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Microcharcoal is a proxy of biomass burning and widely used in paleoenvironment
research to reconstruct the fire history, which is influenced by the climate and land
cover changes of the past. At present, microcharcoal characteristics (amount, size, shape)
are commonly quantified by visual inspection, which is a precise but time-consuming
approach. A few computer-assisted methods have been developed, but with an
insufficient degree of automation. This paper proposes a new methodology for
microcharcoal statistical analysis based on digital image processing by ImageJ
software, which improves statistical efficiency by 80–90%, and validation by manual
statistical comparison. The method is then applied to reconstruct the fire-related
environmental change in the Weiyuan loess section since about 40 thousand years
before present (ka BP), northwest China with a semi-arid climate, found that the
microcharcoal concentration is low in cold and dry climate and high in warm and
humid climate. The two main contributions of this study are: 1) proposal of a new,
reliable and high efficient automatic statistical method for microcharcoal analysis; and 2)
using the new method in a semi-arid section, revealing the paleofire evolution patterns in
the semi-arid region was mainly driven by the biomass rather than the aridity degree found
in humid regions.
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INTRODUCTION

Fire is an important ecological factor that can indicate changes of climate, vegetation and human
activities. In recent years, with the frequent occurrence of extreme weather events, the incidence of
biomass burning has increased (Jolly et al., 2015). This has had significant impacts: ecological
damage, economic costs, and human casualties (Ashe et al., 2009; Goldammer et al., 2013), for
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example, the 2019–2020 Australian bushfire season (colloquially
known as the Black Summer) (Campbell et al., 2020;
Lindenmayer and Taylor, 2020). Therefore, it is of practical
significance to understand the processes controlling wildfires.
However, climate dynamics and vegetation variations operate at
relatively larger scales than fire processes (Macias Fauria et al.,
2011), which are considered to be the primary control factors of
the fire (Moritz et al., 2005). Hence, understanding past fire
dynamics and their relationship to environmental factors is a key
aspect of preserving and managing present-day ecosystem
functions and fire occurrence (Conedera et al., 2009).

An effective method to obtain paleofire data is from
sedimentary records (Miao et al., 2016b; Han et al., 2020),
using pyrogenic carbon as a proxy of paleofire, since this is
produced by the incomplete combustion of organic matter
during biomass burning or fossil fuel consumption (Goldberg,
1985). Microcharcoal is an indicator of pyrogenic carbon, and in
palynological studies it is also extracted during the pollen
extraction process. Microcharcoal can be characterized by its
jet-black, opaque, angular particles in samples; otherwise, the
clear or brown, amorphous, weakly -structured particles are
considered as vegetal matter (Patterson et al., 1987).

At present, the statistical analysis of microcharcoal is mainly
based on visual inspection, which is accurate in identifying the
microcharcoal characteristics but time-consuming: the manual
measurement of the size of each microcharcoal grain is not
conducive to improving work efficiency. In terms of our work
experience, it takes 2–8 h to count each sample depending on the
impurity content, for instance, this study (Weiyuan loess section)
includes 76 samples, it will take about 19–76 working days (8 h
per working day) to complete the statistics. Therefore, an
automatic approach would clearly be advantageous, by
increasing the speed at which samples could be analyzed and
allowing the analysis of larger numbers of samples (Rhodes,
1998). Automatic counting of microcharcoal is an area that
has long been proposed, following the studies of MacDonald
et al., (1991) and Horn et al., (1992). However, research in this
field is restricted by the development of computer performance
and microscopic imaging technology, and has only progressed
slowly. In 2004, ImageJ, an open-source, high-performance and
lightweight biological image processing software was proposed
(Abràmoff et al., 2004). ImageJ was used in microcharcoal
analysis for the first time in 2005 (Stevenson and Haberle,
2005), and the procedure has also been used by Hawthorne
and Mitchell (2016), but the method is only suitable for a
small sample amount (e.g., in a petri dish) and large
microcharcoal particle size (>125 μm), and the automation is
still inadequate. Another independent study on the automatic
analysis of microcharcoal (Thevenon and Anselmetti, 2007)
found a method that can be applied to a large number of
samples, however, due to the lack of accurate assessment, the
results cannot be used directly and still need manual verification.
Therefore, the method can only be regarded as computer-aided
analysis, rather than automatic analysis.

In this study, we firstly proposed a new automatic statistical
method for microcharcoal analysis, based on ImageJ software

(Abràmoff et al., 2004). We then applied the new method to the
Weiyuan loess section in the semi-arid area of northwest China,
to analyze environmental changes in this area since about 40 ka
BP. As part of the second-largest arid to semi-arid area in the
world, northwestern China is a unique location for studying fire
history, along with vegetation and aridity evolution (Miao et al.,
2016a); in addition, arid and semi-arid regions are also more
vulnerable to global climate change (Prospero and Lamb, 2003;
Cook et al., 2004; Sankaran et al., 2005). Therefore, studying the
past fire evolution in this region (Huang et al., 2006; Tan et al.,
2015; Han et al., 2020; Miao et al., 2020) is helpful to understand
the impacts of future climate changes on the incidence and
intensity of fire.

MATERIALS AND METHODS

Study Site
The Weiyuan section (Yang S et al., 2015) (104.25°E, 35.13°N) is
located in the west of the Loess Plateau, northwest China, at the
boundary of the monsoon zone and non-monsoon zone. This
region has a semi-arid and typical temperate continental climate,
with an annual average temperature of about 6.8°C, and annual
average precipitation of around 363 mm (Yang X et al., 2015;
Figure 1A).

The section is located on a fluvial terrace of the upper Weihe
River, and contains typical loess-paleosol sediment. The sampled
section thickness is 6.8 m, with a sampling interval of 5–10 cm.
The Weiyuan section can be divided into the following several
layers (Figure 1B) (Yang X et al., 2015): 1) 0–20 cm: cultivated
layer, disturbed by human planting activities; 2) 20–135 cm:
paleosol (S0), developed under a warm and wet climate during
the Holocene (11.7-0 ka BP), corresponding to marine isotope
stage 1 (MIS 1); 3) 135–555 cm: loess (L1-1), developed under a
cold and dry climate during the Last Glacial Maximum (26.5-
20 ka BP, MIS2); 4) 555–680 cm: loess (L1-2), a weak paleosol
developed during an interstadial of the Last Glacial Period (MIS 3,
57–32 ka BP), under a warmer and wetter climate. Two AMS 14C
dates have been obtained for the L1-1 and S0 units in the
Weiyuan section (Yang S et al., 2015) (Figure 1B).

Microcharcoal Extraction and Identification
The sediment samples of the Weiyuan section were extracted
following standard palynological methodology (Miao et al., 2017)
as follows. 1) One tablet of Lycopodium (each one containing
about 27, 600 Lycopodium spores) was initially added to each
weighted sample as a reference for the calculation of
concentration (Maher, 1981); 2) acid digestion with 10% HCl
removed carbonates; 3) acid digestion with 40% HF removed
silicates; 4) fine sieving (10 μmmesh) to enrich the microcharcoal
particles (as well as pollen grains); 5) microscope slides of each
sample were prepared for identification.

The microcharcoal concentration can be calculated according
to the following formula:

Charcoal concentrationx � Cx/Lx × 27600/Wx
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where: x is sample number; C is the identified number of
microcharcoals; L is the identified number of Lycopodium
spores; and W is the sample dry weight.

Image Processing and Statistics
To apply the image processing method, scanned RGB digital images
were acquired from the microslides by the Zeiss slide scanner Axio
Scan. Z1, a 10× magnification objective lens was used with a CCD
camera with an imaging accuracy of 0.44 μm/pixel. For a standard
slide of 26mm × 76mm in size, a 1.5 GB image file in Zeiss CZI
format was generated and converted in Zeiss Zen software to the
more common TIFF format for analysis in ImageJ. Note that
converting to TIFF will increase the size of the file to about 5GB,
which is very demanding for computer performance, therefore, the
minimum performance recommendations of computer processor
are 3 GHz of clock rate, eight cores, and 32 GB of RAM, moreover,
cropping the image into subsets for processing is also a remedy. an
example image, is shown in Figure 2A. The RGB color model is an
additive color model applied to display images in electronic systems,
based on human perception of colors. All other colors are then
defined as mixtures of the three additive primary colors, red, green,
and blue, in different proportions (Hirsch, 2004). In the commonly
adopted 8-bit storage format, its mathematical representation is:

Color � (R,G,B), R,G,B ∈ (0 − 255)
Here, the range 0–255 represents the resolution of typical 8-bit
binary storage (28 � 256), for instance, (0, 0, 0) represents pure
black and (255, 255, 255) represents pure white. Considering that
microcharcoal is mainly characterized by being black in color,
when image processing we convert RGB color to grayscale images
in ImageJ (Ferreira and Rasband, 2012), using the formula:

Grayscale � (R + G + B)/3

The converted grayscale image is shown in Figure 2B. The
automated method needs to distinguish both microcharcoal
and Lycopodium spores; however, testing showed the
microcharcoal particles were successfully separated from
microcharcoal-like particles, while no efficient method was
found to distinguish the Lycopodium spores from the
Lycopodium-like particles. Therefore, the statistics for the
Lycopodium spores were determined manually. Fortunately,
counting the Lycopodium spores is a relatively easy task,
because according to Wang et al., (2020), a minimum count of
300 Lycopodium spores will enable stable microcharcoal results.

The key to automatic analysis of microcharcoal samples is to
convert the human eye identification criteria described in natural
language into computer image processing criteria described in
mathematical language. First of all, the most intuitive criterion is
that the grayscale values of microcharcoal particles are low, and
we suggest this as the basic standard. Furthermore, as shown in
Figure 2B, the grayscale values of microcharcoal-like particles
are also low, and these are hard to distinguish based only on
the grayscale value. Further observations showed that the range
of grayscale values of microcharcoal particles is smaller than
that of the microcharcoal-like particles: this is because of the
grayscale color of microcharcoal particles is relatively consistent,
while that of microcharcoal-like particles may have some
variability. Therefore, we propose the median grayscale value
or the standard deviation of a single particle as a further
distinguishing criterion.

RESULTS

Image Interpretation by ImageJ
Microcharcoal image automatic recognition consists of two steps:
training a classification model and testing the classification model.

FIGURE 1 | Overview of the Weiyuan section. (A): Location of the Weiyuan section and other sections; (B): the stratigraphic column with the Accelerator Mass
Spectrometry (AMS) radiocarbon ages of the Weiyuan section (Yang S et al., 2015).
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To train the classification model, we compiled a training set from
sample Nos. 10, 20, 30, 40, 50, 60, and 70 to avoid individual
samples introducing errors in the imaging system. We manually

selected microcharcoal and microcharcoal-like particle samples
from the seven test sets and calculated their statistical
characteristics. Figure 3A shows histograms of the grayscale

FIGURE 3 | The distinction betweenmicrocharcoal andmicrocharcoal-like particles in a training set wasmanually selected from sample Nos. 10, 20, 30, 40, 50, 60,
and 70. (A): histograms of grayscale values of microcharcoal and microcharcoal-like pixels; (B): the frequency distributions of the grayscale values of microcharcoal and
microcharcoal-like pixels; (C): the distribution of median grayscale values of microcharcoal and microcharcoal-like particles; (D): the standard deviations of grayscale
values of microcharcoal and microcharcoal-like particles.

FIGURE 2 | Spectral and morphological characteristics of microcharcoal, microcharcoal-like, Lycopodium spores, and Lycopodium-like objects in a RGB color
model (A) and gray scale image (B). Lycopodium-like means that its spectral signature is similar to Lycopodiumwhen classified by computer, although they can be easily
distinguished manually.
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values of microcharcoal and microcharcoal-like pixels, and
Figure 3B shows the frequency distributions; the grayscale
value distributions of microcharcoal and microcharcoal-like
particles are not clearly distinguishable, making it is difficult to
simply set a threshold on a grayscale image and conclude that any
pixel value less than that is definitely microcharcoal. However, the
amount of microcharcoal is far greater than the amount of
microcharcoal-like material, which supports the opinion that
most of the black particles identified during pollen analysis
could be regarded as microcharcoal (Sun et al., 2000).
Therefore, further distinguishing strategies are needed. We
calculated the median and standard deviation of the grayscale
value of each selected particle (see Figures 3C,D); both achieve a
better differentiation than the grayscale value alone, with the
standard deviation performing better than the median.
Therefore, we decided to use the standard deviation as a further
distinction criterion.

Based on the above discussion, we propose the following
distinguishing procedure based on ImageJ software. 1)
Grayscale threshold: the image is converted from RGB to
grayscale, and pixels with grayscale values of 100 or less are
retained for the next step. According to the training set, the
grayscale values of 98.28% of microcharcoal pixels and 84.41% of
microcharcoal-like pixels meet this criterion. 2) Noise reduction:
the selected results are processed in ImageJ to remove small
patches and to fill holes. 3) Vector graph generation: raster images
of individual pixels are converted to vector images of individual

particles, using the ImageJ particle analysis tool. 4) Parameter
analysis: required spectral and shape parameters can be calculated
by ImageJ, such as median grayscale value, standard deviation of
grayscale value, length, width, area, perimeter, etc. 5) Standard
deviation threshold: objects with a grayscale standard deviation
greater than 26 were excluded, because they weremore likely to be
not microcharcoal. 6) Removal of particles smaller than 10
microns in length, following standard palynological practice
(Miao et al., 2017), because a 10 μm mesh is adopted for fine
sieving of samples to remove the impurities. In addition, particles
smaller than 10 microns are more difficult to identify, regardless
of whether using computers or human eyes.

Evaluation by Comparison With Manual
Analysis
Next, we manually tested the classification accuracy by selecting
test samples. To avoid choosing samples from the training data,
we selected test sets from sample Nos. 5, 15, 25, 35, 45, 55, 65, and
75 in a random position, each test sample size is approximately 1/
9 to the result sample size. The results of ImageJ automatic
analysis based on the above procedures were compared with the
results of manual statistical analysis by three people: Yaguo Zou,
Zisha Wang and Anxia Du (see Figure 4). The microcharcoal
identification experience of the three people is 2 years, 3 years and
1 year respectively. The identification was done in ImageJ based
on the cropped test sample from the scanned image under 400×

FIGURE 4 | Comparison of automatic (ImageJ) and manual statistical analysis. (A): the total number of counted particles. (B): the total area of counted particles.
(C): the rank-size distribution of counted particles; (D): the distributions of grayscale values of counted pixels; (E): the standard deviation of grayscale values of counted
particles.
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magnification (the original image is scanned by 10× objective
lens and CCD camera into an image with a resolution of 0.44 um/
pixel, and can be further enlarged in ImageJ, similar to the
function of the eyepiece), and the black, opaque, angular
particles (Patterson et al., 1987) were identified as
microcharcoal. Figure 4A shows the total number of counted
particles, and reveals that the automatic statistical results are close
to those of Yaguo Zou and Zisha Wang, but higher than those of
Anxia Du; however, the trends of all four sets of results are
consistent. It is interesting that anomalous values were produced
by human analysis, not by the machine analysis, for the reasons
explained below. Figure 4B shows the total area of counted
particles, and unlike the number of particles, this is consistent
across all four cases (3 humans, 1 machine). One obvious
possibility to explain the statistical difference appeared in
particle count but not in particle area, is that the smaller
particles were overlooked: as a result, the number of particles
recorded by Anxia Du was smaller but the total area was still
similar. This is confirmed in Figure 4C, where the rank-size
distributions of counted particles show that the four statistical
sequences are broadly consistent in the large size particles range,
but as the grain size gets smaller, the differences increase. This is
easy to understand because our statistical rule requires that
microcharcoal particles above 10 microns should be counted,
but the visual implementation of this threshold requires experience
– unless every particle is measured, which is time-consuming.
Overall, the grayscale value distributions of counted pixels

(Figure 4D) and the standard deviations of counted particles
(Figure 4E) show that the four sets of results for manual and
machine analysis are generally consistent with each other.

In conclusion, the results of the machine andmanual statistical
analysis achieve high levels of consistency in their distributions of
pixel grayscale values (Figure 4D), particle grayscale standard
deviations (Figure 4E), and particle rank-size distribution greater
than 20 microns (Figure 4C). The main divergence occurs at
around the 5–20 microns grain size (Figure 4C), because the
visual measurement is needed in the manual statistical analysis to
determine whether or not a microcharcoal particle is larger than
10 microns. Therefore, the results are consistent in the total area
counted (Figure 4B), but not in the number of particles counted
(Figure 4A), however, the trends are still consistent.

Statistical Results
The results of analyzed microcharcoal concentrations in the
Weiyuan section are shown in Figure 5. Note that we provide
the traditional particle concentration (Figure 5A), but for the
convenience of comparing image processing with the manual
statistics, the area concentration (Figure 5B) is also given. We
believe that the area concentration is more accurate than the
particle concentration in reflecting the amount of microcharcoal;
however, the high correlation coefficient (0.97) between the two
curves shows that the particle concentration and area
concentration are closely matched. In addition, the results
analyzed manually in Figure 4 are dotted on the curves in

FIGURE 5 | Comparison between the microcharcoal concentration in the Weiyuan section and other environmental indexes nearby. (A): particle concentration of
microcharcoal in Weiyuan (this study); (B): area concentration of microcharcoal in Weiyuan (this study); (C): pollen concentration in the Weiyuan section (Yang X et al.,
2015); (D): magnetic susceptibility (MS) in the Weiyuan section (Yang S et al., 2015); (E): median grain size (Md) in the Weiyuan section (Yang S et al., 2015); (F): 10Be
based rainfall in the Baoji section (Beck et al., 2018); (G): phytoliths based mean annual precipitation (MAP) in the Weinan section (Lu et al., 2007); (H–K): Total
organic carbon (Grant et al., 2019) (Grant et al.) content in Luochuan (H), Xifeng (I), Weinan (J), and Lantian (K) respectively (Lu et al., 2019). (L): summer insolation in
35°N (Laskar et al., 2004). The black dots in (A) and (B) are the results analyzedmanually by 3 people in Figure 4 as a reference for the accuracy of the automatic method;
however, we note that the test sample size in Figure 4 is only 1/9 to the result sample size in (A) and (B).
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Figures 5A,B as a reference for the accuracy of the automatic
method; however, we note that the test sample size in Figure 4 is
only 1/9 to the result sample size in Figure 5; Nevertheless, we
still find a good correlation between the manual and automatic
analysis methods.

As the trend shown in themicrocharcoal results, from the L1-2
layer (MIS 3) to the L1-1 layer (MIS2), along with the climate
changed from cool and wet to dry and cold in the Last Glacial
Period, it shows a low values state and a slowly decreasing trend in
microcharcoal content. The S0 layer (MIS 1, Holocene), deposited
during a warm and wet climate, shows three clear stages in its
microcharcoal content: first, a rapid increase during the early
Holocene, then a fluctuating state from ∼4 to 2 ka BP, and finally
an increase since 2 ka BP. This pattern indicates that fire events in
the region were weaker during the Last Glacial Period and
stronger during the Holocene, which is inconsistent with the
commonly recognized trends that fires occur more frequently in
glacial periods and less frequently in interglacial periods.

DISCUSSION

Comparison of Microcharcoal Statistical
Methods
As an important proxy reflecting the occurrence of fire events,
microcharcoal has a unique research value; however, manual
statistical analysis of microcharcoal contents is time-consuming,
which hinders the application and development of this method.
Based on previous research on the automatic analysis of
microcharcoal, this paper proposed and verifies a new
automatic statistical method, our method reduce the time to
count a sample from 2–8 h to 20–30 min, and there was no
reduction in accuracy compared with manual statistics, which is
more convenient and greatly improves the statistical efficiency of
microcharcoal.

Scientific statistical work needs comprehensive evaluation in
terms of both accuracy and efficiency. The automatic statistical
analysis of microcharcoal is a long-standing but rarely discussed
problem, first addressed by MacDonald et al., (1991) in their
study using a transmitted light microscope and an image analysis
system designed for optical densitometry; in their method,
microcharcoal was identified according to its optical density
(opacity). A more complete automatic statistical system was
proposed by Horn et al., (1992), based on statistical
characteristics such as grayscale and its standard deviation.
However, due to the limited computer performance and at
that time, these early explorations were not developed further,
and their methods were not widely adopted.

With the continuous development of computer technology,
and successive improvements in image processing software,
automatic pattern recognition has become widely used in
many fields: for example, ImageJ in biology, metallographic
analyzer in materials science, ENVI and Erdas in remote-
sensing. These image processing packages are also often used
by other disciplines, including in research on computer-aided
microcharcoal analysis (Stevenson and Haberle, 2005; Thevenon
and Anselmetti, 2007; Lu et al., 2009; Tan et al., 2014; Hawthorne

and Mitchell, 2016). However, many studies simply apply the
software directly, without discussing the software’s statistical
basis and without a thorough evaluation of its accuracy.

This study further analyzed the problem of microcharcoal
statistics from the perspective of methodology, yielding
preliminary results as described above. However, there are still
many deficiencies in this study: for example, we are not sure
whether the threshold chosen in this paper is applicable to other
sedimentary sections, because of their different sedimentary
environments and soil textures. In addition, the problem with
the automatic statistical analysis of Lycopodium spores has not
been satisfactorily resolved, although this may be addressed by
using the WEKA (Hall et al., 2009) expansion package in ImageJ,
which is an image classification algorithm based on training
samples and machine learning; however, this algorithm
requires high-performance computer, because the microscope
images are too large. Alternatively, more recognisable markers
may be used for instead of the Lycopodium spores, such as plastic
markers (Ogden and Gordon, 1986). In this sense, automated
statistical algorithms are evaluated not only for their accuracy, but
also for their achievement of the same accuracy but with the
consumption of fewer computational resources. Therefore, we
suggest strengthening research efforts in this field in the future,
not only the address the automatic statistical analysis of
microcharcoal and Lycopodium spores, but also to extend the
method to the analysis of all spores and pollen species
encountered in palynological studies.

Spatial Heterogeneity of Fire Event
Controlling Factors
In combustion theory, the fire triangle (Countryman, 1972) is a
simple model for understanding the three necessary ingredients
for ignition and combustion: heat, fuel, and an oxidizing agent
(usually oxygen). This is a microscopic model from a chemical
perspective, then Moritz et al., (2005) extended it to different
scales of time and space, including the large scale which
vegetation, climate, and ignition sources constitute the three
vertices of the triangle. Among them, vegetation conditions
and extreme weather (Miao et al., 2020) are considered to be
two basic factors to control the production of microcharcoal
(Herring, 1985; Clark, 1988; Whitlock and Larsen, 2002; Huang
et al., 2006; Adolf et al., 2018). More specifically, the solar
insolation drives the terrestrial temperature changes (Bond
et al., 1997; Chen et al., 1997; Petit et al., 1999; Sun et al.,
2012), and the moisture (precipitation) is coevolved with the
temperature (Miao et al., 2012), moreover, the burning of the
biomass is more easily in dry conditions (Huang et al., 2006;
Pechony and Shindell, 2010; Miao et al., 2019; Han et al., 2020).

Based on the above discussion, we selected the environmental
indexes related to fire activities for comparative analysis
(Figure 5): 1) the pollen concentration (Yang X et al., 2015;
Figure 5C) as a proxy for plant species richness; 2) the magnetic
susceptibility (Yang S et al., 2015; Figure 5D) as a proxy for East
Asian Summer Monsoon strength; 3) median grain size (Yang S
et al., 2015; Figure 5E) as a proxy for East Asian Winter
Monsoon; 4) the reconstructions of rainfall based on 10Be in
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the Baoji section (Beck et al., 2018; Figure 5F); 5) mean annual
precipitation based on phytoliths in the Weinan section (Lu et al.,
2007) (Figure 5G); 6) total organic carbon content in Luochuan
(Figure 5H), Xifeng (Figure 5I), Weinan (Figure 5J), and
Lantian (Figure 5K) respectively (Lu et al., 2019); 7) summer
insolation in 35°N (Laskar et al., 2004; Figure 5L).

Based on the information in Figure 5, we interpret the
paleofire characteristics in this section, since about 40 ka BP,
as follows.

Fire activity during the Last Glacial Period was significantly
reduced relative to that in the Holocene, which is contrary to the
usual view of wildfire being more prevalent in cold and dry
climates, leading to more microcharcoal in associated sediments
(Kaars et al., 2000; Luo et al., 2001; Wang et al., 2005; Wang
et al., 2012; Zhao et al., 2019; Xiao et al., 2020; Zhang et al.,
2020). We speculate that the reason for this difference is that the
above records are all from humid regions, while this study was
located in a semi-arid region. Here, although the climate of the
Last Glacial Period was dry and conducive to the occurrence of
fire, the vegetation coverage in Weiyuan was low, as supported
by palynological records (Yang X et al., 2015; Figure 5C), total
organic carbon content (Lu et al., 2019) (Figures 5H–K) and
model simulation (Liu et al., 2002; Ni et al., 2010). This would
have limited the development of wildfire. Paleofire studies in
other arid areas, for example, Sierra Leone in sub-Saharan
Africa, have found similar patterns (Bird and Cali, 1998).
However, long time-scale paleofire records in arid and semi-
arid areas remain sparse, and often show strong spatial
heterogeneity (Wang et al., 2005; Wang et al., 2012), so this
hypothesis needs to be verified by additional microcharcoal
studies in arid areas in the future.

The first significant increase of fire was from 12 ka BP to 5 ka
BP, this period can be further divided into two stages. At the
earlier stage, summer insolation was at a high level (Laskar et al.,
2004; Figure 5L), which is considered as a contributing factor to
the occurrence of wildfires (Whitlock et al., 2010), and it was
confirmed by sedimentary records (Millspaugh et al., 2000;
Brunelle and Whitlock, 2003; Whitlock et al., 2008; Gil-
Romera et al., 2014; Inoue et al., 2018) and simulation results
(Hély et al., 2010). At the later stage, summer insolation has
decreased, but the rainfall began to increase (Beck et al., 2018; Lu
et al., 2007; Figures 5F,G), which promoted plant growth (Yang
X et al., 2015; Lu et al., 2019; Figures 5C,H–K) and resulted in an
abundant fuel supply.

The second significant increase of fire, since 2 ka BP, is more
likely to be associated with human activity. Weiyuan section
is located near the center of early ancient China, and thus lies in a
region with strong ancient human activities (Dong et al., 2013; An
et al., 2017). Wang et al., (2003) suggest that human activity is the
strongest additional factor superimposed on the natural
background trend. With the development of human
productivity, anthropogenic influence on natural processes has
gradually strengthened: in areas where early human activity was
intense, the increase in microcharcoal over the last few thousand
years is often explained as a result of human use of fire, and this is
more evident in the Holocene microcharcoal record (Xue et al.,
2018).

CONCLUSION

(1) In this study, an automatic statistical method for
microcharcoal was proposed, based on ImageJ software.
The microcharcoal was identified using the pixel grayscale
value threshold and the particle grayscale standard deviation
threshold. Results from the statistical method were compared
with manual analysis to demonstrate the method’s statistical
effectiveness. This method is efficient and accurate, and
provide a powerful tool for microcharcoal analysis.

(2) We applied the new automatic statistical method to
reconstruct paleofire activity since ∼40 ka BP in the
Weiyuan loess section, which is located in semi-arid
northwest China. We compared this record with other
related records, and revealed the spatial heterogeneity of
factors controlling paleofire. We speculated that differences
in vegetation coverage caused fire events in arid and humid
areas to show opposing patterns. This is related to the
contrasting abundance of fuel in arid and humid areas, but
because of the lack of fire records in arid and semi-arid areas,
more research is needed on the paleofire evolution in this area
to verify this hypothesis.
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