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Rapid mapping of landslides that occur after an earthquake is important for rapid crisis
management. In this study, experimental research was conducted on the size of the model
area and the data types used in developing classifiers for the supervised classification
approaches used in rapid landslide mapping. The Hokkaido Iburu earthquake zone that
occurred on September 6, 2018, was selected as the study area. PlanetScope pre-event
and post-event images and ALOS-PALSARDigital ElevationModel (DEM) were used in the
analysis processes. In this context, five model areas with different sizes and one test area
were determined. Object-based image analysis (OBIA) was used as a landslide mapping
approach. Random Forest classifier, which is a supervised classification algorithm, was
performed in the mapping of image objects produced by the segmentation stage of OBIA.
Two different data sets were created for landslide mapping: change-based dataset and
post-event dataset. The change-based dataset is generated from change data such as the
difference of normalized difference vegetation index (δNDVI), change detection Image
(CDI), princiable component analysis (PCA), and Independent component analysis (ICA)
which are used in change detection applications. The post-event dataset was created from
data generated from post-event image bands. When the obtained results were examined,
higher accuracy results were obtained with the post-event dataset. Increasing the size of
the model area, in other words, increasing the training data slightly increases the accuracy
of landslide mapping. However, a model area that represents the region to be mapped in
small sizes to make rapid decisions provides a 94% F-measure accuracy for earthquake-
triggered landslide detection.

Keywords: OBIA (object based image analysis), random forest, landslide mapping, hokkaido earthquake,
planetScope

INTRODUCTION

Earthquakes are natural events that cause great damage to nature, buildings, engineering structures,
and cause human death (Gorum and Carranza 2015). Moderate and severe magnitude earthquakes
trigger thousands of landslides, especially in rugged and high-slope mountainous regions (Gorum
et al., 2013; Tanyaş et al., 2017). For example, in the 2008 Wenchuan, China Mw 7.9 earthquake,
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there were about 200,000 landslides (Tian et al., 2019), about
5,000 landslides in the January 12, 2010 Mw 7.0 Haiti earthquake
(Gorum et al., 2013), more than 2,000 landslides in the 2015
Gorkha, Nepal Mw 7.8 earthquake, and about 6,000 landslides in
the 2018 Hokkaido Iburu Mw 6.7 earthquake (Yamagishi and
Yamazaki 2018). Landslides that appear as a secondary effect of
earthquakes cause human deaths and economic losses. Fatal
landslides occurred in 76 of the 196 earthquakes between 1811
and 2016. These fatalities correspond to 17.7% (213,913 people)
of deaths caused by earthquakes (Jessee et al., 2020). Earthquake-
triggered landslides accounted for 5.2% ($ 170 billion) of
economic damage from earthquakes between 1900 and 2016
(Daniell et al., 2017). Therefore, rapid mapping of landslides is
important for rapid response to disaster areas and crisis
management.

Active and passive remote sensing systems offer great
advantages in rapid landslide mapping (Aimaiti et al., 2019).
With remote sensing systems, Optical images (Zhao et al., 2017;
Shao et al., 2019), synthetic aperture radar (SAR) (Aimaiti et al.,
2019; Adriano et al., 2020), LIDAR systems (Liu et al., 2019),
Unmanned Aerial Vehicle (UAV) systems (Comert et al., 2019)
or synthesis of optical and SAR images (Shirvani et al., 2019) can
be used in the landslide mapping. The most common method
preferred in mapping landslides is visual image interpretation
(Guzzetti et al., 2012; Rosi et al., 2018). Although the image
interpretation provides high accuracy, it is a slow method that is
not suitable at the time of rapid intervention since the landslides
are mapped by the expert with image interpretation and manual
digitization (Guzzetti et al., 2012). Therefore, automatic landslide
mapping is an important factor for post-disaster crisis
management. Image classification approaches (Vamsee et al.,
2018) and change detection methods (Lu et al., 2019) are used
in automatic landslide mapping. Since change detection methods
require pre-event images, they present a disadvantage in mapping
the landslide events triggered by the earthquake. However, it is a
useful method in case of the pre-event image available (Yang and
Chen 2010; Lu et al., 2019). Classification methods are generally
carried out on post-event images (Stumpf and Kerle 2011; Dou
et al., 2015). The disadvantage of this method in making rapid
decisions is that it takes time to generate the training dataset.
However, when the classification model is developed over the
appropriate training dataset, the mapping process is shortened
(Danneels et al., 2007; Stumpf and Kerle 2011; Mondini et al.,
2011).

Image classification is used in landslide mapping in two
approaches, pixel-based image analysis (PBIA) (Danneels
et al., 2007) and object-based image analysis (OBIA)
(Martha et al., 2010; Stumpf and Kerle 2011; Hölbling et al.,
2015; Shirvani et al., 2019). After the landslide events, different
sizes of landslides can occur in the relevant area. High spatial
resolution images offer great advantages to detect landslides of
different sizes. OBIA has become more popular in landslide
mapping in the last decade since misclassified pixels have
emerged from the landslide mapping from high spatial
resolution images with PBIA (Guzzetti et al., 2012; Zhong
et al., 2020). OBIA is applied in two different ways in landslide
mapping: rule-based (Martha et al., 2010; Hölbling et al., 2012;

Comert et al., 2019) and supervised mapping (Stumpf and
Kerle 2011; Shirvani et al., 2019). In the landslide mapping
process, landslides should be separated from different land use
classes. A large number of object features must be used for this
process. Rule-based mapping is a slow method for complex
areas. since the object features and threshold values that
separate the classes must be determined by an expert
(Stumpf and Kerle, 2011). In supervised mapping
performed with a selected algorithm such as random forest,
the features used to separate the classes are automatically
determined, and rapid results are produced by the mapping
process made on the training data to be produced in the
appropriate size and number (Stumpf and Kerle 2011;
Shirvani et al., 2019; Shirvani, 2020). Therefore, supervised
mapping process will give rapid results in rapid intervention in
crisis management.

In this study, the success of the size of the model area selected
for training data, and the dataset type to be used in classification
in the rapid detection of earthquake-triggered landslides were
investigated. In particular, the following questions have been
addressed:

• How enlarging the model area selected for training data
affect earthquake-triggered landslide mapping accuracy?

• Which of the datasets used in the classification stage is more
useful?

• Which image object feature from the selected data sets is
important for landslide mapping?

For these purposes, the Hokkaido Iburu earthquake zone in
Japan was chosen as the study area. PlanetScope images and
ALOS-PALSAR Digital Elevation Model (DEM) were used as
analysis data. OBIA was preferred as the mapping approach and
the Random Forest (RF) algorithm was used as the classification
method in the OBIA. RF algorithm, which is a fast machine
learning classifier, was preferred in this study because it gives
successful results in many areas such as landslide susceptibility
mapping (Dou et al., 2019; Shirvani 2020), landslide mapping
(Stumpf and Kerle 2011; Chen et al., 2017; Shirvani et al., 2019;
Maxwell et al., 2020), burnt area mapping (Ramo and Chuvieco
2017).

STUDY AREA AND DATASET

Study Area
The study area is located in the southwest of the Hokkaido region
(Figure 1A). The dominant land cover of the study area consists
of forests and paddy fields and has a rugged, mountainous, and
high slope topography (Zhang et al., 2019; Adriano et al., 2020).
Hokkaido, which includes the study area, is a tectonically active
region in the world. The faults and active faults in the region
develop near the north-south strike (Zhang et al., 2019).

On September 6, 2018, an earthquake with a magnitude of
6.7 Mw and a depth of 37 km occurred in the Iburu subprefecture
of the southern Hokkaido province of Japan. With the powerful
ground motion of the event, structural damage in buildings,

Frontiers in Earth Science | www.frontiersin.org February 2021 | Volume 9 | Article 6336652

Comert Earthquake-Triggered Landslides Mapping

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


liquefaction on the ground, and thousands of landslides occurred
in areas close to the epicenter (42.691°N, 142.007°E) of the
earthquake. Due to the earthquake, 41 people died and 691
people were injured; 390 buildings were destroyed, 1061
buildings were damaged, approximately 6000 landslides
occurred (Yamagishi and Yamazaki 2018; Zhang et al., 2019).
The reason for the large number of landslides triggered by the
earthquake in the region is that the earthquake occurred one day
after the typhoon Jebi, which accumulated approximately
100 mm of precipitation in the region (Yamagishi and
Yamazaki 2018). The majority of the coseismic landslides in
the region consist of typical shallow debris landslides with a width
of approximately 250 m. The types of landslides are classified as
planar and spoon type landslides such as rainfall-induced
landslides (Yamagishi and Yamazaki 2018; Zhang et al., 2019).
The areas selected within the scope of this study are located in the
towns of Atsuma and Abira, where slope failures are densely
distributed (Figure 1B).

Data Sets
PlanetScope is a satellite constellation operated by Planet Labs
that contains 130+ CubeSats (size: 10 cm by 10 cm by 30 cm;
weight: 4 kg) that move in the sun-synchronous orbit. Using this

satellite constellation, images are collected in an area of 200 M
+ km2/day. PlanetScope images consist of 4 spectral bands with
3.7 m spatial, 16-bit radiometric, and 1-day temporal
resolution (Table 1) (Planet, 2017). In this study,
PlanetScope Level 3B multispectral surface reflectance
products were used to create the change-based dataset and
the post-event datasets. Level 3B surface reflectance products,
which are orthorectified, are geometrically corrected images
using Ground Control Points (GCPs) and fine Digital
Elevation Models (DEMs) (Wicaksono and Lazuardi 2018;
Planet, 2017). Also, the atmospheric corrections of these
products were made by Planet Labs using the 6S radiative
transfer model with ancillary data from MODIS (Cheng et al.,
2020). After atmospheric and geometric corrections, the
orthorectified images are presented to users by Planet Labs
at 3 m spatial resolution (Planet 2017). Within the scope of the
study, images belonging to two different dates as pre-event
(August 03, 2018) and post-event (September 21, 2018) were
used (Table 1). These images were selected as the dates closest
to each other, with no clouds on the study area. Also, ALOS-
PALSAR 30 m spatial resolution DEM data dated July 14, 2006
were used as auxiliary data to obtain the slope map of the
study area.

FIGURE 1 | The study area selected for analysis: (A) The location of the epicenter of the earthquake and the study area (red polygon) in Hokkaido, (B) Model
development and test areas determined for landslide mapping.
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Five different model areas have been created to develop
classifiers to be used in the mapping of landslides over the
area chosen as the study area (Figure 1B). The smallest of
these model areas (Model Area 1) is 3 × 3 km in size. While
determining this area, it has been taken into consideration that
the test area has similar land use characteristics such as water,
agricultural areas, roads, small settlements, landslides, and forest.
Other model areas were obtained by enlarging the edges of the
previous model area by 1.5 km. The largest model area (Model
Area 5) created in the area is 9 × 9 km in size.

METHODS

The methodology applied within the scope of the study is shown
in Figure 2. The landslide mapping process was carried out using
the OBIA approach. OBIA and PBIA are two different
approaches used in image classification. Spectral values of
pixels are used when classifying images with PBIA, while
spectral, geometric, textural, and spatial values of image
objects are used for classification with OBIA. OBIA was
preferred in this study because it reduces the problem of
misclassification error in high spatial resolution images
includes different image object metrics in addition to spectral
features and reduces the data size (Zhong et al., 2020).

Creating Auxiliary Data
Auxiliary data such as band indices and change detection indices
were generated to achieve change-based dataset and post-event
datasets. Normalized difference vegetation index (NDVI),

normalized difference water index (NDWI) and brightness
index (BI), principal component analysis (PCA), change
detection image (CDI), independent component analysis (ICA)
were additional data generated.

NDVI (Tucker 1979) is an effective index used in the
separation of green vegetation area from landslides. Therefore,
it is used both in landslide mapping with change detection (Lu
et al., 2019) and in landslide mapping from post-event images
(Martha et al., 2010). NDVIpost was used for the post-event
dataset, δNDVI was used for the change-based dataset. NDWI
(McFeeters 1996) was included in the post-event dataset to
distinguish the water areas from the landslides (Shirvani et al.,
2019).

NDVI � ρNIR − ρRed
ρNIR + ρRed

, (1)

δNDVI � NDVIpre − NDVIpost, (2)

NDWI � ρGreen − ρNIR
ρGreen + ρNIR

, (3)

where ρGreen, ρRed, and ρNIR are green, red, and near-infrared
(NIR) bands of images, respectively.

BI has been used in post-event landslide mapping from satellite
images in many studies. This index is obtained by dividing the sum
of the spectral values of the bands (ci(vis)) by the total number of
bands (nvis) (Stumpf and Kerle 2011). BI was calculated using the
four bands of PlanetScope post-event image bands.

BI � 1
nvis

∑nvis
i�1

ci(vis). (4)

TABLE 1 | PlanetScope Leve 3 B product specification and image dates.

Band Band range (nm) Resolution Image dates

Pre-event Post-event

Blue 455–515 3 m spatial res August 3, 2018 September 21, 2018
Green 500–590 16-Bit radiometric res
Red 590–670 1-day revisit time
NIR 780–860

FIGURE 2 | The methodology applied for the rapid detection of earthquake-triggered landslides in the study.
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PCA, a linear transformationmethod, converts a set of correlated
numerical variables into non-correlated variables in a different
orthogonal coordinate system. When a data set with N bands is
given with PCA, the desired number of main components is
calculated. The first PCA component contains the largest
variance between the input bands, the second contains the
second major variance not defined in the first component, and so
on. In the calculation of the principal components, the
n-dimensional data set is defined by the XT � [X1 . . .Xn] matrix
and the C covariance matrix. With the first scaled eigenvectors (e1i)
calculated from the covariance matrix, the first principal
components (Y1) are calculated as in Eq. 5. The other desired
principal components are calculated similarly using the relevant
eigenvector (Mondini et al., 2011). In this study, two different PCA
data sets were produced. The first one is four main components
produced from post-event image bands to use in the post-event
dataset. The second one, for the change-based dataset, four main
components were generated by using the red and NIR bands of pre-
event and post-event images as Lu et al. (2019) stated in their articles.

Y1 � ∑n
i�1

e1iXi. (5)

ICA is a geometric transformation that transforms variables
used as inputs into statistically independent components. ICA is
calculated by Eq. 6. Where A is the mixing matrix, s is the matrix
of independent components and X represents the vector of input
variables (Hyvärinen and Oja 2000).

X � sA � ∑n
i�1

aisi. (6)

CVA is a method used for mapping landslides from pre-and
post-event images (Li et al., 2016; Lu et al., 2019). In this method,
a change detection image (CDI) is created by determining the
changes between multi-temporal image bands. The value of a
pixel in the CDI is calculated by Eq. 7. where, the pixel value at
pre-event t1 time is It1, the pixel value at post-event time t2 is lt2. b
represents the number of satellite images band being processed.

ρ(I) � ⎡⎣∑n
b�1

(It1 − It2)2b⎤⎦
1/2.

(7)

Image Segmentation
Image segmentation is the first step of the OBIA process. At this
stage, it is aimed to produce meaningful image objects from the
layers subjected to segmentation. Multi-resolution segmentation
(MRS) is the most preferred segmentation method in OBIA. In
this method, the segmentation process starts at a pixel level, and the
merging process takes place according to the spatial and spectral
heterogeneity of the candidate selected image object with
neighboring image objects (Benz and Schreier 2001; Jensen 2005).
To create optimum image objects with the MRS method, the scale,
shape, compactness, and layer weights must be determined by the
user. The scale parameter controls the size or heterogeneity level of
the image objects to be formed. If the scale parameter is defined as a
large value, large image objects are produced, if a small value is

defined, small image objects are produced. The shape parameter,
which takes values between 0–1, is used to determine the weights of
spatial and spectral functions in the calculation of themerging factor.
The compactness parameter controls the compactness and
smoothness of the resulting image objects in the calculation of
the shape function. Layer weights are used to define the
importance of segmentation layers compared to other layers
(Baatz et al., 2000). MRS parameters can be determined by
automatic methods such as Estimation Scale Parameter-2 (ESP-2)
(Drăguţ et al., 2014), optimum scale parameter selector (OSPS)
(Vamsee et al., 2018), or by the trial and error method (Martha et al.,
2010; Hölbling et al., 2012; Shirvani et al., 2019) based on visual
analysis. In this study, the trial-error method was used to determine
the appropriate segmentation parameters.

Creating Analysis Data
After the segmentation steps, image object attributes (features)
were calculated. Image object attributes are the features used in
classifying image objects. Textural, spectral, spatial, geometric,
and contextual metrics can be used in landslide mapping (Martha
et al., 2010; Shirvani et al., 2019). Two different data sets
containing image object features were created for the mapping
of landslides. These were change-based dataset and post-event
dataset. Layers produced from pre-event and post-event bands
were used in the creation of the change-based dataset, post-event
bands and layers produced from themwere used in the creation of
the post-event dataset. The features of both datasets used in
mapping landslides were selected using eCognition Developer 9.0
software. As a result of the literature review (Martha et al., 2010;
Shirvani et al., 2019) and visual analysis, 40 image object features
were selected for the change-based dataset (Table 2) and 43 for
the post-event dataset (Table 3). Since it does not provide any
discrimination in visual analysis, geometric features are not
included in the datasets.

Landslide Mapping
The random forest (RF) algorithm was used for the landslide
mapping. RF is an ensemble learning algorithm that generates
multiple decision trees using randomly selected variables and
subsets in a dataset. To generate the decision tree with the RF
classifier, the user must determine the number of variables (m)
used in each node and the number of randomly generated trees
(N) to determine the best split. For a dataset consisting of M
variables, the number of m variables to be randomly selected is
determined as a value equal to or close to the

��
M

√
. With the

determined parameters, trees with high variance and low bias are
created by the algorithm. The final classifier is decided according
to the voting for the power of decision trees to separate classes.
The tree with the most votes is used for the respective class
(Breiman 2001). While the classifier is developed with the RF
algorithm, 2/3 of the dataset is used as training data and 1/3 as test
data (Belgiu and Drăguţ 2016). This ratio can be chosen between
80 and 20% to increase the number of data in the training dataset
(Ramo and Chuvieco 2017). Another method used in model
training is k-fold cross-validation, which is used in cases where
there is limited validation data (Karlson et al., 2015). In the study,
in the selection of optimum parameters for the RF classifier for
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each model area, the data belonging to the model areas were used
as 80% training data and 20% test data. Classifier success to the
obtained optimum parameters has been tested on the test area.

Accuracy Assessment
The success of the created classifiers on the test area was
calculated according to the accuracy measures developed on
the confusion matrix used in two-class classification
applications (Eqs 8–11) (Sokolova and Lapalme 2009). The
correctly classified of LS and NLS image objects on the test
data of the developed models were achieved by using the
overall accuracy measures (Eq. 12) (Banko 1998).

RESULTS

In the segmentation stage, different combinations of post-event
image bands and layers produced for image difference were tried

to identify appropriate input bands to create image objects
representing landslides. As a result of the experiments, it was
seen that the landslide objects were best obtained from the post-
event R, G, B, NIR bands. Therefore, these layers were used as
input bands in the segmentation process for all data sets.
Different scale parameters (from 10 to 150 by 10), shape,
compactness, and layer weights were tested in determining the
optimum parameters for MRS. As a result of trial and error,
suitable parameters were determined as a scale: 110, shape: 0.3,
compactness: 0.7, layer weights as B � G � NIR � 1, R � 2. These
values have been applied to be the same for all data sets. These
values were used to create image objects for all data sets.
Landslides in the image objects obtained result of the
segmentation process consists of more than one image object.
When the scale parameter was set to more than 110, it has been
observed that especially small landslides mix with other land use
classes. Image objects created by segmentation for model and test
areas were labeled as Landslide (LS) and Non-Landslide (NLS)
using pre-event and post-event images. The data sets created for
the RF classifier and the numbers of image objects belonging to LS
and NLS included in them are shown in Table 4.

The RF classifier development process was carried out using
WEKA (Waikato Environment for Knowledge Analysis) data
mining software. The process of determining the optimum
number of trees and the minimum variable was carried out
separately for each model area. The number of random trees
was applied as different values from 100 to 1500. The number of
m variables was applied to the model data sets as 6, 7, 8, 9 values.
As a result of the experiments, the m value was determined as 8

TABLE 2 | Selected image object features used for the change-based dataset.

Type Features Num. of features

Spectral Mean of (ICA1, ICA2, ICA3, ICA4, CDI, δNDVI, PCA1change, PCA2change, PCA3change, PCA4change) 19
Std. Dev. of (ICA1, ICA2, ICA3, ICA4, δNDVI, PCA2change, PCA3change, PCA4change) and Max. Diff

Spatial Mean of slope 1
Textural GLCM all direction 20

Contrast of (PCA3change, PCA4change, ICA3)
Dissimilarity of (PCA4change, PCA3change, ICA3, CDI)
Entropy of (ICA1, ICA2, ICA3, ICA4, CDI, δNDVI, PCA1change, PCA2change, PCA3change, PCA4change)
Homogeneity of (ICA3, PCA3change, PCA4change)

CDI, change detection image; ICA, independent component analysis; Max. Diff., maximum difference; PCAchange, change based principal component analysis; Std. Dev., standard
deviation.

TABLE 3 | Selected image object features used for the post-event dataset.

Type Features Num. of features

Spectral Mean. of (R, G, B, NIR, NDVI, NDWI, BI, PCA1post, PCA2post, PCA3post, PCA4post), Max. Diff., std. Dev. of (R, G, B, NIR,
NDVI, BI, PCA1post, PCA2post, PCA3post, PCA4post)

22

Spatial Mean and std. dev. of slope 2
Textural GLCM all direction 19

Contrast of (R, NIR, NDWI, BI)
Dissimilarity of (NIR, R, BI, PCA2post, PCA4post)
Entropy of (R, NIR, NDVI, BI)
Homogeneity of (R, NIR, NDVI, BI, PCA2post, PCA4post)

B, blue; BI, brightness index; G, green; NDVI, normalized difference vegetation index; NDWI, normalized difference water index; NIR, near infrared; PCApost, post-event principal
component analysis; R, red.
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for all data sets. The number of trees was defined as 600 for model
areas 2 and model area 3 in the change-based dataset. The
number of trees in model area 4 was determined as 400 for
both the change-based dataset and the post-event dataset. The
number of trees was set as 500 for the remaining classifiers. The
success of the RF classifiers created for model areas according to
the determined parameters on the test area is shown in Table 5.
The overall accuracy success of RF classifiers on the test site for
separating LS and NLS areas has been achieved by over 95% with
all classifiers in both datasets (Table 5).

When the accuracy results were examined (Table 5), it was
seen that TP Rate increases in the post-event dataset when the
model area expands. With the classifier developed forModel Area
1, 92% of the image objects belonging to the LS in the test area
were successfully mapped. This ratio was obtained with 3% more
accuracy in the largest dataset. When the number of training data
is increased by expanding the model area, the FP rate, which

defines the mapping rate of NLS image objects as LS, slightly
increased. This change had reduced the precision rate of
classifiers. When the success of the developed classifiers for
landslide mapping was evaluated, it is observed that very close
F-measure values were obtained, but a little more success was
achieved in the largest dataset.

When the accuracies for the change-based datasets are
investigated, the TP ratio of LS image objects was obtained
approximately 90% for the smallest dataset. This ratio
decreased by 1 and 2% in model area 2 and model area 3,
respectively. In the largest dataset, very close results were
obtained with model area 1. When the size of the model
dataset was increased, it was seen that the sensitivity of the FP
ratio increased and the extraction of NLS objects as LS decreased.
This condition has increased the precision ratio and the
F-measure value of the developed classifiers.

Comparing the results obtained for the change-based dataset
and post-event dataset, landslides were obtained with a higher TP
Rate in all model areas where RF classifiers were developed.When
the FP Rate values were compared, it was seen that when the data
size was increased, the classification of NLS image objects as LS
with the change-based data set decreased, and the developed
classifiers map the NLS areas with higher accuracy. When the
overall success of the classifiers for two datasets was evaluated
according to F-measure, it was indicated that landslide mapping
with post-event dataset gave higher accuracy values.

In this study, 40 different features were used for the change-
based dataset and 43 different features for the post-event dataset.
When the feature importance of the variables was investigated, it
was observed that the same variables were effective in all model
areas. δNDVI in change-based RF classifiers and slope and NDVI
in post-event RF classifiers were the most effective features. In
Figure 3, the top ten features in the classifier created for the model
area 5 based on change-based datasets were shown according to the
mean decrease of accuracy andmean decrease of Gini index.When
Figure 3 is examined, it is seen that themost important parameters
in classification according to mean decrease accuracy were mean
values of δNDVI, slope, PCA3, and ICA2. The most important
variables that affect the purity of the classifier when extracted from
the dataset were mean values of δNDVI, ICA3, PCA3, and PCA4.
In Figure 4, the top ten features obtained forModel Area 5 with the
post-event dataset were given. The most important features for the
developed classifier were obtained as mean values of the slope,
NDVI, PCA4, PCA3, and Maximum Difference. The most
important parameters that increase the purity of the model
were NDVI, PCA2, NDWI, Max Difference, and Red

TABLE 4 | The number of Landslide (LS) and Non-Landslide (NLS) image objects labeled for the models and test datasets to be used in the analysis process.

Data sets Number of NLS image
objects

Number of LS image
objects

Total number of image
objects

Area (km2)

Model Set1 1669 458 2127 9.00
Model Set2 3521 1193 4714 20.25
Model Set3 6070 2156 8226 36.00
Model Set4 9259 3425 12684 56.25
Model Set5 12804 4802 17606 81.00
Test set 4869 1855 6724 31.64

TABLE 5 | Accuracy assessment on the test area with RF classifiers developed for
model areas.

Model
name

Post-event dataset
Recall (TP

rate)
FP
rate

Precision F-measure Overall
accuracy

Model
area 1

0.92 0.016 0.95 0.938 96.68

Model
area 2

0.932 0.017 0.955 0.943 96.94

Model
area 3

0.934 0.018 0.952 0.943 96.86

Model
area 4

0.934 0.020 0.947 0.941 97.22

Model
area 5

0.950 0.023 0.940 0.945 96.90

Model
name

Change-based dataset
Recall (TP

rate)
FP
rate

Precision F-measure Overall
accuracy

Model
area 1

0.896 0.021 0.942 0.919 95.44

Model
area 2

0.881 0.020 0.943 0.911 95.27

Model
area 3

0.871 0.011 0.967 0.917 95.62

Model
area 4

0.892 0.013 0.962 0.926 96.04

Model
area 5

0.890 0.009 0.973 0.930 96.28
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(Figure 4). When the importance of properties for different
datasets is evaluated, it is seen that spectral properties and
spatial properties are more effective in mapping landslides
according to textural properties.

DISCUSSION

In this study, the influence of model development area size and
dataset types in landslide mapping during the post-earthquake
crisis management phase was investigated. In this context, ten
landslide mapping models have been developed with OBIA-RF
classifier using two different datasets, namely change-based and
post-event dataset, at five model development areas with different
sizes. The success of the developed classifier models has been
investigated on a determined test area. When the obtained results
were examined, although landslide mapping results were obtained
with high accuracy from all developed models, higher accuracy
values were obtained in classifier models using post-event datasets
(Table 5). These results show that while pre-event and post-event
images are useful to create or update the landslide inventory maps
(Yang and Chen, 2010; Ðurić et al., 2017), post-event images

without the need for any archive images in crisis management are
sufficient in detecting the locations where the dense landslide
events occurred. In the comparison of dataset size in this study,
it was observed that increasing the dataset size slightly increased
the mapping accuracy (Table 5). Therefore, large model areas are
not required in the post-disaster decision-making phase. The
model development process, which is carried out on a small
area that best represents the area to be mapped, is useful for
rapid decision-making.

The RF algorithm for landslide mapping was applied to
datasets produced by using PlanetScope images and ALOS-
PALSAR DEM data in the study. The RF algorithm, which
gives successful results in extracting the desired feature in
datasets with large sizes and many variables in different
application areas (Stumpf and Kerle, 2011; Ramo and
Chuvieco, 2017; Shirvani et al., 2019; Maxwell et al., 2020;
Shirvani, 2020), has also produced high accuracy results from
the datasets used (Table 5). With this research, it has been
demonstrated that PlanetScope satellites, which offer daily
high spatial resolution images, provide successful results in the
detection of earthquake-triggered landslide areas with high
accuracy. To produce the slope map of the study area, 30 m

FIGURE 3 | The ten most important features for the classifier developed with change-based dataset in model area 5: (A) shows how selected features affect model
accuracy when removed from the dataset, (B) indicates how selected features affect model purity when removed from the dataset.

FIGURE 4 | The ten most important features for the classifier developed with post-event dataset in model area 5: (A) shows how selected features affect model
accuracy when removed from the dataset, (B) indicates how selected features affect model purity when removed from the dataset.
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resolution ALOS-PALSARDEMdata were used as elevation data.
Although this DEM is sufficient for this application in terms of
presenting the general slope characteristics of topographic
surfaces where landslides occur in the study area, it is
insufficient in terms of producing induvial landslide inventory
mapping. During the segmentation phase, landslides were
obtained as multiple image objects. By merging these image
objects, holistic landslides can be obtained (Figure 5).
However, these landslides were not individual. The main
reason for this is the high reflection of fresh landslides in
satellite bands. In the segmentation stage, adjacent landslides
with the same spectral value fall into the same image object. For
these landslides to be used in susceptibility and hazard maps, the
necessary ones should be converted into individual landslides.
For this process, post-event high-resolution DEM data of the area
is required (Marc and Hovius 2015).

While determining the object features in the datasets, firstly,
the visual evaluation of the image object features to be included in
the datasets on the image objects created as a result of the

segmentation stage was made. Since the landslide areas consist
of more than one image object, geometric features such as length/
width, size, shape were not added in the datasets because there
was no distinctive finding was observed on these features.
Variable importance analysis was performed for the image
object features used in datasets. The ten most important
features for the datasets were shown in Figures 3, 4. NDVI,
which is an effective feature in separating green vegetation areas
from landslides, is a frequently preferred feature in landslide
mapping with change detection (Mondini et al., 2011; Hölbling
et al., 2015; Lu et al., 2019) and classification method (Martha
et al., 2010; Shirvani et al., 2019). Since the application areas were
chosen in this study were covered with dense forest areas and
agricultural land, it has been revealed that NDVI and δNDVI
were important features in both the change-based dataset and the
post-event dataset (Figures 3, 4). The slope value is especially in
the separation of low-slope areas such as roads and bare soil
spectrally similar to landslides from landslides (Comert et al.,
2019). The slope feature was seen to be an important feature that
increases the accuracy of landslide mapping for both the change-
based dataset and post-event dataset in this study (Figures 3, 4).

PCA and ICA, which are non-parametric feature extraction
methods, are the preferred approaches in landslide mapping
with change detection (Mondini et al., 2011; Lu et al., 2019).
PCA4, ICA2, ICA3, and ICA4 components produced from
pre-event and post-event NIR and Red bands gave successful
results (Lu et al., 2019). In this study, PCA1change, PCA3change,
and PCA4change, which were among the PCA components
produced for the change-based dataset, were found to be
important features that increase the accuracy of the
classifiers and ensure the purity of the decision trees used
in landslide mapping (Figure 3). ICA3, one of the ICA
components produced for the change-based dataset, has
been seen to be the second most important component that
provides the homogeneity of decision trees used in the
separation of LS and NLS areas (Figure 3). Also, ICA2 was
the fourth feature that positively affects classifier accuracy
(Figure 3). In the study, four PCA components were generated
from post-event image bands and included in the post-event
dataset. Among these features, PCA2post, PCA3post, and
PCA4post were found to be important features that increase
classification accuracy and provide decision tree purity
(Figure 4). According to the variable important results, it
shows that the non-parametric components obtained by PCA
analysis can be used in landslide mapping studies based on the
post-event images.

When examining other features obtained by variable
important analysis, it was seen that the Max. Diff. the feature
was important in both classifier accuracy andmodel homogeneity
for the post-event dataset. Also, Red, Green Blue bands were
obtained as important properties in providing model purity for
the post-event dataset. CDI is used in landslide mapping with
change detection from multi-temporal images (Li et al., 2016; Lu
et al., 2019). In this study, it was seen that for the change-based
data set, it was an important parameter in terms of classifiers
model homogeneity, although not as much as, δNDVI, PCA, and
ICA components.

FIGURE 5 | Estimated landslides on the test area for model area 5 with
RF classifier: (A) post-event dataset result, (B) change-based dataset result.
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CONCLUSION

In this study, the success of different datasets and different data
sizes produced from remote sensing images in rapid earthquake-
triggered landslide mapping were investigated. In this context,
change-based and post-event datasets were created for five model
areas and one test area. When RF classifiers developed on model
areas were applied to the test area, high accuracies are obtained
for all model areas and datasets. However, slightly higher
accuracy results have been achieved with post-event datasets
compared to change-based dates. Similarly, slightly higher
accuracy was obtained when the model area size was
increased. When these results are evaluated, in rapid detection
of the location where earthquake-triggered landslides occur: 1)
models to be used in mapping landslides can be developed over a
small area that best represents the area to be mapped, 2) in the
landslide mapping process, landslides can be successfully detected
from the post-event images without the archive image of the
relevant area. In the study, the importance of image object
features used in datasets in the mapping process was
investigated. When the importance levels of the object features
are examined, it has been observed that the highly important
features are similar to the features used in the literature. Also,
PCA components generated from post-event images are included in
the post-event data. Since these components positively affect the
classification accuracies, they can be included in the post-event

datasets in future studies. The approach presented in this study is
an appropriate method for detecting large landslide areas that occur
after a natural disaster and to respond rapidly. The presented
method needs improvement to create landslide inventory
maps. In future studies, both crisis management and
inventory mapping research will be conducted from
platforms that offer higher spatial resolution images and
DEMs such as Unmanned Aerial Vehicle.
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