhos et al.,
2015), the 2013 St Gallen reservoir simulation [SG13] (Diehl et al.,
2017), the 2015 Äspö Hard Rock Laboratory experiment [A15]
(Kwiatek et al., 2018), the 2016–2017 Pohang stimulation
experiment [P16] (Woo et al., 2019), and the 2018 Espoo
stimulation [E18] near Helsinki (Kwiatek, 2019). Most
stimulations considered took place at EGS sites.

Depending on the parameters provided (see Table 1),
different completeness analysis levels are achievable. When
earthquake coordinates are not included, the study is limited
to the bulk MFD analysis (Woessner andWiemer, 2005; Mignan
and Woessner, 2012) and to the application of the Asymmetric
Laplace distribution (Mignan, 2019); when earthquake coordinates
are included, observed completeness magnitudemc,obs mapping is
performed (e.g., Wiemer and Wyss, 2000). In the ideal situation in
which the coordinates of the seismic stations are also given,
posterior completeness magnitude mc,post maps are also
generated using the BMC method (Mignan et al., 2011).

Since this study is solely dedicated to seismicity completeness, data
such as total volume injected, flow rate profile, or injection/post-
injection windows are not considered (only mentioned in the
discussion, Discussion and Perspectives on Data Mining). For
statistical analyses related to the fluid injection process at different
sites, the reader can refer to, e.g., Dinske and Shapiro (2013), van der
Elst et al. (2016), Mignan et al. (2017) or Bentz et al. (2020).

TABLE 1 | Available public data for induced seismicity completeness analysis.

Site Catalog Stations (Nsta) Source

Ntot Coord

S93. Soultz-sous-forêts, 1993 10,742 ✓ ✓ EOST and GEIEEMC (2017)
KTB94. KTB, 1994 182 7 7 Jost et al. (1998)
PV94. Paradox Valley, 1994–2008 4,569 ✓ 7 Bureau of Reclamation (2017)
S00. Soultz-sous-forêts, 2000 7,215 ✓ ✓ EOST and GEIEEMC (2018a)
S03. Soultz-sous-forêts, 2003 4,728 ✓ ✓ EOST and GEIEEMC (2018b)
S04. Soultz-sous-forêts, 2004 5,861 ✓ ✓ EOST and GEIEEMC (2018c)
S05. Soultz-sous-forêts, 2005 3,709 ✓ ✓ EOST and GEIEEMC (2018d)
B06. Basel, 2006 1,980 ✓ 7 Kraft and Deichmann (2014)
G07. Geisers, 2007–2014 1,606 ✓ 7 IS EPOS (2017a)
GS08. Groß Schönebeck, 2008 29 ✓ ✓ IS EPOS (2017b)
CB12. Cooper Basin, 2012 20,735 ✓ ✓ IS EPOS (2020)
NB12. Newberry, 2012–14 494 ✓ 7 U.S. Dept. Energy (2020)
SG13. St Gallen, 2013 347 ✓ ✓ IS EPOS (2018)
A15. Äspö, 2015 196 ✓ 7 Kwiatek et al. (2018)
P16. Pohang, 2016–2017 98 ✓ ✓ Woo et al. (2019)
E18. Espoo, 2018 1,977 ✓ 7 Kwiatek (2019)

1Vásquez, R., and Bravo de Guenni, L. n. d. Bayesian estimation of the spatial
variation of the completeness magnitude for the Venezuelan seismic catalogue.
Available at: https://www.statistics.gov.hk/wsc/CPS204-P47-S.pdf. (Accessed Aug
2014)
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StandardMagnitude Frequency Distribution
Analysis
The bulk magnitude frequency distribution (MFD) of an
earthquake catalog can be described by a probability density
function that takes the form:

p(m) � cq(m)fGR(m) � cq(m)e−βm

where m is the earthquake magnitude, fGR(m) the Gutenberg-
Richter law (Gutenberg and Richter, 1944), q(m) a detection
function that controls the shape of the MFD and c a
normalization constant so that ∫ 

p(x)dx � 1. The non-
cumulative MFD, defined as the number of earthquakes per
magnitude bin m, is simply n(m) � ΔmNtotp(m) with Ntot the
total number of events and Δm � 0.1 the magnitude bin. The
cumulative MFD is more commonly formulated as N(≥m) �
10a− bm where b � β/log10 and a is the overall seismicity activity.

We should have the condition q(≥mc) � 1 by definition,
although it may only tend to 1 if q is unbounded, for example
if defined as a cumulative Normal distribution (Ringdal, 1975;
Ogata and Katsura, 1993), a log-normal distribution (Martinsson
and Jonsson, 2018), or a power-law (so that p can be represented
by a gamma distribution; Kijko and Smith, 2017). Mignan (2012),
Mignan (2019), in contrast, consider the gradual curvature of the
MFD to be due to the sum of "angular" MFDs, each of constant
mc, with q a bounded exponential function and p an asymmetric
Laplace distribution (see below). "Curved" q functions would then
be fitting proxies not representative of the spatially varying and
scale-variant detection process (Mignan and Chen, 2016).

Various methods have been proposed to estimate mc from the
bulk MFD, independently of the function q(m) (see reviews by
Woessner and Wiemer, 2005; Mignan and Woessner, 2012). We
here consider two non-parametric techniques, the mode of the
MFD (also known as "maximum curvature" method; Wiemer and
Wyss, 2000) and the Median-Based Analysis of the Segment Slope
(MBASS) method (Amorèse, 2007). The b-value of the Gutenberg-
Richter law can then be estimated with the maximum likelihood
estimation (MLE) method (Aki, 1965) for the complete magnitude
range (mc − Δm/2,+∞). It is important to note that mc values
obtained from the bulkMFD can vary significantly across methods,
which hampers the evaluation of b. A spatial analysis can limit the
potential ambiguity (Mignan and Chouliaras, 2014).

Spatial heterogeneities in mc, due at first order to the seismic
network spatial configuration (Bayesian Magnitude of Completeness
Mapping Method), can be evaluated by a simple mapping procedure.
We perform a three-dimensional mapping of mc,obs(x, y, z) in cubic
cells 100-mwide.No smoothing kernel (e.g.,Wiemer andWyss, 2000)
is used in order tominimizemc heterogeneities in individual cells. The
parameter is estimated by using the mode of the distribution of
magnitudes m in each cell (x, y, z). The mode is a reasonable choice
for localized data where no significant spatial variations in mc is
expected (Mignan, 2012; Mignan and Chen, 2016). It also yields
robust results for sample sizes as low asnmin � 4 earthquakes (Mignan
et al., 2011), the threshold used in the presentmapping procedure. The
set ofmc estimates for all cells is then represented by the vectormc,obs,
which distribution explains the curvature characteristics of the bulk
MFD.Different quantiles ofmc,obs can be tested to evaluate b. Themap

ofmc,obs(x, y, z) is also used as input for the BMC method described
in Bayesian Magnitude of Completeness Mapping Method.

Local MFDs of cells (x, y, z) can be used to estimate both b and
the parameter k of the detection function q. We consider the
asymmetric Laplace probability density function:

pAL(m) � 1
1

κ−β + 1
β

{ e(κ− β)(m−mc), m<mc

e− β(m−mc), m≥mc

with mode mc and the detection parameter k � κ/log(10) also
estimated using the MLE method (Mignan, 2012; see also
equation Asymmetric Laplace Mixture Model). This parameter
has been shown to be relatively stable with k ≈ 3 for natural
seismicity in Southern California and Nevada (Mignan, 2012).
We apply the same approach to test how this parameter behaves
in the context of induced seismicity. We only consider cells with
nmin � 50 for those calculations. The asymmetric Laplace
distribution is the basic component of the mixture model
presented below (Asymmetric Laplace Mixture Model). It also
explains why themode is used to computemc in the BMCmethod
(Bayesian Magnitude of Completeness Mapping Method).

Asymmetric Laplace Mixture Model
The sum of local “angular”MFDs of differentmc which forms the
bulk "curved" MFD can be approximated by mixture modeling
instead of a mapping procedure. This is particularly practical if
earthquake coordinates are unavailable with only access to a
magnitude vector. The Asymmetric Laplace Mixture Model
(ALMM) (Mignan, 2019) is defined as:

pALMM(m;wi,mc,i, κ, β) � ∑K
i�1

wipAL(m;mc,i, κ, β)
with K the number of Asymmetric Laplace mixture components
ordered by mc value (mc,1 <mc,2 </<mc,i </<mc,K ) and wi

the mixing weight of the ith component such that ∑K
i�1

wi � 1.

Parameters κ and β are assumed constant across components.
Any MFD shape can be fitted by the flexible ALMM based on

the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). The initial parameter values are estimated by applying
K-means (MacQueen, 1967), with wi the normalized number of
events per cluster andmc,i the cluster centroid. Each component is
formed of the magnitude vector Mi � (m1,m2,/). The
completeness magnitude mc,i is estimated from the mode of
the component. Parameter κ is estimated from the incomplete
part of the first component Mleft � {m ∈ M1 : m≤mc,1 − Δm/2}
while parameter β is estimated from the complete part of the last
component Mright � {m ∈ MK : m>mc,K − Δm/2}. The
maximum likelihood estimates are respectively:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
χ � 1(mc,1 − Δm

2
) −Mleft

β � 1

Mright − (mc,K − Δm
2
)

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 9 | Article 6351933

Mignan Induced Seismicity Completeness

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


with χ � κ − β the slope of the incomplete part of the asymmetric
Laplace distribution in a log-linear plot.

At each EM iteration j, a deterministic version of the
expectation step (E-step) attributes a hard label i to each event
magnitude from the parameter set θ(j−1)i � {mc,i, κ, β} defined in
the previous iteration j − 1 (j � 0 corresponding to the K-means
estimate). Hard labels are assigned as:

i � argmaxipAL(m, θ(j−1)i )
The maximization step (M-step) then updates the component
parameters. The best number of components K is finally selected
from the lowest Bayesian Information Criterion estimate BIC �
−LL + 1/2(2 + K)ln(Ntot) (Schwarz, 1978) where LL is the log-
likelihood of the ALMM. Details of the full method are given in
Mignan (2019). For MFD mixture modeling based on a log-
normal component, the reader may refer to Martinsson and
Jonsson (2018).

Bayesian Magnitude of Completeness
Mapping Method
The last method to be tested in the present study is the Bayesian
Magnitude of Completeness (BMC)method that consists in using
Bayesian inference to estimate mc based on incomplete
information and prior belief. The incomplete information is
the mc,obs map (see Standard Magnitude Frequency
Distribution Analysis), which presents gaps in cells of low
seismicity and is highly uncertain when estimated from a
limited number of earthquake magnitudes. BMC is
constrained by a prior model mc,pred � f (dk) relating the
spatial heterogeneities in mc to the density of seismic stations,
approximated by the distance dk to the kth nearest station
(Mignan et al., 2011). Priors were defined so far in the
literature for two-dimensional mc mapping. We here define a
new prior based on three-dimensional distance, which is a
requirement for fluid injections characterized by a three-
dimensional seismicity cloud centered at the borehole depth
and detected by a combination of surface stations and
downhole stations. The distance between a cell and a station

of coordinates (xsta, ysta, zsta) is thus

d �
�����������������������������
(x − xsta)2 + (y − ysta)2 + (z − zsta)2

√
. We additionally

improve the functional form of the prior, moving from mc,pred �
c1d

c2
k + c3 (Mignan et al., 2011) to the form

mc,pred � c1log10(dk) + c2, a simpler attenuation function
reduced to two free parameters.

Following Bayes’ Theorem, we obtain the posterior
completeness magnitude mc,post and standard deviation σpost :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
mc,post �

mc,predσ2
obs +mc,obsσ2pred

σ2pred + σ2obs

σpost �

���������
σ2predσ

2
obs

σ2
pred + σ2obs

√√

where σobs and σpred are the standard deviations of mc

observations (based on 100 bootstraps) and of the prior
model, respectively. Note that all the aforementioned
parameters depend on location (x, y, z), except for σpred which
is constant.

RESULTS

Results of a Standard mc Analysis
We first apply the standard methods of mc evaluation, based on
bulk MFD analysis and mc mapping. This is the first systematic
comparison of completeness level for different induced seismicity
sequences.

Figure 1 shows the cumulative bulk MFD for the 16 fluid
injections and the matching mc,obs distribution. Figure 1 also
shows the estimates mc,mode (dotted vertical line) and mc,MBASS

(dashed vertical line) which are often close to the mc,obs median.
More conservative estimates of mc, such as the 75% or 90%
quantiles of mc,obs seem to provide reasonable b-values. We use
q90(mc,obs) to estimate the Gutenberg-Richter slope b in Figure 1.
Note that the mc,obs distribution shape matches the curvature of
the bulk MFD, which verifies that it is due at first order to spatial
heterogeneities. Table 2 lists mc,bulk estimates obtained from
different approaches with their respective b-values for
comparison. For most cases, the mc range for induced
seismicity is comprised between -2 and 1. It goes down to -4
for the Äspö Hard Rock Laboratory experiment where pico-
seismicity is detected. Such low mc values have been reached at
other underground laboratories (e.g., Villiger et al., 2020). The
range of b-values is consistent with the ones obtained by Dinske
and Shapiro (2013) for the 5 datasets common to both studies.
The authors however only provided one estimate while our
Table 2 shows its sensitivity to the minimum magnitude cutoff.

Figure 2 shows mc,obs maps at selected depths z for the two
stimulations the richest in induced seismicity (Ntot > 10, 000): S93
and CB12. Other maps will be shown in Bayesian Magnitude of
Completeness Prior & Posterior mc Maps when used as input for
BMC mapping. Local MFDs for cells that include more than 400
earthquakes are also displayed with their asymmetric Laplace
distribution fit. Considering all cells of all sites together,
assuming that k and b variations in space are random
(Mignan, 2012; Kamer and Hiemer, 2015), we obtain for
induced seismicity k � 3.18 ± 1.97 and b � 1.03 ± 0.48, which
is consistent with natural seismicity regimes but here with
significantly larger uncertainties. The plots of Figures 2B,D
confirm that the mode of the local MFD is a reasonable choice
to estimate mc.

This so-called standard mc analysis highlights the importance
to test several techniques to minimize possible biases in the
b-value. Mapping remains the best approach to evaluate the
mc range. Reasonable b-values are obtained when using
conservative mc,obs quantiles (e.g., 75% or 90%).

Asymmetric Laplace Mixture Model Fits
We then apply the ALMM to the 16 magnitude vectors but only
get reasonable fits for 9 of them.We find that the ALMM requires
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nmin > 300 for statistically significant component modeling. It
means that the ALMM is not applicable for KTB94, GS08, A15
and P17. It fails for 3 other cases, S00, S03, B06, due to anomalous
fluctuations in the observed non-cumulative MFD, which will be
discussed in another paragraph.

Figure 3 shows the 9 ALMM fits (for S93, PV94, S04, S05, G07,
CB12, NB12, SG13 and E18). Parametersmax(mc,i) and b are listed
in Table 2 for comparison with the techniques tested in Results of a
Standard mc Analysis. Those values range between estimates
obtained with the MBASS method and q75(mc,obs) so the method
does not seem to provide any new insight into which method to prefer.
We observe that the number of K components reflects the gradual
curvature of the bulk MFD. For instance, only 2 components suffice
to fit the almost angular SG13 MFD while 13 components are
needed for the wide S05 MFD, proving the flexibility of the ALMM
to fit different MFD shapes. It also verifies that bulk MFDs can be
described by the sum of angularMFDs withmc asmodes.We obtain

k � {7.6, 3.3, 2.1, 2.8, 6.5, 9.1, 4.5, 3.7, 3.1}, respectively, with
median 3.7 and mean 4.7.

The ALMM is highly sensible to abnormal fluctuations in the
non-cumulative MFD, which are often not visible from the
cumulative MFD. In the case of Soultz-sous-Fôrets, the S00 non-
cumulative MFD shows significant drops in the number of events
inconsistent with anymodel monotonously increasing up tomc and
monotonously decreasing above mc. In the latter, we observe ni �
{0, 7, 7} for bins mi � {0.2, 0.4, 0.6}; for comparison, ni �
{1468, 1114, 717, 430} for mi � {0.1, 0.3, 0.5, 0.7}. Such anomaly
is smoothed out in the cumulative MFD and does not hamper
b-value fitting. However, the ALMM anchors at those anomalies,
failing to develop into the proper curved MFD. The S03 case shows
numerous fluctuations also visible on the cumulative MFD and on
the non-trivial evolution of b estimates as the minimummagnitude
cutoff increases (Table 2). In regards of the Basel catalog, a zig-zag
pattern is observed on the non-cumulative MFD, suggesting an

FIGURE 1 | Cumulative magnitude frequency distribution (MFD) of 16 underground stimulations. The histogram shows themc,obs distribution derived from three-
dimensional mc mapping (except for KTB94 for which case coordinates are unavailable). Parameter b (dashed red line) is estimated for mc � q90(mc,obs) (for mc �
mc,MBASS in the KTB94 case). The vertical dotted and dashed dark-red lines represent mc,mode and mc,MBASS, respectively. See Table 2 for values.
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error in rounding between odd and even magnitude digits, which
confuses the ALMM algorithm. Those cases indicate more
problems with the magnitude vectors than with the ALMM.
This suggests that seismologists preparing earthquake catalogs
should analyze the non-cumulative distribution of magnitudes to
check for potential errors and/or explain the origin of those
anomalies incompatible with the Gutenberg-Richter law.

Bayesian Magnitude of Completeness Prior
and Posterior mc Mmaps
We define a BMC prior model for induced seismicity by
combining the relation between mc and the distance d3 to the
3rd nearest seismic station, observed for the earthquake catalogs
that come with seismic network information (Table 1). We
choose d3 (over e.g. d4 or d5) since this metric shows the
minimal residual error (see σpred below). We assume that m �
ML � Mw so that seismicity clouds from different depth levels can
be combined to fit one model constrained on a relatively wide
d3 range.

Figure 4 represents the BMC prior derived from 7 datasets:
S93, S04, S05, GS08, CB12, SG13, and P16. The model,
represented by the solid curve, is defined as

mc,pred � fprior(d3) � 1.64log10(d3) − 1.83; σpred � 0.37

with distance d3 in km. Note that the uncertainty σpred is greater
than the ones obtained from natural seismicity (σpred(0.25; e.g.,
Mignan et al., 2011; Mignan et al., 2013; Kraft et al., 2013; Mignan
and Chouliaras, 2014; Tormann et al., 2014). Several reasons may
be advanced: different sites are here combined, representative of
different soil conditions and thus potentially of different seismic
attenuation functions; considering the depth component may add
uncertainty on distance measures; finally, the model is
constrained on far shorter distance (d3 < 10 km) compared to
up to hundreds of kilometers in regional catalogs. It is interesting
to compare the model prediction to the pico-seismicity
completeness level mc ≈ − 4 observed at Äspö (A15). We
learn from Kwiatek et al. (2018) that sensors were located
between a few meters and 100 m from the injection borehole.
We independently predict mc,pred(10m) � −5.1 and
mc,pred(100m) � −3.5, which is a reasonable approximation.
Adding further datasets to the model will help better
constraining it.

Two datasets, S00 and S03, were not included in this analysis
as event declaration depended in those cases on two triggering
conditions from both the downhole and surface networks

TABLE 2 | Parameters mc and b(mc) for different mc estimation methods applied to the bulk MFD.

Site mc,mode
a mc,MBASS

a q75(mc,obs)b q90(mc,obs) max(mc,obs) ALMMc

S93 mc −1.7 −1.6 −1.5 −1.4 −0.9 −1.5
b 1.24 1.34 1.35 1.36 1.73 1.39

KTB94 mc −1.4 −1.3 N/A N/A N/A N/A
b 0.89 0.94 N/A N/A N/A N/A

PV94 mc 0.5 0.6 0.7 0.9 1.7 0.7
b 0.83 0.88 0.92 0.97 1.16 0.89

S00 mc 0.1 0.1 0.3 0.5 0.9 N/A
b 0.94 0.94 1.00 1.06 1.20 N/A

S03 mc 0.0 2.2 0.1 0.3 1.1 N/A
b 1.22 1.77 0.98 0.83 0.85 N/A

S04 mc −1.2 −1.1 −0.8 −0.6 0.6 -0.7
b 0.52 0.53 0.57 0.59 0.81 0.56

S05 mc −0.8 −0.8 −0.3 0.0 1.3 −0.2
b 0.52 0.52 0.60 0.64 0.89 0.60

B06 mc 0.8 0.7 0.8 0.9 1.4 N/A
b 1.48 1.42 1.48 1.24 1.38 N/A

G07 mc 1.4 1.7 1.8 1.9 2.4 1.6
b 1.06 1.26 1.36 1.54 1.83 1.28

GS08 mc −1.3 −1.3 −1.3 −1.3 −1.3 N/A
b 4.14 4.14 4.14 4.14 4.14 N/A

CB12 mc −1.0 −0.7 −0.6 −0.4 0.4 −0.8
b 0.74 0.81 0.83 0.85 1.01 0.78

NB12 mc 0.1 0.2 0.6 0.7 0.8 0.2
b 0.89 0.92 1.07 1.22 1.33 0.81

SG13 mc −0.5 −0.5 −0.2 0.0 0.2 −0.5
b 0.77 0.77 0.84 0.91 0.83 0.77

A15 mc −4.0 −3.9 −3.9 −3.8 −3.7 N/A
b 2.40 2.55 2.55 2.09 1.35 N/A

P16 mc 0.5 1.0 0.8 0.8 0.9 N/A
b 0.61 0.47 0.55 0.55 0.52 N/A

E18 mc −0.2 −0.1 0.0 0.2 0.5 −0.2
b 0.98 1.06 1.07 1.12 1.17 0.96

aMean value of 200 bootstrap estimates.
bmc,obs the vector of mc values in cells (x, y, z).
cOnly max(mc,i) of the ALMM mc distribution given.
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(EOST and GEIEEMC, 2018a; EOST and GEIEEMC, 2018b),
which is likely inconsistent with the simple d3 metric. Testing
with d3 leads to a systematic bias requiring a correction
fprior(d3) + 1. Use of such formula would however be
inadequate. It remains unclear if the magnitude scale used
for S00 and S03, duration magnitude mD, could also play a role
in the observed mc shift upward.

We then combine themc,obs with the prior model to derive the
posterior mc,post maps. We show some examples taken from S93
and CB12 in Figure 5. The BMC methods fills all the gaps in
mc,obs, and provides completeness levels expected for future
seismicity, e.g., during cloud development as more fluids get
injected, which can be of use to the injection operators. The BMC
method also decreases mc uncertainties, as can be observed when
comparing σpost to σobs. Note finally that the BMC method is
consistent with the Asymmetric Laplace detection model
previously described. It makes use of the mode of local MFDs
so that the number of cells with mc,obs values is maximized while

fprior explains howmc evolves in space, from which the bulk FMD,
approximated by the ALMM, emerges.

DISCUSSION AND PERSPECTIVES ON
DATA MINING

We reviewed some standard approaches to estimate the
completeness magnitude mc and ported the recent ALMM
mixture and BMC mapping methods to the induced seismicity
context. We provided various estimates of mc, b (Table 2) and
detection parameter k so that better informed choices could be
made in future statistical analyses of induced seismicity. We
observed that the k-value for induced seismicity is compatible
with the one obtained for natural seismicity, suggesting a
common detection process although uncertainties are high.
We also provided the first parameterization of the BMC prior
for three-dimensional seismicity clouds.

FIGURE 2 | Examples of 100 m-resolutionmc,obs maps and of local MFDs. (A)mc,obs map at depth z � −2.7 km for the 1993 Soultz-sous-Forêts stimulation (S93)
(B) local MFD observed in the cell highlighted on the S93 map, with Asymmetric Laplace distribution fit (C)mc,obs map at depth z � −4.1 km for the 2012 Cooper Basin
stimulation (CB12) (D) local MFD observed in the cell highlighted on the CB12 map, with Asymmetric Laplace distribution fit.
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The present study could help refine future seismic hazard
analyses, since the parameter mc is a prerequisite to the
estimation of the hazard inputs: the a- and b-values of the
Gutenberg-Richter law. In contrast to the tectonic regime, the
a-value is normalized to the total injected volume V for
comparisons across stimulations, so that N(≥m) � V10afb− bm

with afb the normalized a-value, called underground feedback
parameter in Mignan et al. (2017) and seismogenic index in
poroelasticity parlance (e.g., Dinske and Shapiro, 2013). The term
afb is agnostic, while alternatives to poroelasticity exist (e.g.,
Mignan, 2016). A priori knowledge of the Gutenberg-Richter
parameters is required in pre-stimulation risk assessment (e.g.,
Mignan et al., 2015; Broccardo et al., 2020), and the
parameterization may be updated during stimulations via a
dynamic traffic light system (e.g., Broccardo et al., 2017;
Mignan et al., 2017). Note also that the maximum magnitude
mmas relates directly to b (e.g., van der Elst et al., 2016; Broccardo
et al., 2017).

We first showed the impact of mc values on b and selected
q90(mc,obs) as conservative estimates. We also found that the
ALMM does not provide any new insight to the problem and is
hampered by fluctuations in the non-cumulative MFD observed
in some experiments. As a consequence,mc mapping remains the
best alternative and is simple enough to implement.

While mc also alters afb via b, we can consider another aspect
that may improve our knowledge of the underground feedback. It
has been observed that afb significantly varies across sites and
across stimulations at a same site (e.g., Dinske and Shapiro, 2013;
Mignan et al., 2017) which may lead to risk aversion of potential
investors in geo-energy for instance (Mignan et al., 2019). Onemay
difficultly infer afb from the literature when no information about
completeness is given, which is especially true for early articles.
However, we can now estimate afb despite the total number of
events inducedN(≥m?) being potentially ambiguous. To illustrate
the problem posed, let us consider the 1988 stimulation at
Hijiori, Japan. We learn from Sasaki (1998) that N(≥m?) � 65

FIGURE 3 |Non-cumulative MFD (in blue) of 9 underground stimulations for which an Asymmetric Laplace Mixture Model (ALMM) fit is available, shown in red, with
the mixture components shown in orange. See Table 2 for some values.
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micro-earthquakes were observed above m? � −4 (their Figure 6)
for an injected volume V � 2, 000 m3. The equation afb �
log10(N(≥m?)/V) + bm? is valid only if m? ≥mc. Information
in Sasaki (1998) is however ambiguous, and we may have m? �
min(m)<mc instead, which would underestimate the
underground feedback activation since the data would then be
incomplete. Considering all datasets of Table 1 with Ntot > 200, we

can estimate from their censored data the metrics δm � mc −
min(m) and c � N(≥mc)/N(≥min(m)) which range on the
intervals [0.8, 1.9] and [0.20, 0.37], respectively (with no trend
observed). The distributions are shown in Figure 6A alongside
the corrected underground feedback parameter
afb,corrected � log10(cN(≥min(m))/V) + b(min(m) + δm).
Assuming δm and c representative (and b � 1, see Results of a

FIGURE 4 | Prior modelmc,pred � f(d3) of the BayesianMagnitude of Completeness (BMC) method for the three-dimensional induced seismicity case with distance
d3 to the third nearest seismic station.

FIGURE 5 | Observed mc,obs vs. posterior mc,post maps derived from the BMC prior model. (A) S93 at depth z � −3.1 km (B) CB12 at depth z � −4.2 km.
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Standard mc Analysis), the 1988 Hijiori underground feedback
activation may be afb,correct � −5.5 if m? � mc, or afb,corrected �
[−5.4,−3.9] if m? � min(m). Despite the ambiguity, an estimate
may therefore still be provided. A review of the literature could
provide additional values from other fluid injections to better
constrain the range of afb to be considered as a priori
information in risk assessment, which is so far potentially
biased toward high afb values (e.g., Mignan et al., 2017).

Finally, if the BMC method allows defining robust mc maps
(no spatial gap, uncertainty constrained by the seismic network
configuration), BMC may be even more useful for seismic
network planification (e.g., Kraft et al., 2013) prior to new
stimulations. Seismic safety criteria can be mapped into
magnitude thresholds not to be crossed (Mignan et al., 2017),
which tell us the completeness magnitude level required for
sound statistical analysis. One can then use the BMC prior
fprior(d3) to test how a completeness level can be achieved

given a seismic network configuration. Figure 6B illustrates
such an application. The two approaches presented in
Figure 6 demonstrate how induced seismicity data mining can
be done from completeness magnitude knowledge, which in turn
can improve induced seismicity monitoring, modeling and
managing.
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[collection]. EOST CDGP [Epub ahead of print]. doi:10.25577/SSFS2000

EOST and GEIEEMS (2018b). Episode: 2003 stimulation soultz-sous-forêts
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