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Simulating and predictingwave propagation in porousmedia saturated with two fluids is an
important issue in geophysical exploration studies. In this work, wave propagation in
porous media with specified structures saturated with two immiscible fluids was studied,
and the main objective was to establish a wave equation system with a relatively simple
structure. The wave equations derived by Tuncay and Corapcioglu were analyzed first. It
was found that the coefficient matrix of the equations tends to be singular due to the
inclusion of a small parameter that characterizes the effect of capillary stiffening. Therefore,
the previously established model consisting of three governing equations may be unstable
under natural conditions. An improved model based on Tuncay and Corapcioglu’s work
was proposed to ensure the nonsingularity of the coefficient matrix. By introducing an
assumption in which one fluid was completely wrapped by the other, the governing
equation of the wrapped fluid was degenerated. In this way, the coefficient matrix of wave
equations became nonsingular. The dispersion and attenuation prediction resulting from
the new model was compared with that of the original model. Numerical examples show
that although the improved model consists of only two governing equations, it can obtain a
result similar to that of the original model for the case of a porous medium containing gas
and water, which simplifies the complexity of the calculations. However, in a porous
medium with oil and water, the predictions of dispersion and attenuation produced by the
original model obviously deviate from the normal trend. In contrast, the results of the
improved model exhibit the correct trend with a smooth curve. This phenomenon shows
the stability of the improved model and it could be used to describe wave propagation
dispersions and attenuations of porous media containing two immiscible fluids in
practical cases.
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1 INTRODUCTION

Wave propagation in partially saturated porous media is of
interest in the research areas of geophysics, petroleum
engineering and underground science. For instance, partial
saturation of two or more fluid components usually occurs in
complex unconventional reservoirs (Santos et al., 2019).

There are plenty of works related to this issue. Some scholars have
studied modulus calculations for composite materials. White (1975)
established the first bulk modulus expression that considered
dissipation mechanisms on a mesoscopic scale, which is also
known as the patch saturation model. A model of concentric
spheres with periodic distribution was formulated to simulate the
heterogeneity of fluids in porous media. Then, based on the quasi-
static Biot theory (Biot, 1956; Biot, 1962), Johnson (2001) proposed a
dynamic frequency-dependent bulk modulus to calculate the
dispersion and attenuation relations of patches with arbitrary
geometries. The bifurcation function of the bulk modulus under
different limit conditions was considered. Subsequently, Tserkovnyak
and Johnson (2003) improved this model by considering the effect of
membrane surface tensions between two fluids in pore space.
Thereafter, a patch saturation model with a random distribution
was proposed by Müller and Gurevich (2015).

In the work of wave equations, there are two main modeling
methods: the mixture theory and volume averaging theory. It is
assumed in themixture theory that the poremedia is homogeneously
distributed on a macroscopic level and it is therefore not necessary to
describe the pore structure (Tuncay and Corapcioglu, 1997). There is
a vast body of work operating under the mixture theory, and only a
few of them are listed here. In early studies, Brutsaert and Luthin
(1964) extended Biot’s theory (Biot, 1956; Biot, 1962) to a case with
two fluids, and three kinds of compressional waves were predicted.
Based on the principle of analytical mechanics, Berryman (1986),
Berryman (1988) first established the kinetic and potential energy
functions of a porous medium containing two fluids. Then, wave
equations for partially saturatedmedia based on separating fluid were
established to analyze the dissipation caused by the interactions
between fluids and solids. The model inadequately considered the
influence of the interaction between the two fluids on the seismic
wave energy (Sun et al., 2015). According to the fluid separation
theory (Berryman, 1986; Berryman, 1988), as mentioned above,
Santos et al. (1990a), Santos et al. (1990b), Santos et al. (2004)
derived wave equations for porous media with two fluids. The
capillary pressure function was introduced, and the idealized test
methodwas used to determine the elastic coefficients. However, some
parameters of themodel may have had no practical physical meaning
due to the use of the idealization test (Sun et al., 2015). Lo et al. (2005),
Lo et al. (2007), Lo et al. (2015) further studied themodel proposed by
Berryman (1986), Berryman (1988) and added an inertial coupling
term in the equations. Ba et al. (2016) studied the effect of rockmatrix
stiffening caused by clay squirt flow on wave dispersion. Moreover,
Ba et al. (2017) proposed a double double-porosity model to describe
wave propagation in anelasticity rock. Such a model takes into
account both the heterogeneity of rock fabric and that of fluid
distribution.

Another important way to derive wave equations is the volume
averaging method, which benefits from the proof and

development of the volume averaging theorem (Anderson and
Jackson, 1967; Slattery, 1967). It does not require the assumption
of a uniform spatial distribution of pores. The variables have clear
physical meanings, and there is no need to consider fluid
distribution shapes on a microscopic level with this technique.
In this way, motion equations and the constitutive relations can
be obtained by taking the average of the corresponding
microscopic equations. A theorem for the volume averaging of
a gradient is employed during the derivation process.

De la Cruz and Spanos (1983), De la Cruz and Spanos (1985)
used the volume averaging method to derive wave equations for
porous media saturated with one fluid. It was demonstrated by
numerical examples that the results obtained from their final
equations are almost the same as those of Biot’s theory within a
certain frequency range for the case of a given fluid with a
relatively low viscosity. The volume averaging method was
also used in the modeling of the so-called double-porosity
dual-permeability model developed by Pride and Berryman
(2003a), Pride and Berryman (2003b). They used this method
to define the physical quantities in a heterogeneous porous media.
A representative work of wave equations considering two fluids is
a model developed by Tuncay and Corapcioglu (1995), Tuncay
and Corapcioglu (1996), Tuncay and Corapcioglu (1997). They
applied this method to explore wave propagation in poroelastic
media saturated by two immiscible fluids. The capillary effect was
considered, and they proposed a new way to express the relation
of volume variation to determine the coefficients of the
constitutive relations. Alternatively, one can use the two-space
method proposed by Burridge and Keller (1981). They started
from the microscopic, linearized elasticity equations for the solid
phase and the Navier-Stokes equations for the fluid component. The
asymptotic expansion technique was used. Although the derivation
process was complicated, the final equations they obtained were
equivalent to Biot’s equations when the viscosity of the fluid was low.
In principle, the final expressions derived by the volume averaging
method are equivalent to those of the two-space method (Tuncay
and Corapcioglu, 1997).

Comparing the two mainstream methods, the former assumes
a porous medium with a homogeneous structure, regardless of the
geometric details. The specific geometric structure of the pore space
is considered by the latter. Based on this difference, we think the
volume averaging method is a more general modeling method since
it is convenient to obtain a physical model in line with the real world.

This study aims to establish numerical stable wave equations
for porous media containing two fluids using the volume
averaging method, and the manuscript is organized as follows.
In Section 2, the model describing wave propagation in porous
media saturated with two immiscible fluids developed by Tuncay
and Corapcioglu is analyzed. It is found that the coefficient matrix
of the equations tends to be singular due to the small parameter
that characterizes the capillary stiffening effect. Then, wave
equations for porous media saturated with an effective fluid
are proposed as an improved model based on their study. Two
numerical examples related to dispersion and attenuation are
given in Section 4. From the results, the improved model can
obtain similar results as the original model in the case of porous
media containing gas and water. However, for the case of oil and
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water, the curve calculated by the original model is unstable; one
can obtain smooth solutions using the improved model.

2 METHOD

2.1 The Analysis of Tuncay and
Corapcioglu’s Model
Considering a porous medium containing two immiscible fluids,
Tuncay and Corapcioglu (1997) started from a microscopic
momentum balance equation between the solid and the two
fluids, respectively. Only the low-frequency case was
considered in their study. The corresponding macroscopic
equations were obtained by the volume averaging method.
Meanwhile, they obtained the macroscopic constitutive
relation in a novel way (Tuncay and Corapcioglu, 1997). The
final wave equations are obtained by combining the macroscopic
momentum balance equation and the constitutive relation, which
can be written as follows (Tuncay and Corapcioglu, 1997):

〈ρs〉€u
s � ∇(a′11∇ · us + a12∇ · uf 1 + a13∇ · uf 2) + ∇ · (G∇us) + C1( _uf 1 − _us) + C2( _uf 2 − _u),

〈ρf 1〉€u
f 1 � ∇(a21∇ · us + a22∇ · uf 1 + a23∇ · uf 2) − C1( _uf 1 − _us),

〈ρf 2〉€u
f 2 � ∇(a31∇ · us + a32∇ · uf 1 + a33∇ · uf 2) − C2( _uf 2 − _us),

(1)

Where us is the solid displacement and uf 1 and uf 2 are the two
fluid displacements. Note ϕ is the porosity and S1 and S2 are the
saturations of the two fluids in which S1 + S2 � 1 and ϕ � ϕ1 + ϕ2,
where ϕ1 � S1ϕ and ϕ2 � S2ϕ. ρs, ρf 1 and ρf 2 are the mass
densities of the solid and the two fluids, respectively. The
averaged densities are denotes as 〈ρs〉 � (1 − ϕ)ρs, 〈ρf 1〉 �
ϕ1ρf 1 and 〈ρf 2〉 � ϕ2ρf 2. C1 and C2 are two dissipation
coefficients expressed as C1 � ηϕ21/κ1 and C2 � ηϕ22/κ2, where η
denotes the fluid viscosity; and κ1 and κ2 are the relative
permeabilities of the two fluids in pore space, respectively.
Note that t represents the time, and the dot above the physical
quantity indicates the derivative of time. In addition, the elastic
constants are expressed as follows (Tuncay and Corapcioglu,
1997):

a11A3 � Ks[A1(1 − ϕ)(Kf 1A2S1 + Kf 1Kf 2 + Kf 2A2S2) + KsKbϕ(Kf 1S2 + Kf 2S1 + A2)],
a12A3 � KsKf 1A1S1ϕ(A2 + Kf 2),
a13A3 � KsKf 2A1S2ϕ(A2 + Kf 1),
a21 � a12
a22A3 � Kf 1S1ϕ[K2

s ϕ(Kf 2S1 + A2) + Kf 2A2A1S2],
a23A3 � −Kf 1Kf 2S1S2ϕ( − K2

s ϕ + A2A1),
a31 � a13 ,
a32 � a23 ,
a33A3 � Kf 2S2ϕ[K2

s ϕ(Kf 1S2 + A2) + Kf 1A2A1S1]
(2)

A1, A2, and A3 are expressed as follows:

A1 � (1 − ϕ)Ks − Kb

A2 � dpcap
dS1

S1(1 − S1) � β

100
[(1 − S1)− n/(n− 1) − 1](1−n)/n(1 − S1)−(2n− 1)/(n−1)

A3 � A1(Kf 1A2S1 + Kf 1Kf 2 + Kf 2A2S2) + K2
s ϕ(Kf 1S2 + A2 + Kf 2S1)

(3)

Where Ks, Kf 1 and Kf 2 are the bulk moduli of the solid matrix
material and two fluids, respectively; Kb and G are the drained

bulk modulus and shear modulus of the solid skeleton,
respectively. Note ap11 � a11 + G/3. β and n are two fitting
parameters needed to calculate the capillary force pcap (Van
Genuchten, 1980; Tuncay and Corapcioglu, 1997; Lo et al.,
2005).

Equation 1 contains three governing equations, which is the
major difference between the wave equations of porous media
saturated with two fluids and that of one fluid. It is obvious that
the structure of the second equation is the same as that of the
third equation, but the coefficients in front of each term differ.

It is worth noting that an important contribution of this model
was that the effect of the capillary force was considered through
the elastic constant A2, which is generally a positive real number.
As seen in Eq. 2, A2 interacts with elastic parameters, such as Kf1,
and characterizes the strengthening effect of the capillary force on
the elastic parameters. However, as will be shown in Section 3,
the magnitude of A2, as calculated by Eq. 3, is much smaller than
that of Kf1 and Kf2, especially in the case of a porous medium
saturated with two liquids. Different works (Tserkovnyak and
Johnson, 2003; Pride et al., 2004; Kobayashi and Mavko, 2016)
have studied this issue. For example, Kobayashi and Mavko
(2016) showed that the effect of capillary forces on the P-wave
velocity was not significant by testing a set of experimental
samples. Thus, it seems that the strengthening effect of the
capillary force on elastic parameters can be ignored in most
cases since A2 has a small value compared with the related
parameters and can be neglected.

Once the relations of A2 ≪Kf 1, A2 ≪Kf 2 and A2 ≪Ks are
identified, one can represent the relationship between the elastic
coefficients of the second and third governing equations as
follows:

a21
a31

� a22
a32

� a23
a33

� S1
S2

(4)

Equation 4 shows that the three elastic coefficients of the second
governing equation are proportional to that of the third equation.
In other words, the matrix composed of these nine coefficients
tends to be singular. This may cause the instability of the solutions
of Eq. 1 since the determinant of the matrix will appear in the
Christoffel equation of the compressional waves (Tuncay and
Corapcioglu, 1997).

In this work, numerical examples are given to illustrate this
phenomenon, and the corresponding mathematical proof of
instability needs to be studied further. Generally, it is
necessary to consider the influence of capillary forces in the
study of wave propagation in porous media containing two fluids,
which depends on the characteristics of the two fluids and the
conditions. Therefore, the influence mechanisms of capillary
forces on wave propagation need to be further studied, for
example, to establish a new calculation method.

2.2 The Effective Fluid Model
The above analysis shows that this potential issue can be
eliminated by combining the latter two governing equations.
Hence, one solution is to reduce the number of equations
from three to two by equivalent reduction of Tuncay and
Corapcioglu’s model. First, we review the derivation of the
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constitutive relation for a porous medium with two immiscible
fluids. Three relations were provided as follows (Tuncay and
Corapcioglu, 1997):

1) The definition of the capillary force is as follows:

pcap � pcap(S1) � dpcap
dS1

δS1 (5)

Where δS1 represents the disturbance to S1.

2) The bulk deformation of the solid phase, which can be
expressed as follows:

∇ · us � −(1 − ϕ) (ps − S1pf 1 − (1 − S1)pf 2)
Kb

− S1pf 1 + (1 − S1)pf 2
Ks

(6)

Where ps, pf 1 and pf 2 are the pressures exerted on the solid and
two fluids, respectively. The bar above each quantity indicates
that it is obtained by averaging the volume of the microscopic
quantity.

3) The volume variation relations of the representative element
volume (REV) are calculated as follows:

−αjPj � 1
3
tr(αjτ j) � Kj(αj∇ · uj + Δαj) (7)

Where j � s, f 1 and f 2 represents the relations for the solid and
two fluids, respectively; αj is the volume fraction; Pj is the effective
stress of each phase; τj is the stress tensor; Kj is the bulk modulus;
and uj is the macroscopic displacement of each phase.

The expressions of the solid and fluid pressure can be solved
according to Eqs. 5–7. The constitutive equation is obtained, and the
expressions of the elastic coefficients are also determined at the same
time (Tuncay and Corapcioglu, 1996; Tuncay and Corapcioglu, 1997).

Then, an attempt to transform the two fluids into an equivalent
fluid in a reasonable way is made. Based on the results of Pride et al.
(2004), a special case is considered in which one fluid phase (noted as
fluid 2) is completely wrapped by the other phase (noted as fluid 1).
Specifically, fluid 2 has no contact the solid skeleton. This means that
there is no interaction between fluid 2 and the solid phase, while fluid
1 is in contact with both fluid 2 and the solid skeleton, which
resembles themodel constructed byWhite (1975). The discontinuous
interface of fluid pressure still exists, and therefore, capillary forces
still exist. Compared with the conventional effective fluid model,
the main advantage of this effective method is that it retains the
nonuniform fluid pressure distribution in space; as a result, the
wave equation contains two independent fluid pressures.

Furthermore, the wrapped fluid (fluid 2) is assumed to have no
contact with the boundary of the REV selected by the volume
averaging method. Thus, the deformation of fluid 2 does not
affect the whole unit, and one can obtain ∇ · uf 2 � 0. In this way,

Eq. 7 with j � f2, which represents the pressure of fluid 2, can be
solved and expressed in terms of the related quantities. The
resultant equation system can be listed as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kf 2

ϕ

dpcap
dS1

+ Kf 2

S2
0 −1

(1 − ϕ)S2Kf 2

ϕKb
− S2Kf 2

ϕKs

(1 − ϕ)Kf 2

Kb
− Kf 2

Ks
−1 − ϕ

Kb

(1 − ϕ)S1
Kb

− S1
Ks

− 1
1 − ϕ

0 − 1
Ks

0

1
ϕ

− 1
S1

0 − 1
Kf 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δ(1 − ϕ)

δS1
Ps

Pf 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∇ · u s

∇ · u s

∇ · uf 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

The expressions of Ps and Pf 1 in terms of ∇ · us and ∇ · uf 1 can be
obtained by solving Eq. 8. Then, similar to Tuncay and
Corapcioglu’s definition (1997), one can obtain the following:

−(1 − ϕ)Ps � ~a11∇ · us + ~a12∇ · uf 1

−ϕS1Pf 1 � ~a21∇ · us + ~a22∇ · uf 1 (9)

The new elastic coefficients are denoted as ~aij(i, j � 1, 2) with the
following expressions:

~a11A3 � Ks[A1(1 − ϕ)(Kf 1A2S1 + Kf 1Kf 2 + Kf 2A2S2) + KsKbϕ(Kf 1S2 + Kf 2S1 + A2)]
~a12A3 � KsKf 1A1S1ϕ(A2 + Kf 2)
~a21 � ~a12
~a22A3 � Kf 1S1ϕ[ϕK2

s (Kf 2S1 + A2) + Kf 2A2A1S2]
(10)

where A1, A2 and A3 are the same as Eq. 3.
Then, the constitutive relation of the effective fluid model is

obtained as follows:

⎧⎪⎪⎨⎪⎪⎩
〈σ〉 � (~a11∇ · u s + ~a12∇ · uf )I + G(∇u + (∇u)T − 2

3
(∇ · u)I)

〈s〉 � (~a21∇ · u s + ~a22∇ · uf )I
(11)

where 〈σ〉 and 〈s〉 are the stress tensors of the solid and the
effective fluid, respectively, and I is the unit tensor.

Note that in Eq. 11, uf rather than uf 1 is used to denote the
displacement of the effective fluid. Here, the effective fluid means
that only fluid 1 is needed when the interaction between solid and
fluid is considered, while the parameters of fluid 2 are needed for
the calculation of the coefficients in the constitutive relation.

It is easy to verify that the elastic constants ~aij(i, j � 1, 2) in the
constitutive relation of the effective fluid model are equal to those
of Eq. 2. In the following text, the elastic constants are uniformly
noted as aij(i, j � 1, 2) for convenience.

Analogous to previous studies (De la Cruz and Spanos, 1985;
Tuncay and Corapcioglu, 1997), the momentum conservation
equation of a porous medium with an effective fluid can be
expressed as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈ρs〉€u

s � ∇ · 〈σ〉 + ηϕ2

κ
( _u f − _u

s)
〈ρf 〉€u

f � ∇ · 〈s〉 + ηϕ2

κ
( _u f − _u

s)
(12)
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where 〈ρf 〉 � S1〈ρf 2〉 + S2〈ρf 2〉; η � η1(η2/η1)S1 ; and κ is the
intrinsic permeability of the effective fluids.

The bars over us and uf can be left out for simplicity. After
combining Eqs. 11, 12, the final wave equations of porous media
saturated with effective fluid are obtained as follows

⎧⎨⎩ 〈ρs〉€u
s � ∇[a*11∇ · us + a12∇ · uf ] + ∇ · (G∇us) + C( _u f − _u s)

〈ρf 〉€u
f � ∇(a21∇ · us + a22∇ · uf ) − C( _u f − _u s)

(13)

where C � ηϕ2/κ.
Compared with Eq. 1, the proposed model Eq. 13 is simpler in

form since it includes only two governing equations. It is also
easier to solve such equations. Although this model looks like that
of the wave equations for a porous medium saturated with a
single fluid, the expressions of the elastic coefficients are
determined by two fluids. In addition, it is also similar to but
different from Biot’s equations (Biot, 1956; Biot, 1962) since there
are no inertial terms of acceleration between the solid and fluid
phases. Therefore, a relatively simple and stable wave equation
structure is established, and a more complicated mechanism of
wave propagation dissipation needs to be further proposed.

3 NUMERICAL EXAMPLES

Two sets of rock parameters are selected to verify the effectiveness
and reliability of the improvedmodel. The rock samples saturated
with gas-water and oil-water are case 1 and case 2, respectively.
Combined with the principle of plane wave analysis (Carcione,
2007), Eqs. 1, 13 are applied to calculate the attenuation and
dispersion curves in these two cases. The detailed Christoffel
equations for the compression and shear waves are given in the
Appendix.

3.1 PorousMedia Containing Gas andWater
A sample of Massillon sandstone (Tuncay and Corapcioglu,
1996) saturated with gas and water is selected for calculation.
Here, fluid 1 is water and fluid 2 is air. The water saturation is
denoted as Sw. The experimental parameters are shown in
Table 1. Four water saturations (Sw � 0.1, 0.5, 0.8, and 0.9)
are chosen for comparison. Under the parameters of Table 1, the
value of A2 according to Eq. 3 is 326.56, which is two orders of
magnitude smaller than Kf2 and much smaller than Ks and Kf1.
Therefore, the strengthening effect of the capillary forces on the
elastic parameters is not significant and can be ignored
reasonably.

The dispersion curves of the two compression waves (fast and
slow P-wave) and the shear wave (S-wave) are shown in Figure 1.
For the dispersion curve of the fast P-wave, both sets of wave
equations produce similar results at different Sw values, as shown
in Figures 1A,B. They both have close limits for high (>106 Hz)
and low frequency (<104 Hz) range. Although each curve varies
smoothly and presents an ‘S’ shape as a whole, it can be seen that
the velocity curves resulting from the new model hold that in the
intermediate frequency range; the greater the water saturation is,
the lower the velocity. In contrast, there is no such consistency in

the original model, and different characteristics occur in the
intermediate-high frequency range. From previous work (Liu
et al., 2015), it is known that the magnitude of velocity decreases
with larger Sw values in the low-frequency band, and the
variations in velocity increase as Sw increases. In addition,
the velocity predictions of the fast P-wave by the Biot-
Gassmann-Wood (BGW) model are 1,145.04 m/s,
1,150.34 m/s, 1,168.18 m/s, and 1,193.72 m/s, corresponding
to the four saturations. They are basically consistent with the
corresponding low-frequency limit values with different Sw
values predicted by the two models. The predictions by the
Biot-Gassmann-Hill (BGH) model are 1933.24 m/s, 1769.30 m/
s, 1,461.24 m/s, and 1,239.29 m/s, corresponding to the four
saturations, which are larger than the results predicted by the
two models. This shows that the two models can obtain the
velocities that are covered by two bounds; however, they still
need to be improved further by introducing other physical
mechanisms, such as local fluid flow.

For the dispersion curve of the slow P-wave, as shown in
Figures 1C,D, one can see that the value of each curve is very
small in the low-frequency band (<104 Hz) and then increases
as the frequency increases, finally converging to a constant
value in the high-frequency band. From Figure 1C, the higher
the water saturation is, the larger the velocity will be, but they
converge to the same value with increasing frequency. The
results do not converge to the same value, as shown in
Figure 1D. Different from the fast P-wave, the dispersion
curves of the slow P-wave obtained by the two sets of equations
are quite different compared with Figures 1A,B. This is
because the number of governing equations is different,
which leads to different mechanisms when slow P-wave
propagation occurs in a porous medium. As we know that
slow P-waves are not an elastic wave but rather a type of
dissipative wave, its dispersion pattern differs from that of a
fast P-wave. It should be noted that there is another type of
slow P-wave for the solution of Eq. 1, while there is only one
type of slow P-wave for Eq. 8, so the second type of slow
P-wave is not shown here.

TABLE 1 | Parameters of Massillon sandstone containing air and water (Tuncay
and Corapcioglu, 1996).

Parameter and unit Symbol Value

Bulk modulus of solid matrix, GPa Kb 1.02
Bulk modulus of solid grain, GPa Ks 35
Shear modulus of solid skeleton, GPa G 1.44
Density of solid skeleton, kg/m3 ρs 2,650
Density of water, kg/m3 ρf1 997
Density of air, kg/m3 ρf2 1.10
Bulk modulus of water, GPa Kf1 2.25
Bulk modulus of air, MPa Kf2 0.145
Viscosity of water, Pa·s η1 1 × 10−3

Viscosity of air, Pa·s η2 1.8 × 10−5

Porosity φ 0.23
Intrinsic permeability, m2 κ 9 × 10−13

Fitting parameter β 0.025
Fitting parameter n 10
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For the dispersion curve of the S-wave, as shown in Figures
1E,F, the results obtained by the two models are basically the
same. The trend of the results is similar to that of the fast P-wave
but with a lower magnitude.

According to the results of the fast P-wave and the S-wave
under the sample condition, the results produced by the improved
and original models are similar, especially within the frequency
range of the seismic waves. This indicates that the original model
developed by Tuncay and Corapcioglu can be replaced by the
improved model proposed in this paper, and the improved model
is simple in form and easier to solve. The velocity of the fast P-wave
and S-wave vs. the water saturation were also calculated in their
study (Tuncay and Corapcioglu, 1996), and the results matched
well with the experimental data. We note that the predicted results
of the improved model also match the experimental data well
under the sample since one can obtain similar results as that of the
original model.

The attenuation curves are shown in Figure 2. The attenuation
curves of the fast P-wave and the S-wave resemble a downward

parabola, and the maximum value is obtained at the frequency at
which the velocity varies fastest in the corresponding dispersion
curve. The attenuation curve of the fast P-wave is basically the
same as that of the S-wave. In fact, the variation law of each
attenuation curve can be roughly obtained from the dispersion
curve. The two models have different trends in the low- and high-
frequency bands. The frequency of the maximum attenuation is
low for high Sw values according to the original model, while for
the new model, the opposite is true. As mentioned above, the
velocity variations produced by the original model are irregular.
Therefore, it can be considered that the results of the new model
are more realistic.

Slow P-waves are usually a type of diffusion wave with a strong
attenuation, whose attenuation curve is different from other wave
types. It can be seen from Figures 2C,D that for each Sw, the
attenuation curve presents a horizontal line at low frequencies
(<104 Hz). Then, this value gradually decreases linearly, and there
is a smooth transition between the two lines. It should be noted from
Figure 2C that the variation of the attenuation value for Sw � 0.9 is

FIGURE 1 | The dispersion curve of seismic wave propagation in porous media containing gas and water: (A,C,E) are the dispersion curves of the fast P-wave, the
slow P-wave and the S-wave corresponding to four saturations calculated by Eq. 1, respectively; (B,D,F) are those of dispersion curves by the improved model
proposed in this work.
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not a horizontal line like that of others in the intermediate frequency
band (105–107 Hz). Correspondingly, it can be seen from Figure 1C
that the dispersion curve at Sw � 0.9 does not resemble the other
curves since a convex shape appears in the curve, which is believed to
be caused by the instability of themodel. The instability of themodel
makes the solution unstable with variable parameters such as
frequency.

In this example, the attenuation curves obtained by the two
models are smooth overall, which is consistent with the results of
some traditional models (Biot, 1956; Biot, 1962; Santos et al.,
1990a; Santos et al., 1990b; Pride and Berryman, 2003a; Pride and
Berryman, 2003b).

3.2 Porous Media Containing Oil and Water
The differences in the physical properties of oil and water are less
notable than that of gas and water. To further verify the
applicability of the established model, a rock sample
containing oil and water is taken from a Columbian sandy
loam unit (Johnson, 2001; Lo et al., 2005). The rock

parameters are shown in Table 2. In this example, the
magnitude of the intermediate parameter A2 is 10.488, which
is much smaller than that of the former case. Therefore, it is more
reasonable to ignore the strengthening effect of capillary forces on
elastic parameters for porous media containing two liquids
according to Eq. 3.

The results of the dispersion curves are shown in Figure 3. It
shows the dispersion curves of the fast P-wave calculated by the
two models. It can be seen that the curves corresponding to
different saturations no longer have an ‘S’ shape when using the
model developed by Tuncay and Corapcioglu. The value remains
constant within the low- and middle-frequency ranges (<106 Hz)
at various water saturations, while the curves are convex at
approximately 107 Hz and then decrease gradually. This trend
is somewhat surprising and differs from that of case 1. As shown
in Figure 3B, the curves obtained by the improved model remain
‘S’ shaped, similar to that in the case of gas and water. In this case,
the model is more unstable due to the smallerA2 value. Therefore,
the mathematical solution of the unstable model can no longer.

FIGURE 2 | The attenuation curve of seismic wave propagation in the porous media containing gas and water: (A,C,E) are the attenuation curves of the fast
P-wave, the slow P-wave and the S-wave corresponding to four saturations calculated by Eq. 1, respectively; (B,D,F) are those of results by the improved model
proposed in this work.
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Represent the physical phenomenon correctly. It is difficult to
obtain the velocity variation range of the results using the original
model, and it is difficult to compare these results with those of the
BGW and BGH models. In addition, the magnitude of the fast
P-wave velocity in the former case is obviously lower than that
resulting from the oil-water case as the physical properties of gas
and oil are quite different, and the compressibility of oil is closer
to that of water.

For the slow P-wave, as shown in Figures 3C,D, the trend of
these results is similar to that of the previous example. However, it
seems that the curve related to Sw � 0.5 in Figure 3C is not
smooth enough. Note that the second type of slow P-wave in Eq.
1 is not listed here.

Figures 3E,F show that the velocities of the S-waves
corresponding to different saturations obtained by the two
models are roughly the same. Differing from the fast P-wave,

TABLE 2 | Parameters of Columbia loam containing oil and water (Johnson, 2001;
Lo et al., 2005).

Parameter and unit Symbol Value

Bulk modulus of solid matrix, GPa Kb 2.637
Bulk modulus of solid grain, GPa Ks 35
Shear modulus of solid skeleton, GPa G 1.74
Density of solid skeleton, kg/m3 ρs 2,650
Density of water, kg/m3 ρf1 997
Density of air, kg/m3 ρf2 762
Bulk modulus of water, GPa Kf1 2.25
Bulk modulus of air, GPa Kf2 0.57
Viscosity of water, Pa·s η1 1 × 10−3

Viscosity of air, Pa·s η2 1.44 × 10−3

Porosity φ 0.284
Intrinsic permeability, m2 κ 1.0 × 10−13

Fitting parameter β 2.39
Fitting parameter n 2.037

FIGURE 3 | The dispersion curve of seismic wave propagation in a porous media containing oil and water. (A, C, E) are the dispersion curves of the fast P-wave,
theslow P-wave and the S-wave corresponding to four saturations calculated by Eq. 1, respectively; (B, D, F) are those of dispersion curves by the improved model
proposed in this work.
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the dispersion curves of the S-wave obtained by the two models
are smooth. The corresponding curves are basically the same,
but it can be seen from Figure 3F that the value tends to the
same eventually while that is not the case in Figure 3E. This
shows that the predictions output by the new model are close
to those of the original model if its solutions are relatively
stable.

The attenuation curve results are shown in Figure 4. It shows
that the shape of the attenuation curve of the fast P-wave is very
strange, which indicates that the model is unstable when
predicting the attenuation of a porous medium containing oil
and water. A smooth curve can still be obtained by the improved
model, which suggests a stable solution. The attenuation value
decreases with larger Sw values. Figure 4C shows that the value of
the attenuation curve is unstable in the high-frequency band. The
attenuation curve of the S-wave is relatively stable, which can also
be seen from the dispersion curve. These results indicate that the
original model may have deficiencies when predicting the
attenuation of oil and water.

4 CONCLUSION

Theoretical analysis showed that the model developed by
Tuncay and Corapcioglu based on the volume averaging
method may be unstable since the structure of the wave
equations may be problematic. In this work, an effective
fluid model of wave propagation is proposed based on their
study. The dispersion and attenuation curves calculated by the
former are not smooth enough in the case of a porous medium
saturated with oil and water. In contrast, the effective fluid
model can obtain smooth dispersion and attenuation curves,
which are consistent with the results of classical models. The
stability of the two models from a mathematical perspective as
well as the corresponding numerical simulations need to be
further studied. In addition, the improved model alone may
not be enough to describe the mechanisms of wave
attenuation and dissipation. It is still worth noting that
wave equations with a simple and stable structure is found
by introducing an effective fluid.

FIGURE 4 | The attenuation curve of seismic wave propagation in a porousmedium containing oil and water. (A, C, E) are the attenuation curves of the fast P-wave,
the slow P-wave and the S-wave corresponding to four saturations calculated by Eq. 1, respectively; (B, D, F) are those of results by the improved model proposed in
this work.
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Future studies will focus on three points. Firstly, wave
equations that consider more interaction mechanisms
between the two fluids need to be developed. Secondly, it is
necessary to compare the theoretical calculation results with
more experimental data to verify the validity of the new
model. Finally, the effect of the geometric structure of
porous media on wave propagation should be studied. For
example, a porous medium with porous space consisting of
interconnected microtubes can be selected as the REV, and the
permeability and elastic constants of such a network can be
calculated (Xiong et al., 2020). Alternatively, one can consider
cracked porous media with penny-shaped inclusions (Zhang
et al., 2019) as the REV. Then, it is possible to obtain wave
equations that connect the microscopic details of a porous
medium with macroscopic wave propagation by the volume
averaging method.
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APPENDIX

The plane wave analysis method (Carcione, 2007) is used to solve Eq. 1 to obtain the dispersion and attenuation results in Tuncay and
Corapcioglu, 1996; Tuncay and Corapcioglu, 1997. Note kP and kS are the complex wavenumber of the compressional waves and shear
wave, respectively. The Christoffel equation for compressional waves is as follows:

The coefficients of Eq. A1 are given as

Z1X
3
P + Z2X

2
P + Z3X

3
P + Z4 � 0 (A1)

Z1 �
C1C2(〈ρs〉 + 〈ρf 1〉 + 〈ρf 2〉) − 〈ρs〉〈ρf 1〉〈ρf 2〉ω2

ω2
− ���−1√ C2〈ρf 1〉(〈ρs〉 + 〈ρf 2〉) + C1〈ρf 2〉(〈ρs〉 + 〈ρf 1〉)

ω
(A2)

Z2 � −a
′11(C1C2 − 〈ρf 1〉〈ρf 2〉ω2) + 2C1C2(a12 + a13 + a23) + a22(C1C2 − 〈ρs〉〈ρf 2〉ω2) + a33(C1C2 − 〈ρs〉〈ρf 1〉ω2)

ω2
+

���−1√ a′11(C2〈ρf 1〉 + C1〈ρf 2〉) + 2a12C1〈ρf 2〉 + 2a13C2〈ρf 1〉 + a22(C2(〈ρs〉 + 〈ρf 2〉) + C1〈ρf 2〉) + a33(C2〈ρf 1〉 + C1(〈ρs〉 + 〈ρf 1〉))
ω

(A3)

Z3 � −a
′11(a22〈ρf 2〉 + a33〈ρf 1〉) − a212〈ρf 2〉 − a213〈ρf 1〉 + 〈ρs〉(a22a33 − a223)

ω2

− ���−1√ a′11(a22C2 + a33C1) − a212C2 − 2a12(a23C2 − a33C1) − a213C1 + 2a13(a22C2 − a23C1) + (C1 + C2)(a22a33 − a223)
ω

(A4)

Z4 � a′11(a22a33 − a223) − a212a33 + a13(2a12a23 − a13a22) (A5)

where XP � ω2/k2P and a′11 � a11 + 4
3G. The meaning of each symbol is the same as above.

The Christoffel equation for the shear wave is

X2
S(Y1XS + Y2) � 0 (A6)

The coefficients of Eq. A6 are given as

Y1 �
C1C2(〈ρs〉 + 〈ρf 1〉 + 〈ρf 2〉) − 〈ρs〉〈ρf 1〉〈ρf 2〉ω2

ω2
− ���−1√ C2〈ρf 1〉(〈ρs + 〈ρf 2〉) + C1〈ρf 2〉(〈ρs〉 + 〈ρf 1〉)

ω
(A7)

Y2 � −G(C1C2 − 〈ρf 1〉〈ρf 2〉ω2)
ω2

+ ���−1√ G(C2〈ρf 1〉 + C1〈ρf 2〉)
ω

(A8)

where XS � ω2/k2S .
The Christoffel equation of the improved model is also given here, they are

~Z1X
2
P + ~Z2XP + ~Z3 � 0 (A9)

~Y1XS + ~Y2 � 0 (A10)

with
~Z1 � (〈ρs〉 +

���−1√
C

ω
)(〈ρf 〉 +

���−1√
C

ω
) + C2

ω2
(A11)

~Z2 � −a′11〈ρf 〉 − a22〈ρs〉 −
���−1√

C(a′11 + a12 + a21 + a22)
ω

(A12)

~Z3 � a′11a22 − a12a21 (A13)

and
~Y1 � 〈ρs〉〈ρf 〉 −

���−1√
C

ω
(〈ρs〉 + 〈ρf 〉) (A14)

~Y2 � −(
���−1√

C
ω

− 〈ρf 〉)G (A15)

The velocity and inverse quality factor of seismic waves are calculated as follows (Carcione, 2007):

vP � [Re(1/ ���
XP

√ )]− 1, vS � [Re(1/ ���
XS

√ )]− 1, (A16)

Q−1
P � 2Im(vP)

Re(vP) , Q−1
S � 2Im(vS)

Re(vS) . (A17)
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