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An approach for the systematic forecasting of earthquake magnitudes is considered. To
solve this problem, we use the minimum area of alarm method. Testing the approach for
Kamchatka and the Aegean Region shows a satisfactory quality of the forecast of
earthquakes and their magnitudes.
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1. INTRODUCTION

Field observations show that before a strong earthquake, anomalous phenomena are observed in a
number of natural processes: seismic regime, earth surface deformations, fluid chemistry,
groundwater level, seismic wave travel times, electric and geomagnetic fields, etc. Usually, these
precursors are detected locally near the source of a future earthquake (Mogi, 1979; Kanamori, 1981;
Sobolev, 1993; Sobolev and Ponomarev, 2003). At the same time, it is known that with an increase in
the energy of the expected earthquake, the epicenter distance to the area of the manifestation of
precursors increases and can be more than 1,000 km (Dobrovolsky et al., 1979; Guomin and
Zhaocheng, 1992). This introduces additional uncertainty in the estimation of the location of the
expected earthquake.

Many aspects of earthquake prediction have been studied, including rock failure and earthquake
precursor phenomena, mathematical models for earthquake prediction, machine learning methods,
and earthquake prediction testing algorithms (Sobolev, 1993; Kossobokov, 1997; Sobolev and
Ponomarev, 2003; Zavyalov, 2006; Rhoades, 2007; Marzocchi and Zechar, 2011; Amei et al.,
2012; Keilis-Borok and Soloviev, 2013; Rhoades, 2013; Shebalin et al., 2014). At the same time, a
number of works state that earthquakes cannot be predicted (Geller et al., 1997; Koronovsky and
Naimark, 2009; Gufeld et al., 2015).

An earthquake forecast is an estimate of the location, time, and magnitude of an earthquake.
Usually, forecasts involve estimating the spatial zone and the time interval in which an earthquake
with a magnitude above a certain threshold is expected. Such a spatio-temporal region is often called
an alarm zone, which is regularly built with a constant step in a systematic earthquake prediction.
The forecast is successful if the epicenter of the target earthquake falls into the alarm zone.

Here, we consider the issue of earthquake magnitude prediction. Most studies have addressed the
problem of predicting earthquake magnitudes for a limited area. A few successful studies are
presented in Panakkat and Adeli (2007), Adeli and Panakkat (2009), and Asim et al. (2017). The
authors solved the problem of predicting the maximummagnitude of a seismic event in a preselected
location. For example, in the first two studies, the maximum magnitude per month was predicted in
the Southern California region and in the 200 km zone surrounding San Francisco. The input data
were eight time series calculated from catalogs of earthquakes that occurred in the forecast area. For
training, neural network methods were used. Training was carried out for the interval 1950–1990,
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and the 1991–2005 interval was used for testing. In Alexandridis
et al. (2013), neural network methods were also used to estimate
inter-event times between significant seismic events. The
examples studied are from across California.

In our case, the forecast problem is solved not for the time
series geographically localized at one point but the area presented
by the spatio-temporal grid fields. The forecast for a particular
geographical object can be considered a special case. Here, it is
possible to use the time series of parameters tuned to the local
place of the forecast, such as foreshock precursors of earthquakes
(Boore, 2001), energy precursors (Wyss et al., 1990; Bufe and
Varnes, 1993; Vallianatos and Chatzopoulos, 2018), precursors
tuned to the frequency of strong earthquakes in a given area
(Kagan and Jackson, 1991), and others. In our case, the forecast is
not based on time series but on spatial and spatio-temporal grid
fields. Fields of forecast features and training parameters cannot
be configured to detect the process preceding a strong earthquake
in a single predetermined geographical object. They should be
universal for the entire area under analysis. Further, it is desirable
that the grid fields used for the forecast contain patterns of
anomalous behavior of seismic and geodynamic processes that
are characteristic of the analyzed region and preceded by strong
earthquakes.

We briefly consider the method of the minimum area of alarm
and two ways to apply it to predict earthquake magnitudes in
Section 2. In Section 3.1, we report the test results obtained to
predict earthquakes and their magnitudes for Kamchatka and the
Aegean Region. Testing was carried out on the GIS web-based
platform for earthquake prediction (https://distcomp.ru/geo/
prognosis/) and on the multifunctional web-GIS GeoTime 3
(http://geo.iitp.ru/GT3/).

2. METHODS

We have developed the method of the minimum area of alarm for
the systematic forecast of strong earthquakes with a magnitude
above a certain threshold (Gitis and Derendyaev, 2018; Gitis and
Derendyaev, 2019). The system of systematic earthquake
prediction regularly with a step Δt calculates the alarm zone,
in which the epicenter of the target earthquake is expected at the
interval Δt. A demo version of the system since 2018 is available at
https://distcomp.ru/geo/prognosis/.

We assume that strong earthquakes are preceded by anomalous
manifestations, which can be represented in the grid spatio-temporal
fields of features. Themethod of theminimum area of alarm trained
to calculate alarm zones based on retrospective observations
consisting of a) the spatio-temporal fields of features, and b) a
sample consisting of marked target anomalous objects and an
unmarked mixture of target and normal objects. Anomalous
objects here are vectors selected by the learning algorithm with
field values at grid nodes that precede the epicenters of target
earthquakes q � 1, . . . ,Q with magnitudes m≥M (earthquake
precursors). An unlabeled mixture of objects is represented by
vectors with field values at all other grid nodes. This formulation
in machine learning refers to one-class classification problems
(Bishop, 2006; Kotsiantis et al., 2007; Khan and Madden, 2009).

The fields Fi are set in a unified coordinate grid. The values of
the fields at the grid nodes n � 1, . . . ,N correspond to the vectors
of the I-dimensional feature f (n) ∈ RI. During training, the
spatio-temporal field Φ(Fi), called the alarm field, is calculated.
The values of the alarm field ϕ(n) ≥ ϕ0 allocate a spatio-temporal
region in it, called the alarm area. The temporal slice of the alarm
area at the time of the forecast t* is exactly the alarm zone in
which the appearance of the epicenter of the target earthquake is
predicted on the interval Δt.

During training, the algorithm detects target events. An event
is detected if its epicenter falls into the alarm area during the
training interval. A target earthquake is predicted at the step Δt if
its epicenter falls into the alarm zone. The larger the product
S(t*)Δt, the more successful the forecast. However, it is obvious
that the value of this spatio-temporal area should be reasonably
limited. The indicators of the forecast quality are the estimations
of the probability of a successful forecast of events (the forecast
probability) and the size of the alarm area in the training interval.
As a result of training, it is desirable to obtain a solution in which
the maximum number of successful forecasts of target events is
achieved for a given size of the alarm zone.

In a systematic forecast of earthquake magnitude, it is
necessary to indicate the area in which the target event is
expected and to evaluate its magnitude. We consider two ways
to complete each forecast step t*: 1) to predict an alarm zone S(t*)
and to evaluate the magnitudes of the expected earthquakes in
this zone; 2) to predict several alarm zones S(m, t*) in which
earthquakes with magnitudes in predetermined small intervals
are expected. Solving the problem in the first method requires
restoring the dependence of earthquake magnitudes on feature
fields. The indicators of the forecast quality here are the
probability of successful detection of target events, the size of
the alarm area in the training interval, and the RMS difference
between the forecasts and the actual values of the predicted target
events. The second method seems simpler; the accuracy of the
estimation of the target earthquake magnitudes is determined by
the given boundaries of the interval. Therefore, indicators of the
quality of the forecast are only the probability of the successful
detection of target events and the size of the alarm area in the
training interval.

The solution to the problem of earthquake prediction is
required for both approaches. Our method of the minimum
area of alarm is trained to detect abnormal target objects from
a sample consisting of labeled abnormal objects and a mixture
consisting of unlabeled abnormal and normal objects. The data
model contains two assumptions that allow us to introduce a
measure of the abnormality of the analyzed objects.

(1) Abnormality condition: in feature space, the target
earthquakes are preceded by vectors (earthquake
precursors) for which the values of some components (the
values of some feature fields) are unlikely and close to the
maximum (or minimum). To simplify the explanation, we
assume that the precursors refer only to the maximal values
of the fields of features.

(2) Monotonicity condition: feature space vectors that are
component-wise larger (or smaller) than the earthquake
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precursor vector can also be precursors of similar target
events.

For training, the earthquake prediction algorithm requires
determining the precursor for each target event. Let the event q be
preceded by a precursor f(q) ∈ RI . The precursor is associated
with a feature space area whose vectors are component-wise
greater than or equal to f(q), i.e., the area
O(q) � {f(n) ∈ RI : f (n)i ≥ f (q)i , i � 1, 2, . . . , I}. We call this area
the orthant O(q) with a vertex at f(q), and the vectors
f(n) ∈ O(q) are called the base vectors of the target event q.
According to the monotonicity condition, base vectors are also
precursors of events that are similar to the event q. In
geographical coordinates, each base vector forms a cylinder of
alarm with the radius R and the element T. The alarm cylinder of
the base vector f(n) has a circular base center at the grid node n
with coordinates (x(n), y(n), t(n)), a radius of the base R, and the
element [(x(n), y(n), t(n)), (x(n), y(n), t(n) + T)], where
t(n) ∈ [t0, t*] and t0 is the start time of training. An earthquake
can only be predicted if its epicenter falls into one of the alarm
cylinders. The union of alarm cylinders formed by the base
vectors of the orthant O(q) selects a set of grid nodes W(q),
∣
∣
∣
∣
∣
W(q)∣∣∣

∣
∣
� L(q). From this, it follows that an earthquake q with the

epicenter coordinates (x(q), y(q), t(q)) can be predicted only if the
cylinder with the center of the base (x(q), y(q), t(q)), a radius R,
and the element [(x(q), y(q), t(q) − T), (x(q), y(q), t(q))] contains at
least one base point. This cylinder is called a precursor cylinder.
The precursor of event q is the vector f(q) ∈ RI, which has the
minimum value of the alarm volume v(q) � L(q)/L among all
vectors corresponding to the grid nodes of the precursor cylinder,
where L is the number of all grid nodes of the spatio-temporal
region of analysis. The quantity v(q) (volume of the precursor)
defines the measure of abnormality for the precursor of event q.
In the study by Gitis et al. (2020b), the measure of the
abnormality for target events was determined by the likelihood
ratio estimate.

The forecast quality is determined by two indicators: 1) the
probability of prediction U, equal to the fraction of correctly
forecast target events Q* to all target Q events, U � Q*/Q, and 2)
the volume of alarm V, equal to the fraction of the number of grid
nodes of the alarm field L* with the values ϕ(n) ≥ ϕ to the number
of all grid nodes of the analyzed area L, V � L*/L. It can be seen
from the definition that the alarm volume V is equal to the
probability of the detection of target events by random areas
consisting of V � L*/L grid nodes.

In classification problems, the decision rule is found by
minimizing the function of losses from target detection errors
and false alarms. The training algorithm is optimal if it calculates
an alarm area with the volume V0, which, for any value V ≤V0,
provides the maximum value of U. In our case, this solution
requires large calculations because the sets of base vectors
associated with different precursors intersect. Therefore, we
consider solutions that are close to optimal.

The algorithm for constructing the forecast field is
nonparametric. It consists of two steps: (I) generating a
training sample set {f(q), v(q)} and (II) calculating the alarm
field Φ(Fi). Three versions of the learning algorithm are the

most significant. The first version requires the least amount
of computation and is selected for testing. The alarm field
in this version is determined by the sequence wherein the
values of alarm volumes of precursors increase:
v(1) ≤ v(2) ≤ . . . ≤ v(q) ≤ . . . ≤ v(Q). The second version of the
algorithm allows the alarm field to be optimized so that with
each increase in the probability of detecting U by 1/Q, the next
point f(q) is selected which provides the minimum increase in the
alarm volume. The third version of the algorithm allows the
forecast field to be optimized so that it detects the maximum
number of target events with an alarm volume that does not
exceed a given one.

Consider the first version of the algorithm.

(1) Generate a training sample set {f(q), v(q)}. Arrange the
precedents f(q), q � 1, . . . ,Q, in accordance with the
increase in the alarm volume of the target events
v(1) ≤ v(2) ≤ . . . ≤ v(q) ≤ . . . ≤ v(Q).

(2) Calculate the alarm field Φ(Fi).

a. Assign to the nodes of the grid of the alarm field Φ a value
of 1.

b. Replace the value of 1 of the field Φ with V(1) � v(1) in
the set W(1) of grid nodes corresponding to the base
points of the precedent f(1); replace the value of 1 with
V(2) � ∣

∣
∣
∣W(1)∪  W(2)∣∣∣

∣/L at the grid nodes related to the
base points of the precedent f(2); replace the value of 1
with V(3) � ∣

∣
∣
∣W(1)∪ W(2)∪ W(3)∣∣∣

∣/L at the grid nodes
related to the base points of the precedent f(3) and then
sequentially replace the values of 1 with the
corresponding values of the alarm volumes. The
resulting field Φ takes the values
V(1)≤V(2)≤ . . . ≤V(q)≤ . . . ≤V(Q) or 1. The
value V(1) refers to grid nodes from the set W(1),
V(2) refers to grid nodes from the set (W(2)∖W(1)),
V(3) refers to grid nodes from the set
(W(3)∖(W(1)∪ W(2))), etc.

The calculated field Φ(Fi) determines the values of the alarm
volumes for all alarm cylinders into which the target events fall.
The grid nodes of the alarm field with values less than or equal to
V0 define the alarm area.

3. TEST RESULTS

3.1. Methodology
Testing simulates the operation mode of the forecast. As in the
forecast, it is performed with a constant step Δt. The choice of the
area of analysis is crucial to testing. We thus selected the analysis
area in such a way that any circle with a radius of R � 100 km for
an interval of 10 years before the test contains more than 300
earthquake epicenters. This condition makes it possible to
distinguish a seismically active area of analysis in which the
grid fields of the density of the epicenter and the average
magnitude of earthquakes can be calculated with acceptable
smoothing parameters. Earthquake catalogs were not cleared
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of aftershocks. Earthquake prediction by the method of the
minimum area of alarm based on complete earthquake
catalogs and catalogs cleared of aftershocks is analyzed in Gitis
et al. (2020a). The formal rule defines an unambiguous choice of
the area of analysis, which allows us to compare the forecast
results obtained by different methods and for different fields of
features. In particular, we can compare the probabilities of
predicting target events U obtained when constructing the
alarm field using regular fields of features and a random field.
Since the probability of a random forecast is equal to the volume
of alarm, this action is equivalent to comparing U with the
corresponding volume of alarm V.

A comparison of the success of regular and random forecasts
cannot properly account for the heterogeneity of the spatial
distribution of seismicity in the field of analysis. If the area
where the target earthquakes occur is small, compared to the
analysis area, then a trivial solution is possible because for a large
area of analysis L, the announcement of a constant alarm in a
relatively small area can lead to a high probability of a forecast
with a small level of the alarm volume V. To avoid a trivial
solution, the probability of a regular forecast is compared to that
of a forecast based on stationary spatial data. The most common
method is to compare the number of predicted earthquakes
detected during a regular forecast with the number of events
expected in the same place in the spatio-temporal alarm zones,
which is estimated from a catalog of earthquakes with an interval
of 20–30 years before testing (Molchan, 1997; Kossobokov et al.,
1999).

The spatial heterogeneity of the seismic process can be
controlled not only by the epicenters of earthquakes in a
relatively short period but also by, for example, a spatial field
of seismic activity or a field of maximum magnitudes Mmax of
expected earthquakes (Bune and Gorshkov, 1980). Therefore, we
use a different method for assessing the quality of the analysis
area (Gitis and Derendyaev, 2018; Gitis and Derendyaev, 2019):
for the same volume of alarm, we compare the probabilities of
detecting target events obtained using the spatial field of the
earthquake epicenter density and the fields of features selected for
the regular forecast.

Our systematic earthquake prediction technology is universal
with respect to input data types. All data types, including point
fields, time series, and linear, polygonal, and raster fields, are
converted to grid spatial and spatio-temporal fields. This provides
versatility to the system for incoming data types. In this work,
only forecasting methods were tested. For this, we used the most
famous characteristics of earthquake catalogs:

• F1 is the 3D field of the density of earthquake epicenters.
• F2 is the 3D field of mean earthquake magnitudes.
• F3 is the 3D field of negative temporal anomalies of the

density of earthquake epicenters.
• F4 is the 3D field of positive temporal anomalies of the

density of earthquake epicenters.
• F5 is the 3D field of positive temporal anomalies of the mean

earthquake magnitude.
• F6 is the 2D field of the density of earthquake epicenters:

kernel smoothing with the parameter R � 50 km in the

interval from the beginning of the analysis to the start of
training.

• F7 is the 3D field of quantiles of the background density of
earthquake epicenters, calculated on the interval from the
beginning of the analysis to the start of training, which
corresponds to the density values of earthquake epicenters
at the current time.

The estimation of 3D fields of F1 and F2 is performed with the
method of local kernel regression. The kernel function for the nth
earthquake has the form Kn � [cosh2(rn/R)2cosh2(tn/T)]− 1,
where rn <Rε and tn <Tε are the distance and time interval
between the nth epicenter of the earthquake and the node of
the 3D grid of the field, ε � 2, R � 50 km and T � 100 days for F1,
and R � 100 km and T � 730 days for F2. The field F6 is calculated
with the kernel function Kn � [cosh2(rn/R)2]− 1. The parameters
for evaluating the fields, the radii R and the intervals T, were
chosen empirically, considering the step of the network of fields
and the approximate number of events in the evaluation window.
To calculate the fields of F3, F4, and F5, Student’s t-test statistic is
used, which is defined for each grid node as the ratio of the
difference in average values of the current interval T2 and
background interval T1 to the standard deviation of this
difference. Positive values of the t-statistic correspond to an
increase in the value on the test interval. The fields F3, F4, and
F5 are calculated with different time intervals: T1 � 3,500 days and
T2 � 200 days, T1 � 1,500 days and T2 � 1,500 days, T1 �
1,000 days and T2 � 1,000 days, T1 � 1,000 days and T2 � 500
days, and T1 � 500 days and T2 � 500 days. In addition, we
analyzed the fields that are the functions of the original feature
fields, such as F1 × F2, F2/F1, F2/F7, F1 × F7, F2 × F7, and others.

There were two objectives for the tests: to verify the possibility
of 1) predicting earthquake magnitudes using a linear
approximation of the dependence of earthquake magnitudes
on the fields of features in relatively large intervals of
magnitudes and 2) using the method of the minimum area of
alarm for the prediction of earthquakes in small magnitude
intervals.

3.2. Testing the Forecast of Earthquakes
and Their Magnitudes
Tests were performed in Kamchatka and the Aegean Region.

Initial data for Kamchatka contain the earthquake catalog of
Kamchatka Branch, Geophysical Survey, Russian Academy of
Sciences, for April 4, 1986–May 20, 2019, with the magnitudes
m≥ 3.5 and the depths of hypocenters H ≤ 160 km. The target
earthquake depths of hypocenters areH ≤ 60 km. The grid step is
Δx × Δy × Δt � 0.16+ × 0.09+ × 30 days. The training interval is
from January 1, 2000, to the next forecast after December 12,
2011, while the testing interval is December 12, 2011–May
20, 2019.

Initial data for the Aegean Region contain the earthquake
catalog of the International Seismological Center (2020) (accessed
June 11, 2020) for May 27, 1983–September 13, 2019, with the
magnitudes m≥ 2.7 and the depths of hypocenters H ≤ 160 km.
The target earthquake hypocenter depths are H ≤ 60 km. The
grid step is Δx × Δy × Δt � 0.11+ × 0.08+ × 40 days. The training
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interval is from November 16, 1991, to the next forecast after
December 12, 2011, while the testing interval is January 8,
2010–September 13, 2019.

The fields of features and the parameters of the algorithm were
selected when testing the forecast of earthquakes with the
magnitudes m≥ 6.0 (Kamchatka) and m≥ 5.9 (Aegean
Region). All further testing results for both regions were
obtained using these fields and parameters.

The fields of features F8 � F1/(F7 + 0.001) and F9 � F2 × F7
were selected for Kamchatka. Anomalous values of the F8 field
correspond to areas of the seismic process in which the density
values of earthquake epicenters are quite high but significantly
less than the average values of the density of epicenters in the
interval from the beginning of the analysis to the start of training.
Anomalous values of the F9 field correspond to areas of the
seismic process in which an increase in the density of earthquake
epicenters (compared to the interval from the beginning of
analysis to the start of training) occurs simultaneously with an
increase in the average magnitude of earthquakes. Adding fields
of features from the existing set does not provide a significant
improvement in the quality of the forecast. The parameters of the
learning algorithm are the radii of the forecast and precursor
cylinders R � 10 km and their elements T � 100 days.

The fields of features F8 � F1/(F7 + 0.001) and F10, negative
anomalies of Student’s t-test statistic with the intervals T1 �
1,000 days and T2 � 500 days, were selected for the Aegean
Region. The interpretation of the anomalous values of the field F8
is given above. The abnormal values of the F10 field correspond to

areas of the seismic process in which the average density of
earthquake epicenters for 500 days significantly decreases,
compared to the previous average value for 1,000 days.
Notably, adding other attribute fields to an existing set does
not significantly improve the forecast quality. The parameters of
the learning algorithm are the radius of the cylinder R � 7 km and
its element T � 202 days.

Alarm zone maps are computed at each test step. The number
of such maps for each of the selected regions is from 70 to 90.
Alarm maps for three regions can be seen on a demo site (https://
distcomp.ru/geo/prognosis/). The prediction accuracy for test
data is determined by the value of the alarm area V � 0.2. It
shows that in the interval from the beginning of training to the
moment of forecasting, on average, each alarm zone occupies 20%
of the analysis area.

Forecast maps for earthquakes with magnitudes m≥ 6.0 in
Kamchatka and m≥ 5.9 in the Aegean Region are shown in
Figure 1. The polygon and circles show the area of analysis
and the epicenters of the target earthquakes with magnitudes of
6.0–7.3 for Kamchatka and 5.9–6.6 for the Aegean Region. The
size of the circles increases with the strength of the earthquakes.
The shading intensity of earthquake epicenters decreases with an
increase in the alarm field with which the earthquake epicenter is
predicted: 1, 5, 10, 15, and 20%. The white color indicates that an
earthquake is predicted with an alarm volume of V ≥ 0.2. Such a
forecast is considered miscalculated.

Consider the results of testing the forecast of earthquakes in
large magnitude intervals. For Kamchatka, the intervals

FIGURE 1 | The maps of epicenters of the target earthquakes in the test sample color-coded with respect to the volume of alarm required for its successful
prediction: (A) 24 magnitude m≥6.0 earthquakes in Kamchatka and (B) 10 magnitude m≥5.9 earthquakes in the Aegean Region. The outline highlights areas of
analysis. The circles show the epicenters of the test earthquakes. The size of the circles increases with the magnitude of the earthquake. The intensity of the shading of
the epicenters decreases with an increase in the volume of alarm with which the epicenter is predicted: 1, 5, 10, 15, 20%. The white color indicates a forecast
skipping error.
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m ∈ [5.0, 5.4], m ∈ [5.5, 5.9], and m≥ 6.0 were selected (the
magnitudes of the test earthquakes are given to the nearest
tenth). For the Aegean Region, the intervals m ∈ [5.0, 5.3],
m ∈ [5.5, 5.8], and m≥ 5.9 were selected. For each interval, we

compare quality indicators calculated from the fields of features
used for the regular forecast and the field of the spatial density
earthquake epicenters F6. The earthquake forecast using regular
feature fields considers spatial and temporal properties of the

FIGURE 2 |Graphs of dependencies U(V): (A)–(C) are the plots ofU(V) for the Kamchatka magnitude intervalsm ∈ [5.0, 5.4],m ∈ [5.5, 5.9],m≥6.0; (D)–(F) are
the plots of U(V) for the Aegean Region magnitude intervals m ∈ [5.0, 5.3],m ∈ [5.5,5.8],m≥ 5.9; 1 labels the plots obtained for regular forecasting; 2 labels the plots
obtained using the spatial density field F6; dotted and dashed lines are associated with 99 and 95% confidence levels correspondingly.

TABLE 1 | Kamchatka: probabilities of forecasting the earthquakes in magnitude intervals m ∈ [5.0, 5.4], m ∈ [5.5,5.9], m≥6.0 (earthquake magnitudes are accurate
to tenths).

Magnitude interval and
number of events

Volume of alarm Fields F8 and F9 Fields F6

Number
of predicted events

Probability
of forecast

Number
of predicted events

Probability of
forecast

m ∈ [5.0,5.4], Q � 155 0.01 21 0.14 6 0.04
0.05 62 0.40 16 0.10
0.10 99 0.64 25 0.16
0.15 108 0.70 35 0.23
0.20 113 0.73 51 0.33

m ∈ [5.5,5.9], Q � 64 0.01 4 0.06 1 0.02
0.05 35 0.55 5 0.08
0.10 41 0.64 11 0.17
0.15 44 0.69 14 0.22
0.20 47 0.73 22 0.35

m≥6.0,Q � 24 0.01 7 0.29 1 0.04
0.05 14 0.58 2 0.08
0.10 20 0.83 3 0.13
0.15 20 0.83 3 0.13
0.20 22 0.92 8 0.33
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seismic process, while the one using the field F6 considers only the
former. The results of these tests are presented in graphs of the
dependenciesU(V) in Figure 2 and are summarized inTables 1, 2.

According toMolchan (2003) and Kossobokov (2006), we also
provide two lines: the dotted one corresponds to the confidence
levels of 95% and the dashed one corresponds to 99%. They are
used to denote “significant” and “very significant” deviation from
random guessing, denoted with a diagonal line.

Alarm zones in each region are limited to V0 � 0.2. The
probability of the forecast is estimated by the ratio of the
number of predicted events and the number of all events. It
can be seen that, in all cases, the probabilities of earthquake
prediction obtained using the feature fields selected for regular
forecasting are significantly higher than the probabilities obtained
using the spatial density field. This indicates that the forecast
results take into account both the spatial and temporal properties
of the seismic process.

The results of testing the forecast of earthquake magnitudes in
large intervals of magnitudes are presented in Tables 3, 4. For the
forecast, the dependence of the earthquake magnitudes on the
values of the feature fields is approximated by the linear function.
The forecast results are calculated only for those earthquakes
whose epicenters are in the alarm zone. It can be seen that in each
interval, the standard error of approximation of the dependence
of the earthquake magnitudes on the values of the feature fields
practically coincides with the standard deviation of the
magnitudes of the target earthquakes. There are two possible
reasons for the poor approximation: the magnitude of the

earthquake is independent of the values of the selected feature
fields or this dependence is non-linear.

Tables 5, 6 present the results of earthquake prediction in
small magnitude intervals. The following intervals of
magnitudes were chosen: for Kamchatka, the intervals are
m ∈ [5.1, 5.2], m ∈ [5.3, 5.4], m ∈ [5.5, 5.6], m ∈ [5.7, 5.9],
m ∈ [6.0, 6.1], and m≥ 6.2; for the Aegean Region, the
intervals are m ∈ [5.0, 5.1], m ∈ [5.2, 5.3], m ∈ [5.4, 5.5],
m ∈ [5.6, 5.8], and m≥ 5. For the alarm volume V0 � 0.2, the
probability of a successful forecast varies from 0.68 to 0.92 for
Kamchatka and from 0.62 to 0.80 for the Aegean Region. The
forecast of earthquakes in such small magnitude intervals is
almost equivalent to the forecast of their magnitudes. The
forecast can be represented by the maps of alarm zones, each of
which contains an epicenter of an earthquake with a
magnitude in the corresponding interval that is expected in
the interval Δt. It is possible to present the result of the forecast
in the form of a single map. To do this, it is necessary to
identify zones with the same values of the alarm volume V0 on
the maps related to each of the magnitude intervals. Using the
obtained alarm zones, it is possible to construct a single map
with the maximum magnitudes of the expected earthquake
epicenters.

The test results presented in Tables 1, 2, 5, 6 indicate that
the fields of features and parameters of our training algorithm,
selected for the forecast of strong earthquakes with magnitudes
m≥ 5.9, provide satisfactory learning results for the forecasts of
earthquakes with smaller magnitudes. For many regions, the

TABLE 2 | The Aegean Region: probabilities of forecasting the earthquakes in the magnitude intervals m ∈ [5.0, 5.3], m ∈ [5.4, 5.8], m≥5.9.

Magnitude interval and
number of events

Volume of alarm Fields F8 and F11 Fields F6

Number
of predicted events

Probability
of forecast

Number
of predicted events

Probability
of forecast

m ∈ [5.0,5.3], Q � 101 0.01 11 0.11 0 0.00
0.05 24 0.24 9 0.09
0.10 41 0.41 17 0.17
0.15 49 0.49 25 0.25
0.20 64 0.63 37 0.37

m ∈ [5.4,5.8], Q � 26 0.01 3 0.12 0 0.00
0.05 11 0.42 2 0.08
0.10 16 0.62 7 0.27
0.15 19 0.73 8 0.31
0.20 21 0.81 9 0.35

m≥5.9, Q � 10 0.01 0 0.00 0 0.00
0.05 3 0.30 0 0.00
0.10 5 0.50 2 0.20
0.15 7 0.70 2 0.20
0.20 8 0.80 2 0.20

TABLE 3 | Results of forecasting the earthquake magnitudes for Kamchatka.

Magnitude interval and
number of events

Mean values of
earthquake magnitudes

RMS of earthquake
magnitudes

RMS of discrepancies of
actual magnitudes with

forecasts

m ∈ [5.0,5.4], Q � 155 5.18 0.143 0.145
m ∈ [5.5,5.9], Q � 64 5.65 0.133 0.136
m≥6.0, Q � 24 6.29 0.321 0.325
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forecast of strong earthquakes is difficult because of the small
number of examples of such events in the training sample. We
tested the ability to use the method of the minimum area of
alarm to strong event forecast from a sample supplemented by
earthquakes with smaller magnitudes m≥ 5.0. For testing, we
used the same feature fields and forecast parameters as those in
previous experiments. The results are summarized in Tables 7,
8. It can be seen that for Kamchatka, the estimates of the
probability of forecasting earthquakes with magnitudes of
5.9–6.1 and 6.2–7.3 turned out to be 0.78 and 0.85. A
similar result was obtained for the Aegean Region: estimates
of the probability of detecting earthquakes with magnitudes of
5.8–6.0 and 6.1–6.6 turned out to be 0.86 and 0.83. This
indicates that when we learn to predict strong earthquakes,
we can introduce examples of earthquakes of lesser magnitudes into
the training set. During the training process, our algorithm
calculates the orthants for all precursors and, using the measure
of abnormality, selects precursors from them with the minimum
values of the alarm volume (or with the maximum values of the
likelihood ratio). The selected precursors provide a satisfactory
probability of predicting strong earthquakes. Tables 7, 8 show

that the results of the forecast of earthquakes with magnitudes of
5.0–5.8 are also mostly satisfactory.

4. DISCUSSION

Some disciplines study complex processes and their relationships
with simpler instrumentally measured properties. The purpose of
one of these tasks is to predict the critical states of the process by
the values of the properties. To do this, first, the connections of
the process with each property are investigated separately to
determine the values of the properties wherein the process does
not pass into critical states. For example, in medicine for healthy
people, the norms of indicators of functional diagnostics are
established. In earthquake prediction for each localized area, the
seismic regime parameters’ long-term average values are taken as
the norm. It can be assumed that the greater the deviation from
the norm, the greater or equal (but not less) the deviation of the
process from the normal state to the critical one, given that
everything else is equal. This means that the value of the deviation
from the norm is a monotonic non-decreasing function of the
feature values.

The formulation of the method of minimum area of alarm is
discussed as follows. Consider a set of objects. An object is
described by a set of properties denoted in numerical form (a
vector of features). The values of properties of the objects that are
close to the highest possible value have a low probability. Among
the set of objects, there are abnormal objects. They differ from
other objects so that the values of some of their properties are
close to the maximum possible value. Let there be a training
sample from anomalous objects (precedents). It seems natural to
classify an object as anomalous if its vector is greater or equal to
one of the vectors corresponding to a precedent. However, the
description of the object properties can be incomplete and some
precedents lack properties that are close to the maximum values.

TABLE 4 | Results of forecasting the earthquake magnitudes for the Aegean Region.

Magnitude interval and
number of events

Mean values of
earthquake magnitudes

RMS of earthquake
magnitudes

RMS of discrepancies of
actual magnitudes with

forecasts

m ∈ [5.0,5.3], Q � 101 5.10 0.108 0.112
m ∈ [5.4,5.8], Q � 26 5.52 0.148 0.159
m≥5.9, Q � 10 6.19 0.275 0.382

TABLE 5 | Kamchatka: probabilities of earthquake forecasts for the magnitude intervals m ∈ [5.1,5.2],m ∈ [5.3, 5.4],m ∈ [5.5, 5.6],m ∈ [5.7, 5.9],m ∈ [6.0, 6.1],m≥ 6.2.

Volume of
alarm

Magnitude intervals and number of events

m ∈ [5.1, 5.2] m ∈ [5.3,5.4] m ∈ [5.5, 5.6] m ∈ [5.7, 5.9] m ∈ [6.0, 6.1] m≥6.2

V Q � 61 Q � 56 Q � 35 Q � 22 Q � 11 Q � 13
0.01 0.16 0.11 0.03 0.01 0.36 0.15
0.05 0.41 0.29 0.54 0.27 0.45 0.54
0.10 0.64 0.63 0.54 0.64 0.82 0.54
0.15 0.74 0.63 0.66 0.77 0.82 0.75
0.20 0.77 0.68 0.71 0.82 0.82 0.92

TABLE 6 | The Aegean Region: probabilities of earthquake forecasts for the
magnitude intervals m ∈ [5.0, 5.1], m ∈ [5.2,5.3], m ∈ [5.4, 5.5],
m ∈ [5.5,5.8], m≥5.9.

Volume
of alarm

Magnitude intervals and number of events

m ∈ [5.0,5.1] m ∈ [5.2,5.3] m ∈ [5.4,5.5] m ∈ [5.6, 5.8] m≥5.9

V Q � 71 Q � 30 Q � 17 Q � 9 Q � 10
0.01 0.13 0.03 0.12 0.00 0.00
0.05 0.25 0.17 0.29 0.44 0.30
0.10 0.46 0.33 0.53 0.56 0.50
0.15 0.52 0.50 0.65 0.67 0.70
0.20 0.62 0.63 0.71 0.78 0.80
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For such precedents, the number of objects classified as
anomalous by them can be vast and the objects themselves are
very likely to be erroneously classified as abnormal. The task is to
allocate the largest number of precedents for a given number of
objects classified by them as anomalous.

The idea of the algorithm of the minimum area of alarm is
described as follows. In the first step, the algorithm builds for each
precedent a set of objects classified by it as abnormal. Next, for a
given number N*, the algorithm selects the maximal number of
the precedents for which the cardinality of the union of these sets

is equal to the predetermined number N*. The decision rule
classifies the objects using only the selected precedents. For other
precedents, we should look for new distinctive properties and add
them to the feature space. The algorithm is greatly simplified if it
selects not the maximal number of precedents but close to it.

Earthquake magnitude forecasts can be made in two ways:
first, by systematically calculating the alarm area of expected
earthquakes with an interval Δt and with magnitudes from a
sufficiently large interval, evaluating the dependence of
earthquake magnitudes on the values of the feature fields, and

TABLE 7 | Kamchatka: probabilities of earthquake forecasts for the magnitudes m≥5.0 and the volume of alarm V � 0.2.

Magnitude
of earthquakes m

Number of events Q Number of predicted events
Q*

Probability
of forecast U

5.0 38 28 0.74
5.1 30 24 0.80
5.2 31 23 0.74
5.3 29 18 0.62
5.4 27 19 0.70
5.5 20 17 0.85
5.6 15 10 0.67
5.7 12 9 0.75
5.8 10 8 0.80
5.9 7 4 0.78
6.0 6 5
6.1 5 5
6.2 4 3 0.85
6.3 1 1
6.4 3 3
6.5 1 1
6.6 1 1
6.7 2 1
6.8 — —

6.9 — —

7.0 — —

7.1 — —

7.2 — —

7.3 1 1

TABLE 8 | The Aegean Region: probabilities of earthquake forecasts for the magnitudes m≥ 5.0 and the volume of alarm V � 0.2.

Magnitude
of earthquakes m

Number of events Q Number of predicted events
Q*

Probability
of forecast U

5.0 49 31 0.63
5.1 22 14 0.64
5.2 16 12 0.75
5.3 14 8 0.57
5.4 14 9 0.64
5.5 3 3 0.89
5.6 4 4
5.7 2 1
5.8 3 3 0.86
5.9 2 3
6.0 1 0
6.1 2 2 0.83
6.2 — —

6.3 1 0
6.4 2 2
6.5 — —

6.6 1 1
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constructing amap of themagnitudes for expected earthquakes in
this area; second, by systematically calculating the alarm areas in
which earthquakes with magnitudes from predetermined small
intervals are expected. The second approach seems simpler. The
quality of the forecast is determined by the probabilities of
predicting the target events in the selected intervals and the
value of alarm. The accuracy of the magnitude assessment is
determined by the value of the earthquake magnitude interval.
The solution can be represented by maps of alarm zones for each
magnitude interval. Using these alarm zones, we can build a map
of the maximum magnitudes of expected earthquakes.

Figure 2 shows the U(V) curves that are mirrored version of
the error diagram along with the confidence levels of 95% and
99% of random guessing (Bradley, 1997; Molchan, 1997;
Kossobokov, 2006; Molchan and Romashkova, 2010). It is
possible to see that the method of the minimum area of alarm
could forecast earthquakes better than randomly guessing with
confidence level more than 99% and that the forecast based on the
spatial density on the lower alarm volume (less than 20%) shows
the worse result, at the level of confidence of 1%.

Our tests show that a linear approximation of the dependence
of earthquake magnitudes on the values of feature fields does not
provide satisfactory results. The use of the method of the
minimum area of alarm for predicting earthquakes belonging
to small intervals of magnitudes has been successful enough to
predict earthquake magnitudes.

When forecasting earthquakes with large magnitudes,
sometimes difficulties arise because of the small number of
target events that can be used for training. Testing shows that
the method of the minimum area of alarm provides a better result
of the forecast of strong earthquakes than the stationary forecast
for the case in which the training set of the target earthquakes
with large magnitudes is supplemented by earthquakes with
smaller magnitudes.

Testing of the application of the method of the minimum area of
alarm was carried out according to the fields F8, F9, and F10, which
were not used in our previous works (Gitis and Derendyaev, 2019;
Gitis et al., 2020a). These fields turned out to be more informative
than F1 − F7 fields. Fields F8 and F9 use the information of the field
F7 of quantiles of the background density of earthquake epicenters.
The quantile field was proposed by Vadim Saltykov and used for the

system of online monitoring of seismic activity (https://distcomp.ru/
geo/2, https://distcomp.ru/geo/3; Gitis et al., 2015). We assume that
anomalous values of F8 correspond to areas of the seismic process in
which the density values of earthquake epicenters are quite high but
significantly less than the average values of the density of epicenters
in the interval from the beginning of the analysis to the start of
training. Anomalous values of the F9 field correspond to areas of the
seismic process in which an increase in the density of earthquake
epicenters (compared with the interval from the beginning of
analysis to the start of training) occurs simultaneously with an
increase in the average magnitude of earthquakes. The F10 field
simulates the preparation process for a strong earthquake according
to the AUF model in Mjachkin et al. (1975). Anomalously high
values of theF10 field are confined to the regions inwhich, during the
preparation of a strong earthquake, the density of epicenters in the
interval of diffuse seismicity increases, and then, in the interval of
fracture formation, the density of epicenters decreases.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. These data can be found here: http://www.isc.ac.uk/
iscbulletin/search/ for Aegean Region Centre (2020) (accessed
June 11, 2020) and http://sdis.emsd.ru/info/earthquakes/
catalogue.php for Kamchatka.

AUTHOR CONTRIBUTIONS

VG and AD contributed to conception and design of the study.
AD wrote the software. VG and ADmade the analyses. VG wrote
the first draft of the manuscript. VG and AD reviewed and edited
the manuscript. All authors contributed to the manuscript
revision and read and approved the submitted version.

FUNDING

This research was funded by the Russian Foundation for Basic
Research (grant number 20-07-00445).

REFERENCES

Adeli, H., and Panakkat, A. (2009). A probabilistic neural network for earthquake
magnitude prediction. Neural Netw. 22, 1018–1024. doi:10.1016/j.neunet.2009.
05.003

Alexandridis, A., Chondrodima, E., Efthimiou, E., Papadakis, G., Vallianatos, F.,
and Triantis, D. (2013). Large earthquake occurrence estimation based on radial
basis function neural networks. IEEE Trans. Geosci. Rem. Sens. 52, 5443–5453.
doi:10.1109/TGRS.2013.2288979

Amei, A., Fu, W., and Ho, C.-H. (2012). Time series analysis for predicting the
occurrences of large scale earthquakes. Int. J. Appl. 2, 64, 2012 . Available at:
http://www.ijastnet.com/journal/index/313 or https://www.ijastnet.com/
journals/Vol_2_No_7_August_2012/8.pdf.

Asim, K. M., Martínez-Álvarez, F., Basit, A., and Iqbal, T. (2017). Earthquake
magnitude prediction in Hindukush region using machine learning techniques.
Nat. Hazards 85, 471–486. doi:10.1007/s11069-016-2579-3

Bishop, C. M. (2006). “Machine learning and pattern recognition,” in Information
science and statistics. Heidelberg: Springer.

Boore, D. M. (2001). Comparisons of ground motions from the 1999 chi-chi
earthquake with empirical predictions largely based on data from California.
Bull. Seismol. Soc. Am. 91, 1212–1217. 10.1785/0120000733

Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognit. 30, 1145–1159. doi:10.1016/
s0031-3203(96)00142-2

Bufe, C. G., and Varnes, D. J. (1993). Predictive modeling of the seismic cycle of the
greater san francisco bay region. J. Geophys. Res. 98, 9871–9883. doi:10.1029/
93jb00357

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 11 | Article 58531710

Gitis and Derendyaev The Method for Earthquake Magnitude Prediction

https://distcomp.ru/geo/2
https://distcomp.ru/geo/2
https://distcomp.ru/geo/3
http://www.isc.ac.uk/iscbulletin/search/
http://www.isc.ac.uk/iscbulletin/search/
http://sdis.emsd.ru/info/earthquakes/catalogue.php
http://sdis.emsd.ru/info/earthquakes/catalogue.php
https://doi.org/10.1016/j.neunet.2009.05.003
https://doi.org/10.1016/j.neunet.2009.05.003
https://doi.org/10.1109/TGRS.2013.2288979
http://www.ijastnet.com/journal/index/313
https://www.ijastnet.com/journals/Vol_2_No_7_August_2012/8.pdf
https://www.ijastnet.com/journals/Vol_2_No_7_August_2012/8.pdf
https://doi.org/10.1007/s11069-016-2579-3
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1785%2F0120000733
https://doi.org/10.1016/s0031-3203(96)00142-2
https://doi.org/10.1016/s0031-3203(96)00142-2
https://doi.org/10.1029/93jb00357
https://doi.org/10.1029/93jb00357
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Bune, V., and Gorshkov, G. (1980). Seismic zonation of USSR. Moscow, Russia:
Nauka, 307.

Dobrovolsky, I. P., Zubkov, S. I., and Miachkin, V. I. (1979). Estimation of the size
of earthquake preparation zones. Pure Appl. Geophys. 117, 1025–1044. doi:10.
1007/bf00876083

Geller, R. J., Jackson, D. D., Kagan, Y. Y., and Mulargia, F. (1997). Earthquakes
cannot be predicted. Science 275, 1616. doi:10.1126/science.275.5306.1616

Gitis, V. G., and Derendyaev, A. B. (2018). “Web-based gis platform for
automatic prediction of earthquakes,” in International conference on
computational science and its applications, Melbourne, United States,
July 2–5, 2018, 268–283.

Gitis, V. G., and Derendyaev, A. B. (2019). Machine learning methods for seismic
hazards forecast. Geosciences 9, 308. doi:10.3390/geosciences9070308

Gitis, V., Derendyaev, A., and Saltykov, V. (2015). “Gis platform for monitoring and
analysis of seismic activity fields (in Russian),” in Problems of complex geophysical
monitoring of the Russian far east. Proceedings of the fifth scientific and technical
conference, Petropavlovsk-Kamchatsky, October 1–7, 2017, Vol. 27, 47–50.

Gitis, V. G., Derendyaev, A. B., and Petrov, K. N. (2020a). Analysis of the impact of
removal of aftershocks from catalogs on the effectiveness of systematic
earthquake prediction. J. Commun. Technol. Electron. 65, 756–762. doi:10.
1134/s106422692006011x

Gitis, V. G., Derendyaev, A. B., and Petrov, K. N. (2020b). A method of abnormal
geological zone identification. Information processes 20, 79–94. Available at:
http://www.jip.ru/2020/79-94-2020.htm or http://www.jip.ru/2020/79-94-
2020.pdf.

Gufeld, I. L., Matveeva, M. I., and Novoselov, O. N. (2015). Why we cannot predict
strong earthquakes in the earth’s crust. Geodyn. Tectonophys. 2, 378–415. 10.
5800/GT-2011-2-4-0051

Guomin, Z., and Zhaocheng, Z. (1992). The study of multidisciplinary earthquake
prediction in China. J. Earthq. Prediction Res. 1, 71–85.

International Seismological Centre (2020). On-line Bulletin. Available at: http://
www.isc.ac.uk/iscbulletin/search/ (Accessed June 11, 2020).

Kagan, Y. Y., and Jackson, D. D. (1991). Long-term earthquake clustering.Geophys.
J. Int. 104, 117–134. doi:10.1111/j.1365-246x.1991.tb02498.x

Kanamori, H. (1981). “The nature of seismicity patterns before large earthquakes,”
in Earthquake prediction. Editors D. W. Simpson and P. G. Richards
(Washington, DC: American Geophysical Union), 1–19.

Keilis-Borok, V., and Soloviev, A. A. (2013). Nonlinear dynamics of the lithosphere
and earthquake prediction. Berlin, Germany: Springer.

Khan, S. S., and Madden, M. G. (2009). “A survey of recent trends in one class
classification,” in Irish conference on artificial intelligence and cognitive science.
New York, NY: Springer, 188–197.

Koronovsky, N. V., and Naimark, A. A. (2009). Earthquake prediction: is it a
practicable scientific perspective or a challenge to science? Moscow Univ. Geol.
Bull. 64, 10–20. doi:10.3103/s0145875209010025

Kossobokov, V. (1997). “User manual for m8,” in Algorithms for earthquake
statistics and prediction. Editor J. H. Healy, V. I. Keilis-Borok, andW. H. K. Lee,
Vol. 6, 167–222.

Kossobokov, V. G. (2006). Testing earthquake prediction methods: the west pacific
short-term forecast of earthquakes with magnitude mwhrv≥ 5.8.
Tectonophysics 413, 25–31. doi:10.1016/j.tecto.2005.10.006

Kossobokov, V. G., Romashkova, L. L., Keilis-Borok, V. I., and Healy, J. H. (1999).
Testing earthquake prediction algorithms: statistically significant advance
prediction of the largest earthquakes in the Circum-Pacific, 1992-1997.
Phys. Earth Planet. Inter. 111, 187–196. doi:10.1016/s0031-9201(98)00159-9

Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). “Supervised machine
learning: a review of classification techniques,” in Emerging artificial
intelligence applications in computer engineering. Amsterdam, Netherlands:
IOS Press, 160, 3–24.

Marzocchi, W., and Zechar, J. D. (2011). Earthquake forecasting and earthquake
prediction: different approaches for obtaining the best model. Seismol Res. Lett.
82, 442–448. doi:10.1785/gssrl.82.3.442

Mjachkin, V., Brace, W., Sobolev, G., and Dieterich, J. (1975). “Two models for
earthquake forerunners,” in Earthquake prediction and rock mechanics. New
York, NY: Springer, 169–181.

Mogi, K. (1979). Two kinds of seismic gaps. Pure Appl. Geophy. 117, 1172–1186.
doi:10.1007/bf00876213

Molchan, G., and Romashkova, L. (2010). Earthquake prediction analysis based on
empirical seismic rate: the M8 algorithm. Geophys. J. Int. 183, 1525–1537.
doi:10.1111/j.1365-246x.2010.04810.x

Molchan, G. (2003). “Earthquake prediction strategies: a theoretical analysis,” in
Nonlinear dynamics of the lithosphere and earthquake prediction. New York,
NY: Springer, 209–237.

Molchan, G. M. (1997). Earthquake prediction as a decision-making problem. Pure
Appl. Geophy. 149, 233–247. doi:10.1007/bf00945169

Panakkat, A., and Adeli, H. (2007). Neural network models for earthquake
magnitude prediction using multiple seismicity indicators. Int. J. Neural
Syst. 17, 13–33. doi:10.1142/s0129065707000890

Rhoades, D. A. (2007). Application of the eepas model to forecasting earthquakes
of moderate magnitude in southern California. Seismol Res. Lett. 78, 110–115.
doi:10.1785/gssrl.78.1.110

Rhoades, D. A. (2013). Mixture models for improved earthquake forecasting with
short-to-medium time horizons. Bull. Seismol. Soc. Am. 103, 2203–2215. doi:10.
1785/0120120233

Shebalin, P. N., Narteau, C., Zechar, J. D., andHolschneider, M. (2014). Combining
earthquake forecasts using differential probability gains. Earth Planets Space 66,
37. doi:10.1186/1880-5981-66-37

Sobolev, G., and Ponomarev, A. (2003). Earthquake physics and precursors.
Moscow, Russia: Nauka.

Sobolev, G. (1993). Fundamentals of earthquake prediction (in Russian). Moscow,
Russia: Nauka, 314.

Vallianatos, F., and Chatzopoulos, G. (2018). A complexity view into the physics of
the accelerating seismic release hypothesis: theoretical principles. Entropy 20,
754. doi:10.3390/e20100754

Wyss, M., Bodin, P., and Habermann, R. E. (1990). Seismic quiescence at parkfield:
an independent indication of an imminent earthquake. Nature 345, 426–428.
doi:10.1038/345426a0

Zavyalov, A. (2006). Intermediate term earthquake prediction. Moscow, Russia:
Nauka, 52, 641–646.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Gitis and Derendyaev. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 11 | Article 58531711

Gitis and Derendyaev The Method for Earthquake Magnitude Prediction

https://doi.org/10.1007/bf00876083
https://doi.org/10.1007/bf00876083
https://doi.org/10.1126/science.275.5306.1616
https://doi.org/10.3390/geosciences9070308
https://doi.org/10.1134/s106422692006011x
https://doi.org/10.1134/s106422692006011x
http://www.jip.ru/2020/79-94-2020.htm
http://www.jip.ru/2020/79-94-2020.pdf
http://www.jip.ru/2020/79-94-2020.pdf
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5800%2FGT-2011-2-4-0051
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5800%2FGT-2011-2-4-0051
http://www.isc.ac.uk/iscbulletin/search/
http://www.isc.ac.uk/iscbulletin/search/
https://doi.org/10.1111/j.1365-246x.1991.tb02498.x
https://doi.org/10.3103/s0145875209010025
https://doi.org/10.1016/j.tecto.2005.10.006
https://doi.org/10.1016/s0031-9201(98)00159-9
https://doi.org/10.1785/gssrl.82.3.442
https://doi.org/10.1007/bf00876213
https://doi.org/10.1111/j.1365-246x.2010.04810.x
https://doi.org/10.1007/bf00945169
https://doi.org/10.1142/s0129065707000890
https://doi.org/10.1785/gssrl.78.1.110
https://doi.org/10.1785/0120120233
https://doi.org/10.1785/0120120233
https://doi.org/10.1186/1880-5981-66-37
https://doi.org/10.3390/e20100754
https://doi.org/10.1038/345426a0
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles

	The Method of the Minimum Area of Alarm for Earthquake Magnitude Prediction
	1. Introduction
	2. Methods
	3. Test Results
	3.1. Methodology
	3.2. Testing the Forecast of Earthquakes and Their Magnitudes

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


