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Crack surfaces are usually rough on various scales, and are sensitive to loading stresses and
hence significantly affecting the mechanical properties of cracked rocks. We design a
number of dry- and fluid-saturated numerical cracked samples to investigate the roughness
influence of crack surfaces on the elastic stiffness. The fracture surface roughness is
characterized by non-uniform fracture radii. We calculate the elastic moduli of cracked
samples by finite-element simulation. Comparisons with the theoretical predictions by
Gassmann and C&S (Ciz and Shapiro) (Ciz and Shapiro, Geophysics, 2007, 72(6),
A75–A79) substitution equations demonstrate that the rough crack surfaces for both
dry- and fluid-saturated samples can induce a stress concentration around the crack
that reduces the elastic moduli and decreases the stiffness of rocks. For the fluid/solid-
saturated cracks under the normal (shear) loading stresses, because the stress-
concentration can induce shear (normal) strains around fracture, shear (bulk) modulus of
the filling material will have contributions to the effective bulk (shear) modulus of rocks. The
extra contribution, however, makes the Gassmann equation and C&S equation invalid.
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INTRODUCTION

The characterization of fracture geometry is essential for a wide range of applications, such as
geothermal production, hydrocarbon exploration, nuclear waste disposal, and CO2 storage (Pruess,
2006; Hyman et al., 2015). The medium stiffness can be an effective tool for characterizing their
surface geometry because of the sensitivity of medium stiffness to the fracture surface geometry, (e.g.
Liu, 2005; Sevostianov and Kachanov, 2008; Gao and Gibson, 2012), which has been a strong interest
of researchers.

Techniques aiming to detect fracture networks and surfaces in formations have attracted many
attentions, (e.g. Kawahara, 1992; Sevostianov and Kachanov, 2008; Guo et al., 2018a). Fracture
networks and surface geometry will influence the effective elastic moduli of rocks, which, in turn, can
be used to detect the fracture networks and surface geometry features, (e.g. Zimmerman et al., 1986;
Kachanov, 1993; Sevostianov and Kachanov, 2008). Researches on these issues can be traced back to
around 1970s. Toksöz et al. (1976) take pores and flaws in porous rocks as oblate spheroids with
varying aspect ratios, which tend to be closed under differential pressures, and the change of fracture
density will influence the stiffness of rocks. Cheng and Toksöz. (1979) conduct a comprehensive
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investigation of stress-induced velocity variations using fractures
with varying aspect ratios, and confirm that the deformation of
fractures significantly influences elastic wave velocities. Then,
more researchers have focused on the influence of fractures on the
rock stiffness properties, (e.g. Zimmerman et al., 1986;
Zimmerman, 1991; Shapiro, 2003; David and Zimmerman,
2012; Fu and Fu, 2017, Fu and Fu, 2018). According to these
studies, in conclusion, the open or closure of fractures will
influence the fractured rock stiffness. The tectonic stress
controls the closure or open of the fractures, and therefore
changes the stiffness of the fractured rocks (Shapiro, 2003;
Grechka and Kachanov, 2006; David and Zimmermann, 2012;
Fu and Fu, 2018; Zong et al., 2020). However, many investigations
are based on phenomenological models, relating the fracture
geometry influence to its stiffness by empirical equations. The
parameters of the empirical equations are obtained by fitting
experimental measurements, which do not really explain the
influencing mechanism of the fracture geometry on the rock
effective elastic moduli.

To approach the elastic properties of fractured rocks more
theoretically, the compliance of ellipsoidal fractures becomes a
major issue, (e.g. Eshelby, 1957; Budiansky and O’connell, 1976;
Kachanov, 1980; Sevostianov and Kachanov, 2002a). Hudson
(1981); Hudson. (1988) takes fractures as circular inclusions in an
elastic host medium and formulates the fracture influence on the
elastic properties. Kawahara et al., (e.g. Kawahara, 1992;
Kawahara and Yamashita, 1992; Kawahara, 2011) further
regard fractures as first-order perturbations on the host
medium and propose a model of frequency-dependent elastic
moduli for aligned slit fractured sample based on the Foldy
approximation (Foldy, 1945). This method has been extended
to poroelastic media (Galvin and Gurevich, 2007; Galvin and
Gurevich, 2009; Song et al., 2017a; Song et al., 2017b; Fu et al.,
2020), focusing on the fracture lengths influence on the elastic
moduli. Guo et al. (2018d) and Song et al. (2019); Song et al.
(2020c) further study the fracture thicknesses influence on the
frequency-dependent elastic moduli for fluid-saturated fractured
rocks. Recently, Song et al. (2020a), Song et al. (2020b) have
further researched the frequency-dependent elastic moduli for
fluid-saturated fractured rocks with rectangular cracks and
compressible fluid. However, these researches focus on the
analytical solutions with the assumption of aligned fractures of
the same scale.

Because fractures are distributed randomly with complex
networks and rough surface, numerical simulations have been
widely used to calculate effective elastic moduli, for example,
finite-difference method (FDM) simulation for the variation of
effective elastic moduli vs. fracture density (Saenger and
Shapiro, 2002; Saenger et al., 2004), and the scattering effect
of fractures (Vlastos et al., 2003; Vlastos et al., 2006; Vlastos
et al., 2007). Recently, poroelastic finite-element method
(FEM) simulation has been used to investigate the
frequency-dependent elastic properties of porous rocks with
intersecting fractures (Rubino et al., 2008; Rubino et al., 2016),
and has indicated that the attenuation of P- and S-waves
becomes dominant in the presence of fluid diffusion in the
connected fractures, (e.g. Quintal et al., 2014; Rubino et al.,

2015). Zhu and Shao. (2017) have done a complete review of
the models describing the fractured rock effective moduli.
However, all the researches studying the fractured rock
effective elastic moduli above assume the fractures are
penny-shaped or slit, with smooth surface.

The fracture surfaces in real rocks are rough, (e.g.,
Sevostianov and Kachanov, 2002b; Zong et al., 2017, Zong
et al., 2020). The surface roughness significantly affects the
fracture stiffness. Although the fracture surfaces are complex
for natural rocks, their characteristics can be described by
random functions, (e.g. Brown and Scholz, 1985; Gao and
Gibson, 2012). Greenwood and Williamson. (1966) investigate
the normal contact deformation problem of a rough surface
and a flat surface based on the Hertzian contact theory, by
assuming the Gaussian and exponential distribution of the
asperity heights. Walsh and Grosenbaugh. (1979) apply the
assumptions and methods of Greenwood and Williamson
(1966) to study the effective compressibility of the two
contacted rough surfaces and conclude that the effective
stiffness is linearly proportional with the pressure. After
that, more attentions are paid to the elastic mechanisms of
rough fracture surfaces, (e.g. Johnson et al., 1972; Brown and
Scholz, 1985; Priest and Taylor, 2000). A comprehensive
review on these researches is made by Johnson (1985). The
fracture compliance has been calculated for several types of
irregularities, (e.g. Gao and Gibson, 2012; Sevostianov and
Kachanov, 2012). However, these researches are limited to a
single fracture with rough surface. For real rocks, the fractures
are existent in rocks as fracture cluster, (e.g. Saenger and
Shapiro, 2002; Saenger et al., 2004). However, there are no
detailed researches about the fracture cluster with rough
surface influence on the effective elastic properties of the
fractured rocks.

In this paper, we study the dependency of fractured rock
effective elastic moduli on the fracture surface roughness. We
design seven fractured numerical samples. Each sample
contains a series of fractures with the same perturbation of
the square of the radius of the fracture. Different samples have
fractures with different perturbation of the square of the
radius. The square of fracture radius is controlled by the
normal distribution function (Brown and Scholz, 1985;
Adler and Thovert, 1999). To focus on the perturbation of
the square of fracture radius influence on the fractured
medium, we maintain the expectance of the square of the
fracture radius and the aspect ratios of the fractures as
constants, and vary the standard square of the fracture
radius deviation to change the roughness of the fracture.
We use the perturbation of square of fracture radius to
represent the fracture surface roughness. The FEM
simulation is used to compute the effective elastic moduli
of each sample. We also assume the orientation and
distribution of fractures are uniform to eliminate their
effects. The calculated elastic moduli can be correlated to
different levels of surface roughness. Comparisons with the
Gassmann and C&S substitution equations predictions are
conducted to evaluate the influence of the fracture surfaces
roughness.
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METHODOLOGY

The rough fracture surfaces can be generated by random
functions, (e.g. Gangi, 1978; Sevostianov and Kachanov, 2008;
Fu et al., 2020). On the other hand, the ellipses are widely used to
characterize the fractures, (e.g. Eshelby, 1957; Cheng, 1978;
Hudson, 1981; Kachanov, 1992; Guo et al., 2018a). In this
work, fractures are considered as ellipses with the square of
radii controlled by random functions, (e.g., Eshelby, 1957;
Budiansky and O’connell, 1976; Sevostianov and Kachanov,
2012), as formed by Eq. 1,

x2

a2
+ y2

b2
� R2, (1)

where x and y are the coordinates of the point in 2D surface. a � 1,
b � 0.4. The aspect ratio (α � bR/aR � b/a) of the fracture is 0.4.
In this research, we focus on the influence of the perturbation
of square of factures radius (R2) on the effective elastic moduli
of the sample. We maintain the mean area of the fractures in
the sample as a constant value, and vary R2 using the normal
distribution function with the expectation of R2 as 9 mm2.
Seven numerical samples, containing fractures with standard
R2 deviation (perturbation of R2) ranging from 0 to 2.1 mm2,
are generated. The side length L of each sample is fixed at
60 mm. The area of each fracture is a constant as πab < R2>,
equaling 11.304 mm2, where < > represents the expectation value.
Twenty-five fractures are inserted in each sample. The total
fracture area for each sample is 282.600 mm2. We assume there
are no other pores in the host medium, and the porosity of the
sample is the ratio between the total fracture area and the sample
area, determined to be 7.85%. We consider the orientations of
fractures are distributed uniformly. The uniform distribution of the
centers of fractures are also assumed, so the rock samples are
macroscopically isotropic. The samples with different perturbation
of R2 are shown in Figures 1A,B.

For the fractures with rough surfaces, among the parameters
describing fracture surface roughness, (e.g. Joint Roughness
Coefficient (JRC), Z2, and fractal dimension), Z2 is one of the
most widely used statistical parameters in surface roughness
analysis, and is shown to correlate well with JRC. The
equation calculating Z2 is given by (Barton et al., 1985)

Z2 � 1
n
∑
n

[1
L
∑ (zi−1 − zi)2

xi− 1 − xi
]1/2,

(2)

where n is the number of surface profiles, L is the profile length,
and xi is the coordinate of the surface profile in the point i. zi is the

FIGURE 1 | The cracked rock models. (A) The crack with the standard deviation of R2 as 0 mm2 (B) The crack with the standard deviation of R2 as 2.1 mm2.

FIGURE 2 | The relation between perturbation of R2 and Z2.

Frontiers in Earth Science | www.frontiersin.org April 2021 | Volume 9 | Article 6269033

Fu et al. Roughness Effects of Crack Surfaces

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


height of fracture surface at point i. If the value of xi-1-xi is a
constant, as C. Eq. 2 can be simplified as

Z2 � 1
n
∑
n

[1
L
∑ (zi−1 − zi)2

C
]1/2.

(3)

In this research, we use the radius in point i, Ri, replacing zi,
and Eq. 3 can be rewritten as

Z2 � 1
n
∑
n

[ 1
LC

∑ (Ri−1 − Ri)2]1/2. (4)

Therefore, it can be obtained that

Z2 �
���
1
LC

√
1
n
∑
n

[∑ (Ri−1 − Ri)2]1/2 ∝ 1
n
∑
n

[∑ (Ri−1 − Ri)2]1/2.
(5)

According to Zhao et al. (2019), surface with higher value of Z2 is
rougher.Wehave calculated the relation betweenZ2 and perturbation
of R2 as shown in Figure 2. There is a positive linear relation between
the perturbation of R2 and Z2. Therefore, the perturbation of R2 can
represent the roughness of the fracture surface.

To compute the effective elastic moduli of the fractured
samples, we load the static homogeneous stresses on the
samples, and solve the static elastic equation at each node by
FEM simulation (Saxena and Mavko, 2014), with the static elastic
equations as

σ ij,j � 0. (6)

and the stress σ ij is expressed as

σ ij � (K − 2
3
μ)eδij + 2μeij, (7)

where eij is the strain tensor, given by

eij � 1
2
(ui,j + uj,i). (8)

and

e � ekk, (9)

where ui is the displacement of each node of the sample, K and μ
are the bulk and shear moduli of each node in the sample,
respectively. The elastic moduli of fractures are different from
those of the host medium. The elastic moduli of the host medium
are the same for the all samples. Combining equations from Eqs.
6–9, we can calculate the stress σ ij and strain eij in each node of
the samples, by FEM simulation. Through the stress distribution,
we can observe the stress concentration directly.

All the FEM numerical simulations are conducted using
commercial software (COMSOL 5.5), which can mesh the
fractures automatically, and satisfy the stable condition. This
kind of commercial software has been used widely (Li et al., 2009).
To maintain the accuracy of the simulation, the smallest scale of
the mesh is 0.05 mm, as shown in Figure 3. It should be noted
that, although the 3-D simulation is more suitable for modeling
real rocks, according to Rubino et al. (2008); Rubino et al. (2015);
Rubino et al. (2016), and Saxena and Mavko (2014), the accuracy
of 2-D numerical simulation is acceptable to extract the effects of
fracture surface roughness on effective elastic moduli. In this
research, we conduct numerical simulation on 2-D model.

To compute the effective bulk moduli of isotropic samples, we
load a homogenous confining pressure P, as presented in
Figure 4A. By solving Eqs. 6–9, the strain eij and e at each
node are obtained, and the effective bulk modulus Ke of each
sample is

Ke � P
< e> . (10)

Similarly, we obtain the effective shear modulus μe from the
shear tests, by loading the homogenous pure shear stress τ12, as
shown in Figure 4B. The effective shear modulus μe is
expressed as

μe �
τ12

2< e12 >
. (11)

The fractures are important channels and spaces for water/
kerogen diffusion and enrichment. Especially for the rocks with
low porosity and permeability, (e.g., Gale et al., 2014; Guo et al.,
2018c), fractures are usually saturated with water or kerogen. It is
important to study the fracture surface roughness influence on
fluid/solid substitution process of fractured samples. The elastic
moduli of dry sample are computed by FEM simulation, and
then, we calculate the elastic moduli of the water- and kerogen-
saturated samples by FEM simulation, Gassmann equation and
C&S (Ciz and Shapiro) equation (e.g., Gassmann, 1951; Ciz and
Shapiro, 2007), respectively.

Gassmann equation (Gassmann, 1951) is expressed as

Kw
sat � Kdry + α2M, (12)

μwsat � μdry, (13)

where Ksat
w and μsat

w are the bulk and shear moduli of the water-
saturated sample, respectively. Kdry and μdry are the bulk and
shear moduli of the dry sample calculated by FEM, respectively,
in this research. The pore space modulus M is given as

FIGURE 3 | The mesh around the fracture.
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M � [(α − ϕ)
KB

+ ϕ

Kf
]− 1

, (14)

where α � 1-Kdry/KB is the Biot-Willis coefficient (Biot andWillis,
1957). KB is the bulk modulus of the host medium. Kf is the bulk
modulus of water.

The C&S equation (Ciz and Shapiro, 2007) is summarized as

(Kk
sat)− 1 � K−1

dry −
(K− 1

dry − K−1
B )2

ϕ(K−1
k − K−1

B ) + (K−1
dry − K−1

B ), (15)

(μksat)− 1 � μ−1dry −
(μ− 1dry − μ−1B )2

ϕ(μ−1k − μ−1B ) + (μ−1dry − μ−1B ), (16)

where Ksat
k and μsat

k are the bulk and shear moduli of the kerogen
saturated medium. Kk and μk are the bulk and shear moduli
of kerogen. μB is the shear modulus of the host medium.
Because Gassmann equation and C&S equation are valid to
predict the effective elastic moduli of homogenous saturated
rocks, comparison between the FEM simulation results and
the Gassmann equation/C&S equation results will verify
whether the two equations are valid, and whether the
samples are homogenous. The difference between FEM
simulation results and the Gassmann equation/C&S
equation results indicates the changing of the
heterogeneity of the sample, (e.g. Brown and Korringa,
1975; Saxena and Mavko, 2014). The differences should be
increasing with the increase of the heterogeneity of the
samples.

According to Saxena and Mavko. (2014), both
Gassmann equation and C&S equations are set up based
on reciprocal theory. These two kinds of equations assume
samples are homogenous (Mavko and Mukerji, 2013).
When confining pressure is loaded on samples, there are
only elastic energy and normal strain induced by the
normal stress of the sample, and only the bulk modulus
of the inclusion has contributions to the effective bulk
modulus. It is the same for the effective shear modulus.

However, as verified by Saxena and Mavko. (2014), when
the sample is heterogenous (the heterogeneity is induced
by the distribution or geometry of the inclusion), if the
normal stress is loaded on the sample, it will induce shear
stress around the inclusions, and shear strain will be
generated. Therefore, the shear modulus of the
inclusions will have contribution to the effective bulk
modulus. It is also the same for the effective shear
modulus. All the explanations above mean the
distribution or geometry of the inclusion maybe will
make the Gassmann equation and C&S equation invalid
(Mavko and Mukerji, 2013).

FIGURE 4 | The test models, (A) The confining pressure test, (B) the pure shear stress test.

FIGURE 5 | The model for the test.
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RESULTS

The effective elastic moduli Ke and μe are obtained by FEM
simulation. The host medium bulk modulus KB � 29.78 GPa, the
host medium shear modulus μB � 22.30 GPa. For the dry
numerical samples, the elastic moduli of filling material are
zero. In the first stage, effective elastic moduli of dry samples
are computed. Then, the water- and kerogen-saturated sample are
considered. The bulk modulus of water Kf is 2.25 GPa, and the
shear modulus is zero. The bulk modulus of kerogen Kk is
2.9 GPa, and shear modulus of kerogen μk is 2.70 GPa (Mavko
et al., 2009). Before doing the calculation, we do verify that all the
numerical samples maintain the isotropic assumption, first. We
conduct the numerical tests as shown in Appendix A. According
to the results in Appendix A, the macroscopic isotropic
assumption of each sample is maintained. In addition, we
should also test the consistency between FEM simulation and
Gassmann equation/C&S equation for homogenous and isotropic
medium. The numerical test sample is presented in Figure 5. To
maintain homogeneity and isotropy of the sample, all fractures
are perfect circles, with radius as 1.895 mm to maintain the
fracture area as 11.304 mm2. The total porosity of the test
sample is the same as the numerical samples in the study
as 7.85%.

We use FEM simulation to calculate the elastic moduli of dry
sample, first. Then, we use FEM simulation, Gassmann equation
and C&S equation to calculate the elastic moduli of water- and
kerogen-saturated samples, respectively. The results are given by

Table 1. The numerical error between the substitution
equations and numerical results are less than 0.4% for the
elastic moduli of kerogen-saturated sample, and the shear
modulus of water-saturated sample. The numerical error
between Gassmann equation and numerical result is 1.5%
for the bulk modulus of water-saturated sample. The error in
the bulk modulus might be induced by the interaction
between fractures (Guo et al., 2018a). Both Gassmann and
C&S equations are valid for homogenous and isotropic and
homogenous medium. When we compare the difference
between the FEM simulation results and substitution
equation, if the differences between the numerical and
substitution equation results are larger than the numerical
errors, it should be induced by the fracture surface
roughness.

Elastic Moduli of Dry Cracked Sample
In this section, we calculate the elastic moduli of dry numerical
samples. Through FEM simulation, we obtain the variation of
bulk and shear moduli of dry samples. As presented in Figures
6A,B, both bulk and shear moduli of the dry samples are
decreasing sharply with the increase of the perturbation of R2.
Because porosity is a constant, and there are no fluid or solid
filling the fractures, the decrease of the bulk and shear moduli
are resulting solely from the increase of the perturbation of R2.
The sample with higher fracture surface roughness has lower
stiffness.

TABLE 1 | The simulation and substitution equation results of the test sample.

Sample type Bulk modulus (GPa) Shear modulus (GPa)

Substitution equation Numerical result Relative error Substitution equation Numerical result Relative error

Dry – 23.66 – – 16.81 –

Water-saturated (gassmann) 24.74 24.36 1.5% 16.81 16.81 0.0%
Kerogen-saturated (C&S) 25.01 25.11 0.4% 18.47 18.47 0.0%

FIGURE 6 | (A) the variation of bulk modulus of dry samples vs. the perturbation of R2, (B) the variation of shear modulus of dry samples vs. the perturbation of R2.
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Elastic Moduli of Samples Saturated With
Water
We further calculate the bulk and shear moduli of water-
saturated sample by FEM and Gassmann equation based on
the elastic moduli of dry numerical sample calculated in the
last subsection, respectively. Figures 7A,B show the bulk and
shear moduli variations vs. perturbation of R2 of the water-
saturated samples for both Gassmann equation predictions
and FEM results. The comparisons between the results of
FEM simulation (circle) and the Gassmann equation (square)
show that the bulk moduli calculated by FEM simulation are less
than those from Gassmann equation with a constant value. This
kind of difference may be caused by the interaction between the
fractures, which is as also observed by Zhao et al. (2016); Guo
et al. (2018a); Guo et al. (2018b); Cao et al. (2019); Cao et al.
(2020); Zhao et al. (2020) have also used the stress amplification
and stress shielding to explain the influence of the interaction.
Because the relative difference between the two kinds of bulk
moduli are at about 1.5%, similar to the numerical error, we do
not focus on the bulk modulus variation of water-saturated
sample. We mainly focus on the shear modulus. The
difference in shear modulus is obvious, and is larger than

numerical error. The shear moduli obtained from FEM
simulation are higher than the value of Gassmann equation
(Figure 7B). As shown in Figure 7D, the rough fracture
surfaces will induce normal stress around the fractures, when
shear stress is loaded. Because the saturated fluid has bulk
modulus, and the normal stress around fractures will interact
with the fluid, the bulk modulus of the filling fluid will increase
the effective shear modulus. However, for Gassmann equation, as
shown in Eq. 13, the effective shear modulus is only related to the
shear modulus of dry samples. Therefore, the effective shear
moduli of water-saturated samples obtained by Gassmann
equation are less than the values of FEM simulation. As plotted
in Figure 7B, with the increase of the perturbation of R2, the
differences of shear moduli between Gassmann equation and FEM
simulation are increasing. This indicates the contribution of the
bulk modulus of the filling fluid to the shear modulus is increasing.
In this study, the porosity of each sample is maintained as a
constant, and the orientations of the fractures are also uniformly
randomly distributed (the probability of different orientations are
the same). Only the fracture surface roughness can generate this
difference. The fracture with rougher surface will cause more
normal stress around the fractures. The contribution of the bulk
modulus of the filling fluid will also be increased.

FIGURE 7 | (A) the variation of bulk moduli of water-saturated samples vs. perturbation of R2, (B) the variation of shear moduli of water-saturated samples vs.
perturbation of R2, (C) the distribution of shear stress when the sample loaded by normal stress, (D) the distribution of normal stress when the sample loaded by shear
stress.
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Gassmann equation is valid for homogenous medium (Saxena
and Mavko, 2014). However, the difference between the
numerical simulation and Gassmann equation results and the
stress distribution in Figures 7A–D verify that the ellipsoidal
fractures with rough surfaces will induce the local stress
heterogeneity and strain heterogeneity of the sample. The local
stress heterogeneity and strain heterogeneity will lead to the
failure of the Gassmann equation (Mavko and Mukerji, 2013;
Saxena and Mavko, 2014).

Elastic Moduli of Samples Saturated With
Kerogen
We continue to analyze the two sets of kerogens-saturated results
predicted by FEM simulation and C&S equation (Ciz and
Shapiro, 2007) in this subsection, respectively. In Figures
8A,B, both bulk and shear moduli are decreasing with the
increasing perturbation of R2. The results of FEM simulation
are higher than the results of C&S equation. C&S equation is only
valid for homogenous sample. According to Eq. 15, the effective
bulk modulus is only influenced by the bulk moduli of the host
medium and the filling solid. However, for the fractured sample
in this research, as shown in Figure 8C, there are shear stresses

around the fractures, when the normal stress is loaded. The shear
stress will interact with the inclusions, and the shear modulus of
the inclusion will have contributions to the effective bulk modulus of
the sample. Therefore, the effective bulk modulus calculated by FEM
simulation is higher than the result of C&S equation. To analyze the
variation of shear modulus as plotted in Figure 8B, we also calculate
the normal stress around the fractures. According to the normal
stress distribution in Figure 8D, the bulk modulus of kerogen will
also increase the effective shear modulus, and generate higher shear
modulus, as calculated by the FEM simulation. Additionally,
compared with the elastic moduli calculated by C&S equation,
the variation of the elastic moduli calculated by FEM simulation
are more stable. One reason for this phenomenon is that, although
the perturbation ofR2 will decrease the stiffness of dry samples, when
we load normal (or shear) stress around the fractures, the fractures
with rougher surfaces will induce more shear (or normal) stress
around the fractures, and the shear (or bulk) modulus of the filling
solid will also have contribution to the effective elastic moduli. C&S
equation does not calculate the contribution of the shear (bulk)
modulus of the inclusions. Therefore, the effective elastic moduli
calculated by the FEM simulation is higher than that obtained by
C&S equation, and the FEM simulated elastic moduli are more
stable.

FIGURE 8 | (A) The variation of bulk moduli of kerogen-saturated samples vs. the perturbation ofR2, (B) the variation of shear moduli of kerogen-saturated samples
vs. the perturbation of R2, (C) the distribution of shear stress when the sample loaded by normal stress, (D) the distribution of normal stress when the sample loaded by
shear stress.
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As verified by Saxena and Mavko. (2014), only when samples
are homogeneous and isotropic, C&S equation is valid (Eqs. 15,
16). According to the results in Figures 8C,D, because of the
stress concentration around the fractures induced by the rough
fracture surface (Kubair and Bhanu-Chandar, 2008), the strain
distributions of saturated samples are heterogenous, and the C&S
equation is invalid.

DISCUSSIONS

From the simulation results of dry numerical samples, we have
observed linear decrease of elastic moduli of dry samples vs. the
perturbation of R2 of the fractures, as presented in Figures 6A,B.
When samples are saturated with water and kerogen, because of
the stress concentration caused by the rough fracture surfaces, the
shear and bulk moduli of the inclusions will have contributions to
the effective bulk and shear moduli, respectively. The fracture
with rougher surface will generate higher stress concentration,
and the shear and bulk moduli of the inclusions will have more
contributions to the effective bulk and shear moduli, which will
decrease the reducing speed of the elastic moduli.

In this study, we have also calculated the stress distribution of
the dry samples with different fracture surface roughness, as
shown in Figures 9A–D. Figures 9A,B show normal and shear
stress distribution for the dry rock sample with the fracture radius
standard deviation as 0 mm, for confining pressure and shear
stress loaded tests respectively. Because there is no fluid or solid in
the sample, the elastic moduli of fractures are zero, and the stress
inside the fracture is low. Because the fracture surface is smooth,
the stresses concentration around the fracture is low. The stress
distribution heterogeneity is also low, and the elastic moduli is
higher, as shown in Figures 6A,B. With the increase in the
perturbation of R2, the stress concentration around fractures
become larger, as shown in Figures 9C,D (standard R2

deviation is 2.1 mm2). As a result, the heterogeneity of the
stress distribution of the sample is increasing, and the elastic
moduli become lower (Figures 6A,B). In this research, we have
maintained the porosity unchanged, and the orientations of
fractures are uniform. The increase of the stress concentration
is induced by the increase of fracture surface roughness
(perturbation of R2). It also can be known that the stress
concentration induces the decrease of elastic moduli of dry
samples.

FIGURE 9 | The stress distribution of cracked rock models, (A) normal stress distribution of the crack rock model with deviation as 0, (B) shear stress distribution of
the crack rock model with deviation as 0, (C) normal stress distribution of the crack rock model with deviation as 2.1 mm2, (D) shear stress distribution of the crack rock
model with deviation as 2.1 mm2.
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According to the analysis above, fracture surface roughness
controls the stress concentration around the fracture surface and
the heterogeneity of the stress. The higher perturbation of R2 of
fracture will induce higher stress concentration. The stress will
concentrate around the peak of the fractures with large ratio
between its length and its thickness (Kubair and Bhanu-Chandar,
2008). When the perturbation of R2 (roughness) of the fracture is
higher, it will generate more peaks with larger ratio, as well as
higher stress concentration. Stress concentration will induce
strain concentration around the fracture, and increase the
strain in local region. When the loaded stress is the same, (e.g.
Kubair and Bhanu-Chandar, 2008; Fu and Fu, 2018), the total
strain will increase, because of the strain concentration.
Therefore, the sample, with larger stress concentration, will be
softer, and the elastic moduli will decrease.

According to the results in Figures 7, 8, the elastic moduli
variation of saturated samples predicted by Gassmann and C&S
equations are more drastic. According to Gassmann equation and
C&S equation, the effective bulk moduli of samples saturated with
fluid or solid are only related to the bulk moduli of the inclusions
and host medium, and the effective shear moduli are only
related to the shear moduli of the inclusions and host medium.
However, because of the surface roughness of the ellipsoidal
fractures, when stress is loaded on the sample, there is stress
concentration around the fractures, the shear and bulk moduli
of the filling medium will also have contributions to the
effective bulk and shear moduli, respectively. The fractures
with higher perturbation of R2 will induce higher stress
concentration, and the filling medium will have more
contribution to the effective bulk and shear moduli. As a
result, the elastic moduli obtained by FEM simulation is
larger than that predicted by Gassmann equation and C&S
equation, and the variation of the elastic moduli obtained by
FEM are the more stable.

It should be noted that, the bulk moduli of the water-
saturated samples obtained by FEM simulation is less than
that obtained by Gassmann equation with a constant value.
The difference may be caused by the interaction between
fractures. This kind of difference are also observed in
previous studies, (e.g. Guo et al., 2018a; Guo et al., 2018b;
Cao et al., 2019; Cao et al., 2020).

According to the works of Zhao et al. (2016); Zhao et al.
(2020), the interaction of the cracks (stress amplification) will
induce the inconsistency between the substitution equations and
numerical simulation in the elastic moduli of the sample.
Comparing the stress distribution as shown in Figures 9A–D,
the crack interaction is stronger for the cracks with rougher
surface. The difference between the substitution equation results
and the numerical simulation is also increasing with the crack
surface roughness as shown in Figure 7B and Figures 8A,B.
Therefore, there the difference between the substitution equation
results and the numerical simulation is also induced by the
interaction between the interaction between the cracks, and
the rougher crack surface will induce higher interaction.

In this research, we study the substitution process in the
limitation of linear elastic problem, and we do not consider
the fracture surface slipping and the intersection between

factures, when stress is loaded. Although fracture surface
slipping and the intersection between factures will change
fracture stiffness a lot, it is a kind of nonlinear elastic/
hypoplasticity problem (Jiang and Liu, 2008; Khidas and Jia,
2010; Jia et al., 2011). Generally speaking, both fracture surface
slipping and the intersection between factures can increase the
facture porosity and change the connection of the fractures
(Shapiro 2003; Guo et al., 2018c), and they will change the
structure and decrease the stiffness of the dry sample. In this
research, we focus on the influence of fracture surface
roughness on the substitution process, and we should
maintain the fracture porosity and the stiffness of the dry
sample as a constant during the stress loaded. Therefore, the
fracture surface slipping, and the intersection influence are out
of the region of this research. However, it should be noted that
because the fracture surface slipping and the intersection
between factures will change the stiffness of the dry sample
and connection of the fracture during the stress loading
process, it will also influence the substitution process. In
addition, to focus on the fracture surface roughness
influence, we assume all fractures are isolated to each other.
However, for the for fractures in the natural world, it is
possible that the fractures are intersecting to each other.
When fractures are intersecting to each other, the
interaction between the fractures will increase, and the
stiffness of both dry and saturated samples will decrease.
All the problem about the slip of fracture surface and
fracture intersection will be researched in the future.

CONCLUSIONS

In this paper, we have studied the dependency of fractured sample
elastic moduli on the fracture surface roughness. We design
seven fractured numerical samples. Each sample contains
twenty-five fractures with the same surface roughness.
Different samples have different fracture surface roughness.
The square of fracture radius is controlled by the normal
distribution law. The FEM simulation is used to compute the
effective elastic moduli of each sample. The resulting elastic
moduli can be correlated to different levels of fracture surface
roughness. Comparisons between the FEM simulation and
theoretical predictions by the Gassmann and C&S
substitution equations demonstrate that the fracture surface
roughness could induce stress concentration, and thus reduce
the elastic moduli of samples. For the sample with fractures
orientated radomy uniformly, the factures with higher rough
surface will induce more stress concentration around the
fractures, and the interaction between fractures will increase,
making the Gassmann and C&S equation invalid.
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APPENDIX A. THE VERIFICATION OF THE
ISOTROPY OF THE SAMPLE

In this research, we make the orientations of the fractures are
unform, assuming the samples are isotropic. To verify the
correction of this assumption, we conduct the numerical test
as shown in Figure A-1.

We load normal stress P in the two boundaries of the
sample, for the dry rocks, and the other boundaries are made to
be fixed, and we calculate the strain exx and eyy for the test in Figures
A-1A, 1B respectively, and the elastic moduli in the two tests are
given by

C11 � P
exx

. (A-1)

and

C22 � P
eyy

, (A-2)

where C11 and C22 are the elastic moduli of the samples in the two
directions as shown in Figures A-1A, 1B. Then we calculate the
relative error between C11 and C22 by Eq. A3 as

e � |C11 − C22|
C11

. (A-3)

The variation of the relative error vs. perturbation of R2 is
shown in Figure A-2. According to the results in Figure A-2, the
relative errors are all less than 5%. Therefore, the samples can be
regarded as isotropic.

FIGURE A-1 | The test model to verify the isotropy of the sample.

FIGURE A-2 | The Relative error between C11 and C22.
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