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Hydrological series data are non-stationary and nonlinear. However, certain data-driven
forecasting methods assume that streamflow series are stable, which contradicts reality
and causes the simulated value to deviate from the observed one. Ensemble empirical
mode decomposition (EEMD) was employed in this study to decompose runoff series into
several stationary components and a trend. The long short-term memory (LSTM) model
was used to build the prediction model for each sub-series. The model input set contained
the historical flow series of the simulation station, its upstream hydrological station, and the
historical meteorological element series. The final input of the LSTMmodel was selected by
the MI method. To verify the effect of EEMD, this study used the Radial Basis Function
(RBF) model to predict the sub-series, which was decomposed by EEMD. In addition, to
study the simulation characteristics of the EEMD-LSTM model for different months of
runoff, the GM(group by month)-EEMD-LSTM was set up for comparison. The key
difference between the GM-EEMD-LSTM model and the EEMD-LSTM model is that
the GM model must divide the runoff sequence on a monthly basis, followed by
decomposition with EEMD and prediction with the LSTM model. The prediction results
of the sub-series obtained by the LSTM and RBF exhibited better statistical performance
than those of the original series, especially for the EEMD-LSTM. The overall GM-EEMD-
LSTM model performance in low-water months was superior to that of the EEMD-LSTM
model, but the simulation effect in the flood season was slightly lower than that of the
EEMD-LSTM model. The simulation results of both models are significantly improved
compared to those of the LSTM model.
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INTRODUCTION

The Three Gorges Reservoir is located in the upper reaches of
the Yangtze River. The Three Gorges Project is the largest
water conservancy project in the world. It plays an important
role in the governance and development of the Yangtze River
and has comprehensive benefits such as flood control,
hydropower generation, and increased water supply (News
and Focus, 2015). Forecasting Three Gorges River inflows is
critical for dispatching cascaded hydropower stations for
optimal production and operation. Accurate hydrological
forecasts are not beneficial for deciding the optimal
dispatch time and reservoir station locations, but they are
conducive to the development and adjustment of station power
generation plans (Cheng et al., 2015). Two primary types of
runoff prediction methods have been developed: physical
analysis models and data-driven methods. Physical models
are based on the hydrological dynamic process, and they are
closely integrated with the spatio-temporal precipitation
distribution, meteorological conditions, and underlying
surface conditions (Lee et al., 2020). Zhu et al. (2019)
proposed a method to improve runoff simulation by fusing
multi-source precipitation products. Patil and Ramsankaran
(2017) improved the flow simulation and prediction
performance of the Soil and Water Assessment Tool
(SWAT) by assimilating remotely sensed soil moisture
observations. Due to the high data requirements of physical
analysis models and the complexity of runoff generation and
flow concentration processes, it is difficult to establish precise
hydrological models, which restricts the application of
physical models. Therefore, scholars have utilized data-
driven methods to solve these problems (Abbaspour et al.,
2015; Wang et al., 2018).

Data-driven methods rely on historical observation data to
predict data characteristics and the relationship between
model inputs and outputs. Data-driven methods have been
widely used and have achieved excellent results (Kan et al.,
2016). Wu et al. (2005) developed an artificial neural network
(ANN) model and successfully applied it to short-term flow
forecasting. Nanda et al. (2016) used a linear autoregressive
moving average model to forecast floods with a forecast period
of 1 d–3 days Ahmadi et al., 2019 used ANN models on a daily,
monthly, and annual basis in the Kan watershed, which is
located in western Tehran, Iran. Certain data-driven
forecasting methods, such as the ANN, adaptive-network-
based fuzzy inference system, and support vector machine
methods assume that streamflow series are stable, which
contradicts reality and causes the simulated value to deviate
from the observed one (Adamowski et al., 2014).

In order to solve the instability problem of the runoff series
and improve the simulation accuracy of model, many studies
employed ensemble empirical mode decomposition (EEMD)
to process the runoff series and decompose the non-stationary
original series into a trend with several stable sub-series. This
method has been widely used in combination with data-driven
methods in recent years. Tan et al. (2018) used an EEMD-ANN
model to forecast the monthly runoff at three stations in Ertan,

Cuntan, and Yichang. Wang et al. (2020) used ANN and SVR
to regress a monthly flow series decomposed by EEMD
according to the climate index.

The EEMD is an optimized version of empirical mode
decomposition (EMD) method. Huang et al. (1998) proposed
the EMD method in 1998. The EMD method innovatively
introduces “intrinsic mode functions” based on the local
characteristics of the signal, which makes the instantaneous
frequency meaningful. This makes it suitable for nonlinear
and linear stationary processes. The final results of EMD
decomposition are reflected in an energy-frequency-time
distribution (Huang et al., 1998). Zhao et al. (2017) used the
EMD method to decompose annual runoff; they effectively
improved the simulation accuracy of the Chaotic Least
Squares Support Vector Machine model. Based on EMD, the
EEMD method improves the phenomenon of EMD modal
aliasing by adding white noise. It can add white noise without
any basic function, so that signals with different scales can be
clearly sorted in the appropriate intrinsic mode function (IMF)
(Huang and Wu, 2008). Wang et al. (2015) used the EEMD
method to decompose an annual runoff sequence, and
constructed an EEMD-ANN model. Their results showed that
the EEMD method effectively improved the simulation
performance of their ANN. Yu et al. (2018) combined the
EEMD method with a radial basis function (RBF) neural
network and an autoregression (AR) model to forecast annual
runoff, effectively improving the simulation accuracies of the two
models.

Combining EEMD and data-driven methods for data series
prediction has been extensively studied in various fields, but
few studies combine the EEMD and long short-term memory
(LSTM) methods or use these combined methods to perform
runoff predictions. Zhang et al. (2018) used the EEMD-LSTM
method to predict the daily surface temperature, comparing it
with the EMD-LSTM and EEMD-RNN methods and
demonstrating that the EEMD-LSTM model is the most
suitable tool for temperature prediction. An et al. (2020)
used singular spectrum analysis (SSA) and EEMD to extract
the frequency and trend features of Niangziguan spring
discharge, and then they used LSTM to simulate each
frequency and trend sub-sequence. The results demonstrate
that the SSA-LSTM and EEMD-LSTM performances are
superior to that of LSTM, and the EEMD-LSTM model
achieved the optimal prediction performance. Therefore,
this study utilizes LSTM to determine whether runoff data
processed by EEMD can improve the prediction performance
of the LSTM model for runoff data. In addition, this study
utilized the mutual information method which is suitable for
handling the nonlinear relationship between hydrological
series to select the input variables.

The remainder of this paper is organized as follows.
Materials and Method contains the methods used in the
research and relevant information about the study area,
model inputs, parameter settings, and verification strategy.
Results and Discussion describes the calculation results and
analysis of each step, and Conclusion contains the research
conclusions.
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MATERIALS AND METHODS

The main purpose of this research is to study whether the data
processed by EEMD can improve the simulation performance of
the LSTMmodel for runoff data. Therefore, the main structure of
the model is decomposition-analysis-simulation, as shown in
Figure 1.

EEMD
EEMD optimizes EMD, improving the mode mixing
phenomenon of EMD by adding white noise. The EEMD
method adds the appropriate amount of white noise to the
original sequence and then divides the original sequence into a
trend and n finite intrinsic mode functions (IMFs) (Huang and
Wu, 2008; Wang et al., 2020). The specific EEMD steps are as
follows:

• Step 1: Input the data to be decomposed as the original
signal x(t) and set the EEMD parameters, including the
noise standard deviation (Nstd), number of realizations
(NR), and maximum number of sifting iterations allowed
(MaxIter).

• Step 2: Add white noise (wi(t)) to the original sequence to
form the following new sequence:

xi(t) � x(t) + wi(t) (1)

• Step 3: Using the following formula, EMD divides the new
sequence obtained in Step 2 into n finite IMFs and a
trend item.

xi(t) � ∑n
j�1

cij(t) + ri(t) (2)

• Step 4: Repeat Steps 2 and 3 until the maximum NR is
achieved for i.

• Step 5: IMFs are calculated using Eq. 3, and the final result is
obtained using Eq. 4.

cj(t) � ∑NR
i�1

cij(t)/NR (3)

x(t) � ∑n
j�1

cj(t) + r(t) (4)

where cj(t) represents the jth IMF, and r(t) is the trend item.

FIGURE 1 | Research flowchart.
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Mutual Information
The mutual information method describes the degree of
correlation between two random variables, and it can reflect
both the non-linear and linear correlations. If variables x and
y are related, and x is known, the uncertainty of y can be reduced
according to the degree of mutual information between x and y. If
variables x and y are independent of each other, the joint density
is equal to the product of their edge distribution density (Sharma,
2000; Zhao and Yang, 2011; Ding et al., 2019), which can be
expressed as follows:

Px,y(x, y) � Px(x)Py(y) (5)

When variables x and y have N observations and are discrete
random variables, the mutual information between the variables
can be expressed as follows:

MI � 1
N

∑N
i�1

Ln[ Px,y(xi, yi)
Px(xi)Py(yi)⎤⎦ (6)

When the variables x and y are continuous random variables, the
mutual information equation between the variables is

MI � ∫∫ μ(x, y)Lg μ(x, y)
μx(x)μy(y) dxdy (7)

where µ(x,y) represents the joint distribution density of
continuous random variables x and y; and µx(x) and µy(y)
represent the marginal distribution densities of continuous
random variables x and y, respectively.

When the random variables x and y are independent of each

other, Ln[ Px,y(xi ,yi)
Px(xi)Py(yi)] � 0, and Lg μ(x,y)

μx(x)μy(y) � 0, then MI � 0.

When x and y are not independent of each other, MI

approaches positive infinity.

Long Short-Term Memory
LSTMis an improved recurrent neural network (RNN) that resolves the
problem of gradient disappearance during an RNN simulation. LSTM
replaces the cell unit in the RNNwith a memory unit, which effectively
improves the long-termmemory ability of the neural network (Kratzert

et al., 2018). LSTM is connected in a time sequence. At time t, the input
of the memory unit includes the hidden layer state variable ht−1 at time
t−1 and the state variable Ct−1 of the memory unit and input
information xt at time t. Additionally, the forget gate ft, input gate it,
and output gate ot are coordinately controlled. Finally, the calculation
result yt of the LSTM at time t is obtained, and it is passed into the
calculation at time t+1 together with Ct (Yin et al., 2019). The LSTM
memory unit structure is displayed in Figure 2.

The specific calculation process of LSTM is as follows:

• Step 1: Forget gate (ft) calculation. ft determines the amount
of information discarded, and the calculation is as follows:

f t � σ(Uf xt +Wf ht−1 + bf ) (8)

where Uf,Wf, and bf are adjustable parameter matrices or vectors
of the forgetting gate that can be optimized during neural
network training, and σ is the sigmoid activation function.

• Step 2: Input gate (it) calculation. it determines the amount
of information used to update the state.

it � σ(Uixt +Wiht−1 + bi) (9)

where Ui, Wi, and bi are the adjustable parameter matrices or
vectors of the input gate that can be optimized during the neural
network training process. The calculation formula for the newly
acquired information ~Ct is as follows:

~Ct � tanh(U~Cxt +W~Cht−1 + b~C) (10)

where U~C , W~C , and b~C are the adjustable parameter matrices
or vectors of ~Ct that can be optimized during neural network
training, and tanh is the hyperbolic tangent activation
function.

• Step 3: Neuron state update. The neuron state update is
calculated as follows:

Ct � f tpCt−1 + itp~Ct (11)

where p represents the product of the matrix elements. Because Ct

interacts linearly with other LSTM units, the information can be
kept unchanged for a longer period.

• Step 4: Output gate (ot) calculation. ot can generate the
hidden layer state variable ht at time t, and the
corresponding formulas are as follows:

ot � σ(Uoxt +Woht−1 + bo) (12)

ht � otptanh(Ct) (13)

where Uo,Wo, and bo are adjustable parameter matrices or vectors of
the output gate that can be optimized during neural network training.

FIGURE 2 | Diagram of LSTM memory cell structure. (Yin et al., 2019)
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• Step 5: Output (yt) calculation. The yt calculation formula is
as follows:

yt � Wdht + bd (14)

whereWd and bd are the adjustable parameter matrices or vectors
of the output layer that can be optimized during neural network
training.

EEMD-LSTM
The EEMDmethod has been demonstrated to effectively improve
the prediction ability of ANN, SVR, and other methods for
processing non-stationary series. To study the effect of EEMD
on the LSTM model, an EEMD-LSTM model was established.
EEMD is used to process the non-linear and non-stationary
runoff series into several stable sub-series, and the LSTM
model is used to build the prediction model for each sub-series.

The EEMD-LSTM model is based on a decomposition-
analysis-prediction framework, and it includes three stages: 1)
decompose the original runoff series into IMF and residue; 2) use
the mutual information method to select the predictor with the
largest amount of mutual information within each sub-series; and
3) use the LSTM model to predict each sub-sequence and obtain
the sum to calculate the prediction result of the original series.

Radial Basis Function and EEMD-RBF
The Radial Basis Function Neural Network (RBF) is a forward
type network based on the radial basis function, which can
approximate any finite function with arbitrary precision
(Tayyab et al., 2018; She and You, 2019). Compared with
other neural networks, RBF has the advantages of fast
convergence, it does not easily fall into local minima, good
robustness and easy implementation, and has been widely
used in the field of nonlinear time series forecasting (Meshram
et al., 2020).

The EEMD-RBF model uses EEMD to decompose the original
data series, and then uses the RBF model to predict the sub-series.
We then superimposed the RBF prediction results for each sub-series
to obtain the EEMD-RBF prediction results for the original series.

GM-EEMD-LSTM
To study the simulation characteristics of the LSTM model for
various month series, the GM-EEMD-LSTM model (The GM-
EEMD-LSTMmodel is a model in which data is groupedmonthly
and then decomposed and predicted) was set as the control. This
study uses data from 2005 to 2017 for research, dividing the data
from 2005 to 2014 into the training set and the data from 2015 to
2017 into the validation set. The GM-EEMD-LSTM model first
separates the original runoff series by month and arranges the
sub-series chronologically to obtain a 12-month series. Then, it
sorts the input variables of each monthly series. The 12-month
series are then separately processed using EEMD. Each monthly
series is divided into eight or nine sub-series. The predictor with
the largest mutual information within each sub-series is selected
as the input of the LSTM model. The simulation results of each

sub-series are superimposed to obtain the simulation results of
the monthly sequence and are arranged chronologically to obtain
the simulation results from 2015 to 2017.

Case Study
Study Area
The Three Gorges Reservoir is a national strategic freshwater
resource and an important ecological barrier in the upper reaches
of the Yangtze River (Cheng et al., 2015). The reservoir was
impounded for the first time in 2003, and the water level in front
of the dam was 135 m. In 2006, the impoundment water level
reached 156 m. In 2008, a 175-m experimental impoundment was
commenced (Tian et al., 2020). The inflow flow forecast of the
Three Gorges Reservoir is vital for optimizing scheduling to make
correct decisions regarding production and operation. Accurate
hydrological forecasts not only provide the basis for optimal
decision-making regarding reservoir dispatching times but are
also critical to power station formulations and power generation
plan adjustments (Cheng et al., 2015).

This study used daily inflow data from 2005 to 2017 to
forecast the inflows of the Three Gorges Reservoir. The reservoir
is located in the middle reaches of the Yangtze River Basin. The
research area and station distribution, as shown in Figure 3. It
controls a drainage area of 1 million km2 and has an average
annual runoff of 451 billion m3 (Zhou et al., 2019). The
monsoon characteristics of the Yangtze River Basin indicate
that the region is greatly affected by extreme weather events.
Over the past few decades, especially since the 1990s, the climate
has warmed and the frequency of flood disasters in the Yangtze
River Basin has increased. Future climate changes may further
aggravate this phenomenon (Zhao et al., 2020). Extremely
severe flood, ice, and snow disasters and drought events are
also on the rise (Yu et al., 2020). Human activities and climate
change have altered the underlying surface conditions of the
Yangtze River Basin, leading to more complex runoff changes
(Jiang et al., 2008).

Model Inputs and Parameter Settings
When forecasting the daily inflows of the Three Gorges Reservoir,
daily flows (inflows) measured for 1–7 days for the Three Gorges
Reservoir and its upstream stations in Cuntan andWanxian were
selected as the predictors. Because runoff is a comprehensive
result of meteorological and hydrological processes, the
arithmetic average method was used to obtain the arithmetic
average of the meteorological elements of the meteorological
stations upstream of the Three Gorges Reservoir, and the
meteorological elements from the previous 7 days to the
forecast day were used as the model forecast factors. The
meteorological elements considered by the model included
rainfall, relative humidity, light, daily average temperature, and
wind speed; thus, there were 5 + 8 × 7 forecast factors in the
forecast factor set. LSTM uses a month of previous data as the
input for each simulation. Both the inflow and predictor data
series of the Three Gorges Reservoir use daily data from 2004 to
2017. The data from 2004 were used as preliminary predictors,
and the data from 2005 to 2017 were used for model training and
testing. The 2014 data were used as the training set, and the
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2015–2017 data were used as the test set. The data were obtained
from the Information Center of the Ministry of Water Resources.

In the EEMD model, the white noise amplitude was set to
0.2 times the standard deviation of the sample data, NR was set
to 100, and the maximum number of filtering iterations was set
to 500. Each decomposed sub-sequence must establish a

unique LSTM model; thus, ∑12
i�1

mi +M models must be

established, where mi is the number of series in the ith

month, and M is the number of sub-series divided by the

number of natural flow series.
In the LSTM model, the number of hidden layers was 1, the

number of neurons in the hidden layer n was proportional to the
complexity of the model, the value was 2k (k � 1,2,3,...,10), and the
sequence value range was [2,7]. For training, the learning rate was
set to 0.0005, and the maximum training generation m was 500
generations. The model adopts the z-score algorithm for
standardization. After standardization, the mean value of the
data was 0, and the standard deviation was 1. In this study, the
training and test sets were standardized Tan et al. (2018)
separately, and the mean and standard deviation used in the
calculation and de-standardization of the model results were
derived from the training set.

Verification Strategy
To quantify the performance of the LSTM model, this study used
three indicators, the Nash coefficient (NSE), relative deviation
(BIAS), and mean absolute percentage error (MAPE), to evaluate
the forecast accuracy of the model. The value range of the NSE
was [−∞, 1]. The closer the value is to 1, the higher the degree of
fit between the simulated and measured values. BIAS was used to
evaluate the accuracy of the overall water balance of the model
results, and the value range was [−100%, 100%]. The optimal
value is 0; a positive value indicates that the water volume is
higher overall. MAPE was used to reflect the relative deviation
between the forecast and measured values; the value range was

[0,100%], and the month was close to 0. The corresponding
formulas are as follows:

NSE � 1 −
∑N
i�1

(yi − ŷi)2
∑N
i�1

(yi − y)2 (15)

BIAS �
∑N
i�1
(ŷi − yi)
∑N
i�1

yi

× 100% (16)

MAPE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣ yi − ŷi
yi

∣∣∣∣∣∣∣∣ × 100% (17)

where i is the ith moment, N is the total number of time steps,
represents the simulation value, y represents the observation
value, and y(−) is the mean value of the observation data.

RESULTS AND DISCUSSION

Decomposition Results Using EEMD
EEMD was used to decompose non-linear and non-stationary
raw flow data into linear and stable sub-sequences. The monthly
runoff sequence of the GM-EEMD-LSTMmodel was divided into
eight or nine independent sub-sequences. In addition, the original
sequences from 2005 to 2017 were broken down into 13
independent levels in the EEMD-LSTM model. The frequency
of these components gradually decreased from IMF1 to IMFn,
and the residual was the slowest trend of the original sequence.
Due to space constraints, Figure 4 displays the decomposition
results of the May month sequence of the GM-EEMD-
LSTM model.

Figure 4 displays the sub-sequences of different periods. IMF1
is short, with a higher frequency and greater fluctuation. The
positions of IMF1, IMF2, and IMF3 related to larger amplitude

FIGURE 3 | Research area and station distribution. Tan et al. (2018)
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fluctuations are consistent. IMF3 contains 13 cycles in total,
which is consistent with the original sequence (2005–2017).
The residue was the upward change trend of the data in May,
which is consistent with the slight upward trend of the May
monthly series.

Correlations Between Related Factors and
Original/Decomposed Components
Through a cross-correlation analysis, the correlation
coefficients between the forecast factors and flow series

(LSTM, EEMD-LSTM, and GM-EEMD-LSTM model
target series) were assessed, and the forecast factor with
the largest mutual information value was selected as the
model input.

The original sequence, the target sequence of the LSTMmodel,
and the sub-sequences decomposed by EEMD based on the
original sequence are counted and displayed in Table 1.

Based on Table 1, the high-frequency sub-sequences exhibit a
higher correlation with the runoff sequences of the Three Gorges
Reservoir, while the lower-frequency sub-sequences are related to the
runoff sequences of the Three Gorges Reservoir and Wanxian.

FIGURE 4 | Components decomposed by EEMD for May.

TABLE 1 | Top three maximum mutual information values of original and decomposed series.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Var MI Var MI Var MI Var MI Var MI Var MI Var MI

TG-1 0.30 TG-1 0.51 TG-1 0.64 TG-1 0.61 TG-1 0.67 TG-4 0.61 WX-2 1.08
CT-1 0.26 TG-2 0.47 TG-2 0.58 TG-2 0.57 TG-2 0.66 TG-5 0.60 WX-3 1.08
TG-2 0.26 TG-3 0.46 CT-1 0.56 TG-3 0.55 TG-3 0.64 TG-3 0.60 WX-1 1.07

IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 Original series

Var MI Var MI Var MI Var MI Var MI Var MI Var MI

TG-1 1.31 WX-7 0.51 T-7 0.89 T0 1.47 T0 1.47 WS-2 0.57 TG-1 3.04
TG-2 1.31 WX-5 0.51 T-6 0.88 T-1 1.47 T-1 1.47 WS-7 0.56 TG-2 2.36
TG-3 1.30 WX-6 0.51 T-5 0.88 T-2 1.46 T-2 1.46 WS-5 0.56 CT-1 2.19

Note: Variables (Var) are the predictors in the input variable set. CT, WX, and TG are the abbreviations for Cuntan, Wanxian, and Three Gorges Reservoir. The number in Var indicates the
number of days the predictor is ahead of the forecast day.
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Residual items and sub-items whose periods are close to trend items
exhibit higher correlations with meteorological elements. The
original data series exhibit the highest correlation with the runoff
series of the previous day, and that of the mutual information is
much higher than that of the highest mutual trust coefficient of each
sub-sequence after EEMD decomposition.

This study also analyzed the mutual confidence coefficients
between the sub-sequences of the GM-EEMD-LSTM model
and the predictors after decomposing the monthly sequence.
Figure 5 displays certain sub-sequences of the GM-EEMD-
LSTM model (1, 5, and 9). Based on Figure 5A, the residue in
January exhibited the strongest correlation with the traffic
sequence of Wanxian, reaching its peak on day 3. IMF7

exhibited the strongest correlation with the flow of
Wanxian on day 4, and it exhibited a strong correlation
with meteorological elements compared with other sub-
series except that of residue. Both IMF6 and IMF5 were
strongly correlated with the runoff series of the Three
Gorges Reservoir and Wanxian County, and the peak value
was the runoff of Wanxian on day 6. IMF4 and IMF3 exhibited
strong correlations with the runoff sequence of Cuntan and the
Three Gorges Reservoir. IMF4 exhibited the strongest
correlation with the Three Gorges Reservoir on day 1, and
IMF3 had the strongest correlation with Cuntan on day 1. The
other two graphs in Figure 5 display similar characteristics;
sub-sequences with high frequencies are more likely to be

FIGURE 5 | Two-dimensional correlations between model inputs and sub-inflow series by month. Vertical axis indicates the lag time, and the horizontal axis
represents the indices. The redder the color, the greater the correlation. Sub-inflow series correspond to (A) January (B) May, and (C) September.

FIGURE 6 | Two-dimensional correlations between model parameters and sub-inflow series.
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highly correlated with Cuntan and the Three Gorges Reservoir,
while sub-sequences with low frequencies are more likely to be
correlated with Wanxian and the Three Gorges Reservoir. The

trend item and IMFn are highly correlated with meteorological
elements, which is consistent with the sub-sequences of the
EEMD-LSTM model above.

TABLE 2 | Model performances.

RBF EEMD-RBF LSTM EEMD-LSTM GM-EEMD-LSTM

NSE BIAS(%) MAPE
(%)

NSE BIAS(%) MAPE
(%)

NSE BIAS(%) MAPE
(%)

NSE BIAS(%) MAPE
(%)

NSE BIAS(%) MAPE
(%)

Jan 0.80 0.44 3.16 0.86 1.76 2.84 −0.11 −6.84 8.43 0.61 −4.05 4.95 0.91 −0.69 2.20
Feb 0.87 0.07 3.13 0.91 1.21 2.74 0.69 −2.55 5.01 0.76 −4.68 4.93 0.93 1.14 2.27
Mar 0.87 0.37 3.68 0.96 0.80 2.42 0.62 −3.11 5.95 0.89 −3.39 3.82 0.94 −0.18 2.58
Apr 0.82 1.04 5.08 0.98 0.49 2.27 0.71 −2.88 6.12 0.96 −0.37 2.65 0.91 1.50 4.12
May 0.63 1.64 6.90 0.94 0.26 2.93 0.66 2.16 8.40 0.94 1.76 3.57 0.92 −1.12 3.91
Jun 0.63 -1.72 11.46 0.92 0.27 5.44 0.62 0.20 12.41 0.91 2.87 5.95 0.86 −0.28 8.24
Jul 0.50 0.52 9.33 0.91 0.26 4.54 0.56 4.42 12.23 0.84 4.36 6.74 0.78 0.81 7.83
Aug 0.79 1.17 7.04 0.96 0.79 2.91 0.74 2.68 8.88 0.94 2.61 4.90 0.94 0.99 4.65
Sep 0.77 0.75 8.78 0.97 0.05 3.29 0.76 −0.49 9.92 0.95 −0.37 4.38 0.93 2.30 5.94
Oct 0.76 2.16 8.41 0.96 -0.19 3.10 0.81 −0.68 6.58 0.95 −1.50 3.32 0.89 −1.55 4.98
Nov 0.88 3.74 5.62 0.99 1.39 2.25 0.85 0.51 5.51 0.98 −0.49 2.49 0.93 0.12 4.22
Dec 0.72 1.36 3.11 0.86 1.05 2.62 0.58 −3.10 3.98 0.72 −2.17 3.59 0.92 0.23 1.89
Entirely 0.91 0.88 6.32 0.98 0.48 3.11 0.91 0.28 7.80 0.98 0.63 4.27 0.97 0.36 4.40

Note: Bold values indicate the optimal statistics between LSTM and EEMD-LSTMor RBF and EEMD-RBF. Underlined values indicate where the GM-EEMD-LSTMstatistics are superior to
those of EEMD-LSTM.

FIGURE 7 | Comparison of forecast and original inflow values for 2015–2017 for the Three Gorges Reservoir.
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Optimal Parameters of LSTM Model for
Decomposed Series
Statistical analysis was performed on the target sequence of the
EEMD-LSTM model. Thirteen sub-sequences were
decomposed by the EEMD of the original sequence, and
statistical analysis was performed on the optimal
parameters. IMF1 exhibited the highest frequency, and the
optimal parameter values of the LSTM model were seq � 7, n �
128, and m � 100. The optimal parameter values of IMF12 and
residue were seq � 3, n � 1,024, and m � 70.

The LSTM parameters were calculated when the prediction
results of each sub-sequence of the 12-month sequence of the
GM-EEMD-LSTM model were optimal, and a two-dimensional
correlation diagram was obtained, as displayed in Figure 6. In
the figure, IMF9 is the residue obtained by decomposing the
sequence with the number of sub-sequences of 9, and the
sequence residue with eight sub-sequences is IMF8 when
IMF9 is blank.

Based on Figure 6A, it can be seen that the sequence values
of IMF7, IMF8, and IMF9 are proportionally smaller, while the
period of IMF7–MF9 is long, which is substantially different
from the input variable period. This result can be obtained by
inputting less information during the simulation. The analysis
illustrated in Figure 6B demonstrates that the ratio of
IMF1–IMF4 to IMF7–IMF9, where the number of hidden
neurons is less than n, is great. IMF7–IMF9 is more
complicated because the period is significantly larger than
that of the input variable. The proposed model can simulate
this period more accurately than the simple model. Figure 6C
demonstrates that IMF7–IMF9 is smaller than the other sub-
sequence training times. Because the n value of IMF7–IMF9 is
higher, the model is more complicated and has a stronger
fitting ability; thus, when the number of training values is large,
over-fitting can be easily caused. This is consistent with the
sub-sequence parameter selection rule of the EEMD-
LSTM model.

Model Performance Evaluation
Effectiveness Evaluation of EEMD Method
To evaluate the effectiveness of the EEMD method across
multiple directions, this study uses the LSTM, EEMD-
LSTM, and GM-EEMD-LSTM models to establish a model
with a forecast period of 0 day to forecast the inflows of the
Three Gorges Reservoir from 2015 to 2017. The predictor with
the highest cross-correlation information for the measured

runoff sequence was selected as the model input to predict the
runoff sequence. The prediction ability of the different models
was evaluated with NSE, BIAS, and MAPE. To study the
simulation characteristics of the EEMD-LSTM model for
different months of runoff, after evaluating the test set with
the evaluation indicators, the prediction results of the test set
were also counted on a monthly basis, whose results are listed
in Table 2.

According to the analysis (Table 2), the simulation effect of
the decomposition sequence was superior to that of the original
series. In other words, the model performance of the EEMD-
LSTM and EEMD-RBF models is better than the simulation
performance of the LSTM and RBFmodels, especially for theNSE
and MAPE indicators.

The LSTM model does not exhibit any clear rules for the
runoff sequences of different months. A comparison between
the EEMD-LSTM and GM-EEMD-LSTM models
demonstrates that the GM-EEMD-LSTM model simulates
the high-flow months (April to November) well. The result
is slightly lower than that of the EEMD-LSTM model, but the
overall performance in the low-water months (January,
February, March, and December) was significantly better
than that of the EEMD-LSTM model. Figure 7 displays the
simulation results for January and May.

Based on Figure 7, the decomposed model can more
accurately simulate the peak and valley values of the runoff
sequence. The GM-EEMD-LSTM simulation result was the
closest to the measured value, while the results of the
EEMD-LSTM model were the best in May. The results of
both models were far superior to those of the undecomposed
model. Therefore, the two methods can be combined to predict
traffic. The EEMD-LSTM model can be used to make
predictions in high-traffic months, and the GM-EEMD-
LSTM model can be used to make predictions in low-flow
months.

In addition, when the LSTM model is used alone for runoff
prediction research, there is a widespread delay problem that
manifests as translational misalignments on the images
(Kratzert et al., 2018; Xiang et al., 2020). As displayed in
Figure 7, the predicted values of the LSTM model vary and
are slower to predict than the true value. This is because the
LSTM network cannot accurately detect the degree of
fluctuation in a time series; thus, the result of the prediction
from the previous moment may be reflected at the present
moment. The decomposition model using the EEMD method
effectively remedies this issue. The time series is decomposed
into several sub-sequences. Compared with the original series,
the fluctuation degree of the sub-sequences is more stable, and
it is easier to obtain the time-series fluctuations of each LSTM
unit. The prediction of the network sub-model is more
accurate, solving the delay problem of the LSTM network.

Results for Different Forecast Periods
To evaluate the effect of EEMD on LSTM more
comprehensively, this research established EEMD-LSTM
and LSTM models for different forecast periods (0–3 day,

TABLE 3 | Forecast results for different forecasting periods.

Forecast
target

LSTM EEMD-LSTM

NSE BIAS(%) MAPE
(%)

NSE BIAS(%) MAPE
(%)

Qt 0.91 0.28 7.80 0.98 0.63 4.27
Qt+1 0.84 0.78 11.20 0.96 0.63 5.44
Qt+2 0.80 1.74 13.31 0.95 0.29 5.85
Qt+3 0.79 1.97 14.49 0.94 0.59 6.96
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represented as Qt, Qt+1, Qt+2, and Qt+3). And all forecast
periods are based on falling rain. The results are displayed
in Table 3.

Based on Table 3, the EEMD-LSTM exhibits a superior
forecasting performance. For all forecast periods, the BIAS
indicators of the LSTM and EEMD-LSTM models are less
than 5%, indicating that the LSTM model water balance is
accurate. As the forecast period increases, the BIAS indicator
value of the LSTM model significantly increases. However, the
BIAS index of the EEMD-LSTM model is irregular, indicating
that the EEMD method can improve the accuracy of the overall
water balance of the model when the forecasting period increases.
Both models exhibit the greatest effect when forecasting Qt

runoff. As the forecast period increased, the forecast accuracy
decreased, and the forecast accuracy of the EEMD-LSTM model
decreased less than that of the LSTM model. When the forecast
period was 3 day, the Nash coefficients of the LSTM and EEMD-
LSTM models were 0.79 and 0.94, respectively.

CONCLUSION

This study uses approximately 14 years of historical,
meteorological, and runoff data as the forecast factor set and
employs EEMD, mutual information, and LSTM for data
processing, forecast factor selection, and runoff forecasting,
respectively. The results demonstrate that the prediction
performance of the LSTM model can be improved through
EEMD processing. Based on the study results, the following
conclusions can be drawn.

(1) After the data was processed by EEMD, sub-sequences
with different frequencies were obtained. The high-
frequency sub-sequences exhibited a higher
correlation with the runoff sequences of Cuntan and
the Three Gorges Reservoir, while the lower-frequency
sub-sequences were related to the runoff sequences of
the Three Gorges Reservoir and Wanxian. The other
items and sub-items with periods close to those of the
trend items were highly correlated with meteorological
elements. The original series exhibited the highest
correlation with the data series of the day prior to
the forecast, and the mutual information value was
substantially higher than those of the sub-sequence
and input variables. However, the decomposed series
exhibited superior simulation results in the
LSTM model.

(2) The parameters of the LSTM model for sub-sequences
with different frequencies presented the following laws:
sub-sequences with low frequencies and longer periods
contained less input information during simulation,
more hidden neurons, were part of a more complex
model, and exhibited higher training times.

Additionally, the sequence parameter value was
smaller, the n value was greater, and the m value was
smaller.

(3) The results demonstrate that the prediction results of
the sub-series obtained by the LSTM and RBF
exhibited better statistical performance than those of
the original series.

(4) The EEMD-LSTM model performs well across
forecasting periods. As the forecast period increases, the
forecasting accuracy decreases.

The combination of EEMD and LSTM methods for
hydrological series prediction is the main novelty of this
study. Moreover, while considering the autocorrelation in
the runoff series, this study also considered its relationship
with meteorological elements. In addition, when selecting the
model input, the mutual information method suitable for
linear and nonlinear relationships was selected. However,
the correlation between the final model input and the
prediction sequence was not strong enough, which will
affect the model performance. Thus, further improvements
are needed in regard to the correlation.
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