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Although convolutional neural networks (CNN) have been applied successfully to many
fields, the onsite earthquake early warning by CNN remains unexplored. This study aims
to predict the peak ground acceleration (PGA) of the incoming seismic waves using
CNN, which is achieved by analyzing the first 3 s of P-wave data collected from a
single site. Because the amplitude of P-wave data of large and small earthquakes can
differ, the multi-scale input of P-wave data is proposed in this study in order to let the
CNN observe the input data in different scales. Both the time and frequency domains
of the P-wave data are combined into multi-domain input, and therefore the CNN can
observe the data from different aspects. Since only the maximum absolute acceleration
value of the time history of seismic waves is the target output of the CNN, the absolute
value of the P-wave time history data is used instead of the raw value. The proposed
arrangement of the input data shows its superiority to the one directly inputting the raw
P-wave data into the CNN. Moreover, the predicted PGA accuracy using the proposed
CNN approach is higher than the one using the support vector regression approach
that employed the extracted P-wave features as its input. The proposed CNN approach
also shows that the accuracy of the predicted PGA and the alert performances are
acceptable based on data from two independent and damaging earthquakes.

Keywords: PGA, CNN, on-site earthquake early warning, multi-scale, single station

INTRODUCTION

Earthquake early warning (EEW) approach aims to issue alerts for impending intense ground
shaking events. The alerts will be issued when faster and smaller P-waves are detected after an
earthquake has occurred. Public earthquake early alerts during several recent large earthquakes
have been provided successfully (Fujinawa and Noda, 2013; Cuéllar et al., 2014; Yamada et al., 2014;
Hsu et al., 2016, 2018, 2021; Kodera et al., 2016; Allen and Melgar, 2019; Wu et al., 2019). The
algorithms of EEW techniques can be classified into regional and onsite warning ones based on
their concept required to estimate an earthquake’s parameters. Compared to regions that are located
farther away, the regions surrounding the epicenter suffer much higher seismic intensity. However,
existing regional warning techniques involve the collection of data from several seismic stations
and some computational time is needed to acquire source parameters, such that there is sometimes
little to no lead time before a destructive wave hits. On the other hand, an onsite warning system
may provide a longer lead time for regions surrounding an epicenter because it only requires the
data of the target site for predicting the intensity of the impending seismic waves.
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Most of the onsite EEW techniques issue alerts based on
simple parameters extracted from the initial P waves observed
at a seismic station. For instance, Kanamori (2005) estimated
the magnitude using a predominant frequency of P wave.
Odaka et al. (2003) proposed using fitting parameter of the
waveform envelope and the P-wave amplitude to estimate the
magnitude and epicentral distance. Wu and Kanamori (2005)
obtained for a relationship between the peak displacement
amplitude of the P wave (Pd) and the peak ground velocity
(PGV). They proposed issuing an alert based on the value
of Pd. Zollo et al. (2010) proposed using the thresholds of
both the Pd and the predominant period of seismic waves to
issue alerts. Nakamura et al. (2011) used the inner product of
acceleration and velocity to predict the PGV. All these algorithms
tried to establish simple empirical functions between the
extracted P-wave parameters and interested source parameters
and seismic intensity.

Because only one to two P-wave parameters could be
dealt with when establishing the empirical functions and only
simple empirical functions could be established based on
observation, artificial intelligence became a powerful alternative
approach for establishing the complex relationship between
more P-wave parameters and the source parameters or seismic
intensity. Böse et al. (2012) proposed using fully connected
artificial neural networks to estimate the PGA, epicenter
distance, and magnitude using the acceleration, velocity, and
displacement of the three-component waveforms. Hsu et al.
(2013) proposed to estimate the peak ground acceleration
(PGA) of an incoming earthquake by relying on a support
vector regression (SVR) approach. Six P-wave features—the
peak displacement, peak velocity, peak acceleration, cumulative
absolute velocity, effective predominant period, and the integral
of the squared velocity—extracted from of the first few seconds
after trigger of the vertical acceleration component were
used to predict the PGA of the target site. The regression
model to predict the PGA according to these P-wave features
was established based on the SVR approach. The algorithm
they developed has been implemented successfully to issue
alerts during several large earthquakes (Hsu et al., 2016,
2018, 2021). Furthermore, site effects on the PGA have been
accommodated by including the horizontal-to-vertical spectral
ratio into the input of an artificial neural network prediction
model (Hsu et al., 2020). These approaches, however, require
the extraction of the P-wave parameters in advance before being
input into the neural networks or support vector regression
models. In these approaches, only some important P-wave
parameters (instead of the original and complex acceleration
time history) are used so other important P-wave-related
information may be ignored.

Deep convolutional neural networks (CNN) are capable of
extracting features from raw data (LeCun et al., 2015). Recently,
CNN has been applied successfully to many fields, including face
identification (Sajjad et al., 2018), speech recognition (Abdel-
Hamid et al., 2014), playing “Go” (Silver et al., 2016), and
crack detection (Xu et al., 2019). In other research, Wu and
Jahanshahi (2019), Wu et al. (2019) showed the ability of
CNN to estimate structural dynamic responses accurately and

identify the structurally dominant frequency of the acceleration
signal. Yu et al. (2018) showed the proposed CNN method
had outstanding identification accuracy for structural damage
of a benchmark building than other commonly used machine
learning methods. Shrestha and Dang (2020) customized a CNN
framework for real-time auto classification of bridge vibration
data. As for earthquakes, Mousavi et al. (2019) applied the
CNN and recurrent units to earthquake signal detection. Perol
et al. (2018) tried to detect the earthquakes’ occurrences and
classify the locations of the epicenters within seven predefined
regions using three-component seismic waveforms recorded
on a seismic station using CNN. Jozinovic et al. (2020) tried
to estimate the intensity measurements of ground-shaking
earthquake events within Central Italy by simultaneously using
the seismic waveform data of 39 stations located close to
epicenters with the input of the CNN.

In this study, we propose to implement CNN for onsite EEW.
The original measured P-wave data at a single station were
inputted into the CNN for predicting the PGA of the coming
earthquake without a loss of any information in the seismic
waveforms. To the authors’ best knowledge, our attempt is the
first in the literature to perform onsite EEW using CNN, i.e.,
to predict the coming seismic intensity at one site using the
measured data at the same site. However, because the amplitude
of the P-wave data of large earthquakes and small earthquakes
can be very different, the multi-scale inputs of the P-wave data are
proposed in this study in order to let the CNN observe the input
data in different scales. Note that the multi-scale input proposed
in this study is different from the down-sampling approach
that reduces the dimension along the time-series direction (Cui
et al., 2016). The multi-scale proposed in this study scales the
input along the amplitude direction. Moreover, both the time
and frequency domains of the P-wave data are combined into
multi-domain input, hence the CNN can observe the data in
different aspects.

In the Methodology section of this paper, a brief description
of the CNN is summarized because it has been applied to many
fields and the basic details have been well-documented in many
studies in the literature. Instead, we focused on describing how
we designed both the input data and the architecture of the
CNN. The earthquake data and the process of training and
validation are also described in this section. Next, in Results and
Discussions, the effect of input is studied first, followed by a
discussion of the performance of the earthquake data using the
proposed CNN. Finally, the Concluding Remarks summarizes
this study’s results and implications for the future.

MATERIALS AND METHODS

Brief Description of CNN
Convolutional neural networks has a great capability to extract
features from raw data and has been successfully employed to
solve many real-world problems. A typical CNN usually consists
of convolution, pooling, activation, and fully connected layers.
The convolution layer extracts features from the input data using
different kernels, thus enabling a large number of features to be
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obtained. During the convolution, users can design specific stride
sizes to scan through the input data and then obtain feature maps
with different weights.

The pooling layer subsamples the feature maps and extracts
the dominant information in these maps, and by doing this
reduces the dimensionality of the feature maps and keeps their
essential information at the same time. As the CNN can be deeper,
multiple convolution and pooling layers can be stacked together
to solve more complex problems. Finally, fully connected layers
with activation functions are used to classify or do regressions
using the flattened feature maps.

Input Data of the CNN
In order to perform onsite EEW, the initial ground motion
observed at a site was used to predict the peak value of the
incoming ground motion. In this study, after the first 3 s post-
triggering, the observed acceleration time history was used for
predicting the PGA, the maximum absolute value of the entire
acceleration time history in three components. Note that the
differences between the amplitudes of the P-wave data of large
and small earthquakes can be very large. The amplitude of input
data with relatively small values may have fewer effects on the
loss function when training the CNN compared to the one with
larger values. In order to obtain better regression results for data
with different amplitudes, for example, predicting the PGA more
accurately for earthquakes with different intensities, we had tried
to use logarithm values of the acceleration time history as the
input of the CNN, but because the time history does not follow
the lognormal distribution, the prediction results were quite bad.
As a result, we propose to use the multi-scale inputs of P-wave
data for observing the data in different scales when performing
feature extraction using the CNN.

For the first 3 s of the P-wave data in this study, the maximum
amplitude of most of the data (99.9%) was below 250 gal (cm/s2).
This indicates that one of the scales of time history data could
be chosen as ± 250 gal. That is, the original time history data
with values larger than 250 gal and smaller than −250 gal were
truncated and set to 250 and −250 gal, respectively (Truncation
Step). Then the truncated data were rescaled to have values
between −1 and 1 (Normalization Step). Four more scales with
ranges of ±2.5, ±8, ±25, and ±80 gal were also considered to
extract the features of time history data with different amplitudes.
These range of scales is referred to the seismic intensity scale of
the Central Weather Bureau (CWB), Taiwan. The discussion of
determining the scales of time history data are provided in section
3.1 Effect of Input.

It is well-known in the geoscience research community that
the seismic ground motions caused by a longer fault-rupture
process may contain signals with longer periods (Satriano et al.,
2011). This identifies the frequency content of the P-wave as
very important. However, because it is not easy to identify the
frequency content clearly by observing the complex and chaotic
ground acceleration time history directly, the frequency domain
of the P-wave data was also included in the input into the CNN.
As a result, both the time and frequency domains of the P-wave
data are combined as multi-domain input so that the CNN can
observe the data in different aspects.

Similar to the time history of the P-wave data, three different
scales of the Fourier spectrogram, i.e., 1, 20, and 40 gal/Hz,
were also considered in order to observe the frequency content
more clearly in different scales using the CNN. The Fourier
spectrogram is the amplitude obtained by using fast Fourier
transformation of the first 3 s of P-wave data. Take the scale
20 gal/Hz as an example, the original Fourier spectrogram with
values larger than 20 gal/Hz was truncated and set to 20 gal/Hz
(Truncation Step). Then the truncated data were rescaled to have
values between −1 and 1 (Normalization Step). For 3 s of three
components’ time history with a 200 Hz sampling rate, the size
of each scale of P-wave time history data was 600 × 3. However,
because most of the energy of the P-wave data is located within
a frequency range between 0 and 50 Hz, only the spectrogram of
this range was used (150 points in length). In order to have the
same dimensions for both the time and frequency domain data,
600 points, the spectrogram was linearly interpolated. Finally,
there were five multi-scale and multi-domain P-wave data as the
input of the CNN, as shown in Figure 1, and the dimensions of
the input data were 600× 3× 5.

Architecture of the CNN
It is well known that intensive periodicity may exist in the time-
domain vibration signals and the signals at different time points
could be deeply related to each other in a large range. Hence,
it may be difficult to find valuable information about periodic
data and the relationship behind the time history signals by using
kernels with short lengths along the time dimension. As for the
data in the frequency domain, the relationship between higher
and lower frequencies can be extracted using kernels with longer
lengths along the frequency dimension. For instance, Yu et al.
(2018) successfully identified structural damage using a 1,000× 1
kernel size for extracting features from frequency spectra along
the frequency dimension. In this study, 16 1-D kernels 150 × 1
in size in the first layer were implemented to extract the features
of the data for both the time and frequency domains. Then a max
pooling layer with 1-D kernels with a size of 3 × 1 and a stride
of 3 × 1 was used to extract the maximum value of the features
along the time-series direction. Figure 1 shows the architecture
of the proposed CNN. The max pooling could greatly improve
the statistical efficiency and computational speed of the neural
network. The schematic diagrams of the operation of convolution
and pooling, as well as the resulting sizes of the feature maps, are
shown in Figure 2.

After the feature maps were extracted from the time history
data and frequency spectra, we treated these feature maps more
like 2-D images. Therefore, the second convolution layer with
32 2-D kernels that were 5 × 3 in size and a pooling layer with
kernels of 3× 1 in size were employed to extract more condensed
features. And the third convolution layer with 32 kernels 1× 3 in
size and a pooling layer with kernels 3× 1 in size were employed
again to further extract more condensed features.

Finally, after the features were flattened, two fully connected
layers of 128 neurons that served as feature-selection layers
were utilized to transform the feature maps into the output
PGA value, so as most unnecessary or redundant features will
be cast aside in the fully connected layers. The details of
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FIGURE 1 | The proposed CNN architecture in this study.

FIGURE 2 | The schematic diagram of the operation of convolution and pooling, as well as the resulted size of the feature maps.

the sizes of the convolution and pooling operations, as well
as the resulted sizes of the feature maps, are summarized in
Table 1. The rectified linear unit (ReLU) activation function
was employed in this study (Nair and Hinton, 2010), and the
dropout operation was applied to avoid over-diffing problems
(Srivastava et al., 2014).

Earthquake Data
The earthquake data provided by the Taiwan Strong Motion
Instrument Program (TSMIP) were employed in this study.

TABLE 1 | The detail of the size of the convolution and pooling operations, as well
as the resulting sizes of the feature maps of the proposed CNN.

Layer Kernel Size (a, b) Output feature size (p, q, r)

Input N/A (600, 3, 5)

CL 1 (150, 1) (451, 15, 16)

ML 1 (3, 1) (150, 15, 16)

CL 2 (5, 3) (146, 5, 32)

ML 2 (3, 1) (48, 5, 32)

CL 3 (1, 3) (48, 3, 32)

ML 3 (3, 1) (16, 3, 32)

Flatten N/A 1,536

FCL 1 N/A 128

FCL 2 N/A 128

Output N/A 1

High-quality strong ground motions caused by earthquakes
around Taiwan were collected by the TSMIP network, which
is operated by the CWB. In total, data on 10,000 earthquakes
(denoted as T-data) were selected from the TSMIP data
covering the period from July 29, 1992, to December 31, 2006.
All the earthquake data with PGAs larger than 250 cm/s2

(gal) and less than 2.5 gal in the TSMIP data were selected
because they are quite rare. As for the earthquake data
with PGAs between 2.5 and 250 gal, data on more than
2,000 earthquakes were selected. The number of T-data within
different ranges of PGA when performing training, validating
and testing for the CNN is summarized in Table 2. For
instance, the number of all the data with PGAs larger than
400 gal in the TSMIP data was only 78, and 50, 12, and 16
of these data were used for training, validation, and testing,
respectively. The number of events within different ranges of
PGA is also summarized in the same table. There were 2,279
earthquake events in the T-data, and the magnitude (Mw)
range is 1.66∼7.6. Besides the Chi-Chi earthquake event with
a magnitude 7.6, there were also some large earthquake events
in the T-data and the number of earthquake events with a
magnitude not smaller than 6.5 was 17. The frequency of
the magnitude for training, validation, and testing datasets
is illustrated in Supplementary Figure 1. The magnitude vs.
hypocentral distance of the T-data is shown in Supplementary
Figure 2. The Short-Term-Average through Long-Term-Average
algorithm was employed herein to pick the arrival time of
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TABLE 2 | The 10,000 TSMIP earthquake data used for training, validating, and testing for the CNN.

Dataset PGA (cm/s2)

0.8∼ 2.5 2.5∼ 8 8∼ 25 25∼ 80 80∼ 250 250∼ 400 400∼

Number of events Total 99 694 729 721 697 80 37

Number of data Training 75 1,443 1,443 1,443 1,821 127 50

Validation 19 361 361 361 455 32 12

Test 23 450 450 450 569 39 16

Total 117 2,254 2,254 2,254 2,845 1,98 78

P-wave automatically, and the T-data were used to train, validate,
and test the CNN.

In addition, two earthquake datasets recorded during the
2016 Meinong earthquake event (Mw = 6.53) and 2018 Hualien
Earthquake event (Mw = 6.2) in Taiwan were adopted herein
to understand the capability of the proposed CNN approach for
PGA prediction. The Meinong earthquake event resulted in 117
deaths and damaged to 253 buildings (six totally collapsed). The
Hualien earthquake event caused 17 fatalities and caused serious
damage to 179 buildings (four totally collapsed). Another typical
earthquake dataset recorded during a relatively small earthquake
event with magnitude 5.3 Mw occurred in 2016 (denoted as M5.3
earthquake) was also adopted to see how the performance of
the proposed CNN approach varies with magnitude. The M5.3
earthquake was selected because of its number of the recorded
earthquake data were relatively large among the earthquake
events with a magnitude between 5.0 and 5.5.

Training and Validation
The goal of the CNN was to predict the PGAs as accurately as
possible for small and large earthquakes. However, the differences
between these PGAs were quite enormous. To be more specific,
the PGAs of large earthquakes could be almost 1,000 times those
of the small ones. When the root mean squared errors was used to
estimate the loss of the CNN, only the PGAs of larger earthquakes
were predicted with high accuracy because the error of these
earthquakes contributed to the root mean squared errors much
more than did the small earthquakes. In this study, the root mean
squared logarithmic errors (RMSLE) was employed to estimate
the loss of the CNN, denoted as E, as defined in Equation (1).

E =

√√√√ 1
N

N∑
j=1

(
log(ypj + 1) − log(yrj + 1)

)2
(1)

where yrj and ypj were the real and predicted PGA of the jth

earthquake, respectively. N is the total number of earthquakes.
The T-data of each PGA range in Table 2 was randomly

split into training (64%), validation (16%), and test (20%) sets.
We trained the network on one NVIDIA RTX 2080 GPU. We
updated the CNN parameters using the Adam optimizer with
β1 = 0.9, β2 = 0.999, and decay = 0, and learning rate = 0.001
(Kingma and Ba, 2015). During the train process, the CNN was
updated by evaluating and reducing the loss on a batch-by-batch
basis with batch size = 32. When the loss of the validation dataset

was larger than the one of the training dataset for five epochs
successively, the training process was stopped. Supplementary
Figure 3 illustrates the typical training process of the CNN.

RESULTS

Effect of Input
In this section, we studied the effects of the input on the PGA
predictions using CNN. First, the effects of adding one more scale
of P-wave time history data or spectrogram were studied as an
initial study to understand if adding one different measure of the
input help the PGA prediction or not. The means of the RMSLE
of 15 repeated trials of the 2,000 test data of these cases are
summarized in Supplementary Table 1. The results of using only
a single scale of the P-wave time history, i.e., scale of 250 gal, are
also listed in the same table for comparison. The results show that
adding one more scale of P-wave time history data or spectrogram
reduced the RMSLE values quite a lot, especially when one scale
of the spectrogram was included.

Next, the effects of combinations of three different scales of
P-wave time history data were studied. These results were also
compared to the ones using only a single scale of the P-wave time
history data (Case TH1). These are the five scales of P-wave time
history data that were considered: 2.5, 8, 25, 80, and 250 gal. In
total, one single-scale (Case TH1) and 10 different combinations
of these five scales (Case TH2 to TH11) were studied, as listed
in Table 3. The box plots of the RMSLE of 15 repeated trials of
the 2,000 test data are plotted in Figure 3. Apparently, all the
combinations of three different scales of P-wave time history data
outperformed the single-scale one. Among the combinations of
the three different scales of P-wave time history data, the RMSLE
of Case TH5 to TH8 is relatively smaller than the others, as can
also be observed from the mean of the RMSLE as listed in Table 3.
Nevertheless, these results indicate that combining different
scales of P-wave time history data helped the CNN extract more
informative features and achieve a better PGA prediction.

Since only the maximum absolute acceleration value of the
entire time history of seismic waves is the target output of the
CNN, it is possible the signs of the P-wave time history are
not so informative, but the amplitude may already provide the
necessary information. Therefore, for the input data of CNN, we
tried to replace the raw P-wave time history data of the studied
combinations with the absolute ones. The box plots of the RMSLE
of 15 repeated trials of the 2,000 test data of these combinations
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using absolute values are plotted in Figure 4. Again, all of the
combinations of the three different scales of P-wave time history
data outperformed the single-scale one. Based on these results,
taking the absolute value of P-wave time history data seems to
help the CNN predict the PGA more accurately because the errors
are lower in general, and the mean of the RMSLE of all the 11
cases using absolute values are 0.02∼0.03 smaller than the ones
using raw values, as listed in Table 3. Besides, the mean of the
RMSLE of Case TH6 (the combinations of 2.5++25+250 scales)
was the smallest one. Since both the mean and the box plot of the

TABLE 3 | The details of the combinations and the RMSLE of cases TH1 to TH11.

Case Combination of scales* RMSLE

Raw Absolute

TH1 E 0.6439 0.6169

TH2 A + B + C 0.6174 0.5878

TH3 A + B + D 0.6089 0.5859

TH4 A + B + E 0.6084 0.582

TH5 A + C + D 0.6084 0.5856

TH6 A + C + E 0.6043 0.5740

TH7 A + D + E 0.6044 0.5827

TH8 B + C + D 0.6051 0.5827

TH9 B + C + E 0.6057 0.5829

TH10 B + D + E 0.6111 0.5866

TH11 C + D + E 0.6171 0.5967

*Scale A: 0∼2.5 cm/s2; Scale B: 0∼8 cm/s2; Scale C: 0∼25 cm/s2; Scale D:
0∼80 cm/s2; Scale E: 0∼250 cm/s2.

RMSLE of Case TH6 outperforms the others, the combination of
2.5+ 25+ 250 scales using absolute values was selected.

Next, the effects of including a spectrogram on the PGA
prediction using CNN were studied. Because the range of the
spectrogram amplitude of small and large earthquakes was not
as large as the range of the time histories’ amplitudes, only
three scales of the spectrogram were considered herein: 0∼1,
0∼20, and 0∼40 gal/Hz. In total, five combinations of the best
studied combinations of three different scales of P-wave time
history data (Case TH6), and the three scales of the spectrogram
were studied as listed in Table 4: cases TH6+F3, TH6+F12,
TH6+F13, TH6+F23, and TH6+F123. The box plots of the
RMSLE of 15 repeated trials of the 2,000 test data are plotted
in Figure 5. It is evident that including the spectrogram can
achieve much smaller RMSLE values than the one without any
spectrogram. These results indicate that combining the frequency
domain with the time domain P-wave data helped the CNN
understand more deeply the P-wave data for PGA prediction.
Among the five cases, case TH6+F12, which includes the smallest
two scales of the spectrogram, has the smallest RMSLE value, as
can also be observed in Table 4, hence it should be employed in
future studies. Finally, the procedures to obtain the multi-domain
and multi-scale input for the CNN as described previously are
summarized in Figure 6.

Results of the T-Data
Based on the results of the input study, we took case TH6+F12,
which has three scales of the absolute value of the P-wave
time history data and two scales of the Fourier spectrograms
of the original value of the P-wave data, as the final input of

FIGURE 3 | The box plots of the RMSLE of the Cases TH1 to TH11 (using raw values of time history data).
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FIGURE 4 | The box plots of the RMSLE of the Cases TH1 to TH11 (using absolute values of time history data).

the CNN used in this study. The predicted PGA distribution
of the 2,000 test data is illustrated in Figure 7A. Besides, the
predicted PGA distribution of all 10,000 T-data is illustrated in
Figure 7B. Apparently, the PGA distributions of the test data
and all the T-data are quite similar. The RMSLE of all the T-data
was still quite small at 0.454, which indicates that overfitting had
not occurred. For easier comparison to other approaches, the
standard variation (σ) of the errors between the predicted and
real PGAs in natural logarithmic scale of all the T-data was also
calculated, and its value was 0.512.

The PGA distribution using the best combination, case
TH6+F12, can be found in Figure 7. Despite most of the
predicted PGAs being quite close to the real PGAs, there
are still some earthquakes with larger real PGAs that are
apparently underestimated (e.g., a PGA greater than 80 gal).
These earthquakes actually belong to the Chi-Chi earthquake
event on September 21, 1999, as marked in Figure 7 and

TABLE 4 | The details and RMSLE of the combinations of cases TH6+F3 to
TH6+F123.

Case Combination of scales RMSLE

TH6+F3 A + C + E + C′* 0.5287

TH6+F12 A + C + E + A′ + B′ 0.4911

TH6+F13 A + C + E + A′ + C′ 0.5067

TH6+F23 A + C + E + B′ + C′ 0.5197

TH6+F123 A + C + E + A′ + B′ + C′ 0.5043

* Scale A′: 0∼1 gal/Hz; Scale B′: 0∼20 gal/Hz; Scale C′: 0∼40 gal/Hz.

separately illustrated in Figure 8A. This is mainly because only
the first few seconds of P-wave data is employed to predict PGA,
but the Chi-Chi earthquake event had at least two asperities,
which makes the slip propagation process quite long and complex
(Ma et al., 2001). More specifically, the Chi-Chi earthquake
intensity was predominantly contributed by the major asperity
rupture 13 s after another minor one, making the PGA prediction
based on the first few seconds of the P-wave harder. Hsu et al.
(2013) has illustrated the PGA can be predicted much closer to
the real PGA if the information of the longer P-wave data is
used. More details about the discussion the PGA prediction of
the Chi-Chi earthquake event using the SVR approach are in
Hsu et al. (2013). Herein, the PGA prediction results using the
SVR approach with the same first 3 s of time history after the
triggering of the Chi-Chi earthquake are illustrated in Figure 8B
for comparison. The RMSLE of the Chi-Chi earthquake using
the proposed CNN and the SVR approaches was 1.419 and
1.867, respectively. Evidently, the proposed CNN approach can
predict the PGAs of these earthquakes more accurately than
the SVR approach.

Results of the Test Earthquakes
In addition to the T-data, we tested the performance of the
proposed CNN approach using the independent 2016 Meinong
earthquake event and the 2018 Hualien earthquake event. The
predicted PGA distribution of these two earthquake events are
illustrated in Figures 8C,D. The RMSLE of the Meinong and
Hualien earthquake events are 0.561 and 0.476, respectively. It
seems the proposed CNN can, in general, predict the PGAs of
separate damaging earthquake events with anticipated accuracy.
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FIGURE 5 | The box plots of the RMSLE of the Cases TH6+F3 to TH6+F123.

FIGURE 6 | The summarized procedures to obtain the multi-domain and multi-scale input for the CNN.

Besides, in order to understand the performance of PGA
prediction using the CNN approach during a typical earthquake
event with a smaller magnitude (between 5 and 5.5), the predicted
PGA distribution during the M5.3 earthquake is illustrated in
Figure 8E. The RMSLE of the PGA prediction results of the M5.3
event is only 0.378. It seems the proposed CNN approach can
predict the PGAs of the typical earthquake event with a smaller
magnitude quite well. For easier comparison to other approaches,

the standard variation (σ) of the errors between the predicted
and real PGAs in natural logarithmic scale of these three test
earthquake events and the Chi-Chi earthquake event was also
listed in Table 5.

To further understand the potential alert performance using
the proposed CNN of these two earthquake events, the confusion
matrix was employed herein. The threshold was set to 25 gal,
which is identical to the one used in the onsite EEW algorithm
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FIGURE 7 | The predicted PGA distribution of (A) the 2,000 test data and (B) all the 10,000 T-data.

FIGURE 8 | The predicted PGA distribution of the Chi-Chi earthquake event using (A) the proposed CNN approach and (B) the SVR approach in Hsu et al. (2013).
The predicted PGA distribution of (C) the Meinong earthquakes, (D) the Hualien earthquakes, and (E) the M5.3 earthquake using the proposed CNN approach.

of the EEW System of the National Center for Research on
Earthquake Engineering, Taiwan (NEEWS) during these two
earthquake events (Hsu et al., 2016, 2018). In order to focus on
the discussion of the accuracy of the predicted PGAs, the lead-
time of all the earthquakes was assumed as valid. As a result, as

summarized in the confusion matrix of Figure 9A, if both the
predicted PGA and the real PGA are ≥25 gal, we considered
this result a true positive (“TP”). Conversely, if the predicted
PGA is ≥25 gal, but the real PGA never reached the threshold,
we considered this result a false positive (“FP”). If both the
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predicted PGA and the real PGA are <25 gal, we considered
this result a true negative (“TN”). If the final ground motion
amplitude reached the threshold, but the predicted PGA did
not, then we considered this result a false negative (“FN”). The
performance metrics based on the confusion matrix, such as
F1-score, precision, and recall are shown in Table 5.

As proposed by Meier (2017), to evaluate the classification
performance of the EEW system, a tolerance range can be used.
We use the same tolerance as the NEEWS (Hsu et al., 2018)
during these three earthquake events, i.e., a ± 1 level of CWB
intensity scale, to evaluate the performance of the proposed CNN
herein, as shown in Figure 9B. The performance metrics based
on the confusion matrix with a tolerance are also summarized
in Table 5. The values of the precision, recall, and F1-score
when no tolerance is allowed are approximately between 81% and
100%, while the ones when the tolerance is allowed increased to
approximately at least 97%. Hence in general, the overall potential
alert performance using the proposed CNN during these three
test earthquake events seems quite promising.

In Comparison With the SVR and
GMPE-Based Approaches
As described in the Introduction section, the SVR approach
developed previously has been employed in the NEEWS in
Taiwan and has successfully demonstrated its ability during
several damaging earthquakes. Six P-wave features are extracted
from the first 3 s of the vertical acceleration and then used as
the input to the SVR prediction model for PGA prediction. The
same T-data were used herein to know if the predicted PGA
of the proposed CNN is more accurate than the one using the
SVR or not. The PGA distributions of the T-data earthquakes
using the SVR prediction model of the NEEWS are illustrated
in Figure 10A, with the RMSLE and σ value equal to 0.748 and
0.664, respectively. These values are much larger than the ones
using the proposed CNN approach. These results indicate the
superiority of the CNN for PGA prediction.

Many EEW systems around the world use a ground motion
prediction equation (GMPE) to forecast shaking based on
estimates of the source parameters (location and magnitude).
For comparison, under the assumption that the location and
magnitude could be accurately estimated, the PGA could be
predicted based on the GMPE. The GMPE accommodating site
effects developed by Jean et al. (2006) was employed herein
and the same T-data were used to compare the proposed CNN
with the typical GMPE-based approach. The PGA distributions
of the T-data earthquakes using the GMPE-based approach are
illustrated in Figure 10B, with the RMSLE and σ value equal to
0.870 and 0.896, respectively. Again, these values are much larger
than the ones using the proposed CNN approach, which indicates
the accuracy of the CNN for PGA prediction is quite promising.

DISCUSSION

In this study, the CNN is proposed as having successfully
predicted the PGA of the incoming seismic wave at the same
site based on the information of the first 3 s of P-wave data
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FIGURE 9 | The confusion matrix (A) without a classification tolerance and (B) with a classification tolerance range of ± 1 level of CWB intensity scale.

FIGURE 10 | The predicted PGA distribution of the 10,000 T-data earthquakes using (A) the SVR approach in Hsu et al. (2013), and (B) the GMPE-based approach.

after an event is triggered. Due to this specific application
to EEW, the proposed CNN is specially designed. The novel
multi-scale input of the CNN is proposed to deal with the
enormous differences of the amplitudes of the input data. The
multi-domain information of the P-wave data (both the time
history and Fourier spectrogram) is also proposed as helping
to achieve better PGA prediction accuracy for the CNN. The
multi-scale and multi-domain input data are treated as different
aspects of the P-wave data. Moreover, the absolute value of
the time history data is employed when input to the CNN,
instead of the raw one, since only the maximum absolute
acceleration value of the coming seismic wave is needed to be
predicted for the CNN. Note that we aim to propose using
the combination of different scales of both the P-wave time
history data and spectrogram, but not to propose the best

combination of that. Therefore, not all the possible combinations
were considered in this study.

The proposed arrangement of the input data shows its
superiority to the one directly inputting the raw P-wave data
into the CNN. In addition, the proposed CNN approach also
shows its superiority for PGA prediction without extracting any
P-wave features in advance to the SVR approach employed by the
NEEWS where P-wave features must be extracted in advance.

Two independent damaging earthquake events that occurred
recently in Taiwan were employed to understand the capability
of the proposed CNN. The results show the accuracy of the
predicted PGAs of these earthquakes are quite acceptable. The
potential alert performance using the proposed CNN under the
assumption that the lead-time of all the earthquakes were valid
was also studied. The F1-score of the proposed CNN during these
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two damaging earthquake events was approximately 93.4% and
increased to approximately 98.8% if the tolerance of ± 1 level of
CWB intensity scale was acceptable. Besides, the proposed CNN
also shows its performance during a typical smaller earthquake
event (Mw = 5.3) could be also quite promising.

Based on the results of the T-data and the three test earthquake
events, the proposed CNN approach seems quite promising for
PGA prediction. However, for the Chi-Chi earthquake event
with a long and complex slip propagation process, using only
the first few seconds of P-wave data for PGA prediction is still
very difficult. This limitation of the proposed CNN approach
has been pointed out, and further studies are still required to
develop a PGA prediction model for such an earthquake event.
One of the possible approaches is to train multiple CNNs for
longer durations and change to different ones as the earthquake
progresses for better PGA prediction; however, the response
time will be sacrificed, as discussed in Hsu et al. (2013) using
the SVR approach.

The SVR approach and the proposed CNN approach use
seismic wave measured at one seismic station and predict the
coming peak ground shaking of the same station. On the other
hand, the GMPE-based approach forecast shaking based on
estimates of the source parameters. Based on the experience
of two real earthquake events, the accuracy of the predicted
PGAs of SVR and GMPE-based approaches was quite similar,
but the SVR approach could provide a longer lead time for
near-epicentral sites (Hsu et al., 2018, 2021). We believe the
CNN approach would show similar performance to the SVR
approach because their computation time is similar. There are
other approaches that use shaking to directly predict shaking,
such as the propagation of local undamped motion (PLUM)
and the approximation by local pseudo-hypocenter attenuation
(ALPHA) approaches developed by the JMA (Kodera et al., 2018;
Kodera, 2019). Based on the results of the first-year performance
of the PLUM approach, this kind of approach seems to have
great potential to provide a more accurate prediction of ground
motion intensity and a longer lead time than the GMPE-based
approach, especially for destructive earthquakes. However, it
is still difficult to provide timely ground motion predictions
for near-epicentral sites. Nevertheless, more researches on the

performance, comparison, and combination of different EEW
approaches are necessary in the future in order to provide better
EEW for the public.
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