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Effective decision making for resource management is often supported by combining
predictive models with uncertainty analyses. This combination allows quantitative
assessment of management strategy effectiveness and risk. Typically, history
matching is undertaken to increase the reliability of model forecasts. However, the
question of whether the potential benefit of history matching will be realized, or outweigh
its cost, is seldom asked. History matching adds complexity to the modeling effort, as
information from historical system observations must be appropriately blended with the
prior characterization of the system. Consequently, the cost of history matching is often
significant. When it is not implemented appropriately, history matching can corrupt
model forecasts. Additionally, the available data may offer little decision-relevant
information, particularly where data and forecasts are of different types, or represent
very different stress regimes. In this paper, we present a decision support modeling
workflow where early quantification of model uncertainty guides ongoing model design
and deployment decisions. This includes providing justification for undertaking (or
forgoing) history matching, so that unnecessary modeling costs can be avoided and
model performance can be improved. The workflow is demonstrated using a regional-
scale modeling case study in the Wairarapa Valley (New Zealand), where assessments of
stream depletion and nitrate-nitrogen contamination risks are used to support water-use
and land-use management decisions. The probability of management success/failure is
assessed by comparing the proximity of model forecast probability distributions to
ecologically motivated decision thresholds. This study highlights several important
insights that can be gained by undertaking early uncertainty quantification, including:
i) validation of the prior numerical characterization of the system, in terms of its
consistency with historical observations; ii) validation of model design or indication of
areas of model shortcomings; iii) evaluation of the relative proximity of management
decision thresholds to forecast probability distributions, providing a justifiable basis for
stopping modeling.
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1. INTRODUCTION

Numerical models are routinely used to inform environmental
management decision making by exploring possible system
responses to proposed management strategies. Probabilistic
assessment of these system responses are a further
requirement of model-based decision support (e.g., Freeze
et al., 1990; Doherty and Simmons, 2013). This allows the
likelihood of any undesired impacts to be assessed alongside
relevant management decision thresholds which are defined on
the basis of ecological, economic and/or cultural objectives.

It is widely considered that history matching (also known as
“model calibration” or “data assimilation”) is a prerequisite for
such decision support model deployment (e.g., Barnett et al.,
2012). This follows the philosophy “How can a model be robust if
it isn’t calibrated?” This philosophy has its basis in the
expectation that history matching, which can be considered an
implementation of Bayes equation, will result in a reduction of
parameter and predictive uncertainty (often expressed in terms of
predictive variance; e.g., Moore and Doherty, 2005; Dausman
et al., 2010). However, the ability of the history matching process
to improve the reliability of parameter estimations, and to
appropriately reduce decision-relevant forecast uncertainty,
may be limited by a number of important factors.

First, the information content of observation datasets used for
history matching may be deficient for inferring values of
physically-based model parameters that represent spatially
distributed subsurface properties (e.g., Vasco et al., 1997;
Vasco et al., 1998; Clemo et al., 2003; Moore and Doherty,
2006), with subsequent implications for reducing forecast
uncertainty. This is particularly the case where there is
significant hydraulic property heterogeneity, which is typically
the major cause of predictive uncertainty in groundwater models.
Even where there is significant data available, a lack of forecast
relevant data may still inhibit efforts to reduce uncertainty
through history matching.

Second, a number of studies have shown that there is potential
for history matching to corrupt the quantification of predictive
uncertainty, when considering the inevitable presence of model
defects (e.g., Doherty and Christensen, 2011; Brynjarsdóttir and
O’Hagan, 2014; White et al., 2014; Oliver and Alfonzo, 2018). For
example, Knowling et al. (2019) show that there is potential to
induce bias and corruption in estimates of predictive variance, as
a consequence of inappropriate parameter compensation when
history matching “under-parameterized”models. Ultimately, this
can compromise the reliability of decisions made on the basis of
model forecasts. Additionally, Knowling et al. (2020) showed that
there is significant potential to induce predictive bias due to the
inability of an imperfect model to appropriately assimilate
information-rich data, such as environmental tracer
observations. Therefore, when faced with using a model with
prediction relevant imperfections, a modeler may wish to
critically consider whether history matching is appropriate.

History matching efforts can also place unexpected
requirements on labor and computational resources. This is
because balancing the expression of prior knowledge with

information contained within observation data, during history
matching, is not straightforward and is often undertaken in a
highly iterative process. This adds significant complexity to the
modeling workflow, and risk to project budgets and time-lines.
This is particularly the case for large-scale models of real-world
systems which are prone to numerical stability issues and long
simulation durations.

An additional consideration when examining the usefulness of
a history matching effort in a decision support context, is the
proximity of forecast probability distributions to predefined
management decision thresholds (e.g., Knowling et al., 2019;
White et al., 2020b). Evaluation of the relative positions of
forecast distributions and decision thresholds can be used to
provide a measure of apparent “decision difficulty” (e.g., White
et al., 2020b).Where, on the basis of the prior information alone, a
forecast probability distribution lies far from the critical threshold
(i.e decision difficulty trends to zero), a modeler may elect not to
progress with history matching, as it is unlikely to alter the
evaluation of management strategy effectiveness.

Finally, uncertainty quantification that underpins decision
support relies upon robust definition of the prior parameter
probability distributions that express system expert knowledge
(i.e., before history matching). Verification of robust prior
probability distributions is difficult, especially for complex
real-world numerical models, often requiring prohibitively
expensive paired model analyses (e.g., Doherty and
Christensen, 2011; Gosses and Wöhling, 2019). However, an
indication of an inappropriate expression of prior parameter
uncertainty, with the potential to undermine model-based
decision support, can be provided through comparison of
historical system observations with simulated outputs
generated on the basis of the prior parameter distributions, in
a “prior-data conflict assessment” (e.g., Nott et al., 2016).
Formally, prior-data conflict can be identified when there is
no overlap between an ensemble of observation data,
accounting for potential observation error, and the prior
ensemble of simulated outputs. This analysis can be
undertaken early in a modeling project, so that indications of
an inappropriate prior can be identified and addressed ahead of a
full comprehensive history matching process. We note that this
criterion alone is not sufficient to demonstrate that the initial
prior ensemble is valid, as model error may also be the cause of
such prior-data conflict, requiring additional statistical tests (e.g.,
Brynjarsdóttir and O’Hagan, 2014; Alfonzo and Oliver, 2019).

In this paper we explore the benefits of recasting the typical
modeling workflow, which starts with a conceptual system model
and ends with a calibrated numerical model (e.g., Barnett et al.,
2012), such that uncertainty quantification is undertaken at an
early stage in the project, before attempting comprehensive
history matching. The recast workflow involves exploration of
the prior decision-relevant forecast uncertainty relative to
decision thresholds, as well as prior distributions of model
outputs relative to system observations. The workflow then
involves undertaking an abridged history matching and a
preliminary posterior uncertainty assessment, to help identify
the extent to which available data informs estimated parameter
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values and model forecasts, and provide insights into the benefits,
or potential hazards, of continuing history matching.

This study is motivated by, and follows, the forecast focused
workflow promoted in Doherty (2015) and White (2017). It is
also consistent with the recommendations in Doherty and Moore
(2019), which suggest undertaking uncertainty quantification
early in the decision support modeling process, to identify the
extent that available historical observations can inform decision-
salient parameter values. Doherty and Moore (2019) outline how
this information can then be used to guide the modeling process,
from model conceptualization to deployment for decision
support. This study adopts this fundamental recommendation,
and explores the implications of doing so, for a real-world
case study.

The case study contributes to the small body of real-world
decision support worked examples that are currently
available in the international literature (e.g., Kunstmann
et al., 2002; Enzenhoefer et al., 2014; Sepúlveda and
Doherty, 2015; Brouwers et al., 2018; Sundell et al., 2019;
White et al., 2020a).

2. METHODOLOGY

This section describes the proposed workflow for the early
assessment of the uncertainty surrounding model predictions
that are of particular management interest (“decision-relevant”),

which are herein referred to as “forecasts”. Figure 1 provides a
flowchart outlining the major steps and decision points in the
workflow.

2.1. Problem Definition
“Problem definition” defines the decision context for
numerical modeling. It involves the definition of the
management problem and the undesirable outcome that the
management strategy is designed to prevent, e.g., land-use
consent restriction or regulation to prevent ecological
degradation of a stream system due to nutrient
contamination. This step also includes the specification of
forecasts that can be used to evaluate the efficacy of
management decisions, and the definition of decision
thresholds against which the success (or failure) of a
management strategy can be evaluated.

2.2. Model Definition
This step involves defining the pertinent processes and
components of the hydrogeological system that the forecasts
are likely to be sensitive to. On this basis, an initial numerical
model is constructed, ensuring sufficient complexity to
represent these aspects of the system (e.g., Hunt et al.,
2007). This step also includes formulation of the model
objective function, which involves collation and processing
of historical system observations and definition of a
weighting scheme. The weighting scheme ideally aims to

FIGURE 1 | Graphical presentation of the proposed decision support modeling workflow, which incorporates uncertainty quantification at an early stage before
undertaking more comprehensive history matching. The steps involved in the case study presented herein are highlighted with the green background.
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maximize the flow of information during the history matching
process, from observation data to model parameters, and
subsequently to model forecasts, while accounting for both
measurement and model error (Doherty and Welter, 2010;
Doherty, 2015).

2.3. Prior Uncertainty Quantification
“Prior uncertainty quantification” is underpinned by the
definition of uncertain model parameters and a formulation of
prior parameter uncertainty. Simulation of the model with
parameter realizations that reflect this prior parameter
uncertainty, allows an initial quantification of simulated
output and forecast uncertainty. As the relationship between
model parameters and simulated outputs can rarely be fully
known, a priori, it is advantageous to employ high parameter
dimensionality (e.g., Hunt et al., 2007; Fienen et al., 2010; Doherty
and Simmons, 2013; Knowling et al., 2019), in concert with a
conservative expression of parameter uncertainty, informed by
“expert knowledge” of the conceptualized system.

Comparison of simulated output distributions with
historically observed system behavior supports an early
assessment of the appropriateness of the prior parameter
probability distributions. The presence of prior-data conflict
may indicate underestimation of measurement error,
underestimation of parameter variances and/or insufficient
complexity in the numerical model and prior
parameterization. If the model and prior parameterization is
deemed to be sufficiently complex with respect to the
processes that the forecasts are sensitive to, prior-data conflict
may be resolved by inflation of parameter variances or
observation error, as appropriate. If however, the prior is
regarded to represent insufficient forecast relevant complexity,
the prior parameterization itself may also need to be revisited. For
example, model boundaries may need to be parameterized in a
different way, if the forecast is sensitive to these boundary
conditions. Or if the connectedness of high hydraulic
conductivity facies is relevant to the forecasts being made, a
parameter representation of these connected facies may need to
be adopted in place of, for example, a multi-variate Gaussian
parameter representation.

This part of the workflow also accommodates the situation
where there is found to be no forecast relevant data available. In
this situation the prior parameterization becomes more
important, as it is now the only source of information in the
model. In this situation a modeler is freed from all history
matching burdens, and may choose to adopt a very complex
model parameterization, to ensure a robust probability
distribution (Doherty and Moore, 2019).

If prior-data conflict is not present, the assessment of the
proximity of the prior forecast probability distributions to the
decision threshold may be sufficient for addressing the management
decision and the workflow can move to the “Stop modeling” option
(left-hand side of Figure 1). However, if reduction in forecast
uncertainty is desired to support the management decision, the
workflow moves toward a preliminary approximation of the
posterior uncertainty, as discussed in Section 2.4 below.

2.4. Preliminary Posterior Uncertainty
Quantification
The “Preliminary posterior uncertainty quantification” is
undertaken with a view to reducing forecast uncertainty
through a preliminary formal assimilation of observation data.
This step provides an opportunity to assess the ability of the
observation data to inform model parameters and forecasts; a
number of modeling workflow decisions may then be made on
the basis of this preliminary posterior uncertainty quantification.

If forecast uncertainty reduction through the preliminary
conditioning of influential parameters is sufficient for
addressing the management decision, the workflow can move
to “Stop modeling.” If the assimilation of data is deemed
beneficial for reducing forecast uncertainty, but further
uncertainty reduction is desired, then this preliminary
posterior uncertainty quantification provides justification for
continuing to assimilate observation data and deriving more
advanced posterior forecast distributions. If, however, the data
do not inform forecasts, after verifying that the model, its
parameterization, and its prior probability representation, is
sufficiently complex to adequately represent the forecast
uncertainty, the modeling workflow should move to “Stop
modeling.” If the level of forecast uncertainty is not
satisfactory for decision support purposes, then the workflow
can be re-initiated with options for recasting forecasts, model
design, parameterization, and collection or reprocessing of system
observations to improve the flow of information to model
parameters and forecasts. Alternatively, the decision maker can
choose to consider an alternative management scenario, on the
basis of this initial iteration through the workflow.

The workflow presented here is essentially agnostic with
respect to the methodologies adopted for the uncertainty
quantification, with the following proviso: that the uncertainty
quantification method must be computationally efficient, as its
purpose is to provide guidance on whether or not the investment
in a more completed and rigorous data assimilation effort is
necessary.

The model simulation and uncertainty quantification
methods adopted for this study are described in detail in the
following case study section (Section 3). The case study
addresses all major steps (boxes with green background) in
Figure 1, before shifting the “Stop modeling’ option (left-hand
side of Figure 1), based on the results. The alternative options
would be relevant for other case studies with differing forecast-
data relationships; examples of when these options may be
favorable are discussed.

3. CASE STUDY

A numerical modeling case study is used to demonstrate the
workflow outlined above. The case study, set within the
Ruam�ahanga catchment in the Wairarapa Valley, North
Island, New Zealand, involves simulation-based forecasting of
groundwater abstraction impacts on stream low flows and land-
use change impacts on groundwater nutrient concentrations.
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3.1. Problem Definition
3.1.1. Decision-Relevant Forecasts
The forecasts considered relate to water availability and water
quality issues which are of particular significance within the
Wairarapa Valley. Increased groundwater and surface water
abstraction in Wairarapa Valley are believed to have impacted
stream flows; ensuring stream flows are sufficient to meet
environmental and ecological criteria is therefore an important
management constraint, when setting groundwater allocation limits.
For the security of fish habitats critical criteria are the frequency and
persistence of days in which low streamflow (low-flow) conditions
exist. The specific streamflow reliability forecasts explored here are the
number of low-flow days within a 7-year time period (low-flow
frequency) and the maximum number of consecutive low-flow
days (low-flow persistence), at three sites (PVW, MS1, and MS2;
locations provided in Figure 2). A low-flow day is defined as a day
with simulated streamflow that is exceeded for 95% of the simulated
period (Q95), under natural conditions (i.e., when no abstraction from
either groundwater or surface water occurs).

Land-use practices can present freshwater contamination risks
and management strategies often aim to limit this contamination

potential. Of particular interest in theWairarapa Valley is nitrate-
nitrogen (hereafter referred to as nitrate) concentrations in
groundwater. The specific water quality forecast simulated in
this case study is mean nitrate concentration within defined
groundwater management zones (GMZs; as presented in Figure 2).

The case study considers the forecasts described above as absolute
quantities and also in a relative sense, as differences, relative to a
baseline scenario; e.g., percentage-changes in the simulated output
values in response to water-use- and land-use-change management
scenarios. The full list of the case study forecasts is presented inTable 1.

3.1.2. Management Scenarios
The scenarios explored constitute simplified examples of water-
and land-use management strategies employed in practice, e.g., to
satisfy water-supply needs or to reduce water contamination risk.
The streamflow reliability scenario reflects the estimated spatial
and temporal variation in water-use in the case study area which
reflects a mean (in-time) groundwater abstraction rate of
82,000 m3d−1. Changes in the frequency and persistence of
low-flow days are compared with a “naturalized” baseline
scenario with no abstraction.

FIGURE 2 | Decision-relevant forecast locations. Streamflow reliability forecasts are indicated by green dots. Groundwater management zones (GMZs) for mean
zonal nitrate concentration forecasts are delimited by colored polygons.
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The land-use scenario is combined with the abstraction
scenario and is represented with a spatially distributed nitrate
loading rate (Figure 3) reflecting a real-world nitrate loading
scenario. This nitrate loading rate is a reduction from the current
land-use baseline (Figure 4).

3.1.3. Decision Thresholds
The decision thresholds considered are listed in Table 1. For
streamflow reliability forecasts, the simulated groundwater
abstraction scenario should not increase the frequency or
persistence of low-flow days by greater than 10%. For water
quality forecasts, mean zonal nitrate concentrations should not
exceed 50% of the maximum acceptable value (MAV) for
nitrate-nitrogen in drinking water (5.65 mg L−1; Ministry of
Health 2018) and the management goal is that the land-use
scenario should result in a 10% decrease in the zonal mean
concentration.

3.2. Model Definition
3.2.1. System Conceptualization
The hydrogeological system in the Wairarapa Valley is
characterized by successions of unconsolidated, late
Quaternary and Holocene, alluvial sediments (Gyopari and
McAlister, 2010a; Gyopari and McAlister, 2010b). The general
hydraulic gradient results in groundwater flow from the north-
east to south-west. Interactions between aquifer units are
complicated by variable degrees of compaction, reworking and
faulting. Active fault systems that splay from the major
Wairarapa Fault, which bounds the western side of the valley,
are anticipated to compartmentalize the groundwater system and
potentially modify the interaction between groundwater and
surface water (Gyopari and McAlister, 2010a; Gyopari and
McAlister, 2010b); springs occur along the Masterton and
Carterton Fault features. Rainfall recharge within the valleys is
supplemented by significant river inflows, especially from the
Tararua Range to the west. Nitrate loading is mostly derived from

TABLE 1 | Decision-relevant forecasts. PVW, MS1 and MS2 relate to the streamflow reliability forecast sites in Figure 1. GMZs refers to groundwater management zones.

Forecast Code Detail Decision threshold

PVW MS1, MS2

Streamflow reliability
Low-flow frequency nday<Q95 Number of days below Q95 155 155

%Δnday<Q95 Percent change in number of days below Q95 10% 10%
Low-flow persistence nconsecday<Q95 Maximum number of consecutive days below Q95 85 20

%Δnconsecday<Q95 Percent change in maximum number of consecutive days below
Q95

10% 10%

Water quality
mean zonal concentration mean.conc Mean concentration in GMZs 5.65 mg L−1

%Δmean.conc Percent change in mean zonal concentration in GMZs 10%

FIGURE 3 | Land-use management scenario nitrate loading rate.
FIGURE 4 | Percentage change in nitrate loading rate from baseline.
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land-use within the plains, with low concentrations anticipated in
the inflowing rivers. The Wairarapa Valley is divided into two
distinct groundwater domains. Groundwater is discharged to
surface water before leaving the northern portion of the valley
(425 km2; Figure 2) via the Ruam�ahanga River.

3.2.2. Numerical Model Construction
To address the management challenges outlined above, a
regional-scale, integrated groundwater/surface-water flow and
nitrate transport model was developed. The flow and transport
processes were simulated using MODFLOW-NWT (Niswonger
et al., 2011) and MT3D-USGS (Bedekar et al., 2016), respectively.
The flow and transport simulations were undertaken on a regular
finite-difference grid, consisting of five layers, 127 rows and 125
columns at 250m spacing. Lateral model boundaries were defined
as no-flow. Flow and contaminant mass could enter the model via
recharge, streamflow and injection wells, and leave the model
through streamflow, well abstraction and first-order reactions
implemented using the MT3D-USGS reaction package (RCT).

Two simulation periods were considered, a “history matching
period” from 1992 to 2007, and a “prediction period” from 2007
to 2014. The history matching period was discretized into
771 weekly stress periods (with a constant time-step of 1.75
days), with varying hydrological stresses (e.g., recharge, well
pumping and stream inflows). The prediction period was
divided into 2,821 daily stress periods (with daily time-steps),
again with varied hydrological stresses.

Both periods consisted of a transient flow model simulation,
followed by a 20-years transport simulation with temporally
constant (though spatially variable) nitrate mass inputs. The
flow solution for the transport simulations were provided by
steady-state flow simulations using temporally averaged
hydrological stresses for each of the considered time periods.
The steady-state flow simulations were also used to provide initial
conditions for the respective transient flow simulations.

Additional relevant aspects of the model include:

• surface-water flow and contaminant routing, simulated
using the Streamflow-Routing (SFR) (Niswonger and
Prudic, 2005) and Stream-Flow Transport (SFT) packages
of MODFLOW-NWT and MT3D-USGS, respectively;

• potential fault-bound compartmentalization of the
groundwater system, simulated using the Horizontal Flow
Barrier package of MODFLOW-NWT (HFB6); and

• use of the total-variation-diminishing (TVD) solver scheme
MT3D-USGS to maximize model stability and to reduce
numerical dispersion. Note, the use of TVD restricts the
transport time step size to honor a Courant number of 1.

3.2.3. History Matching Dataset and Objective
Function Formulation
The history matching observations included nitrate
concentration measurements from groundwater and surface
water, groundwater elevation, in-stream flows and estimates of
groundwater to surface water exchanges for the history matching

time period. The data included transient time series records, of
varied lengths and sampling frequency, and more occasional
survey observations. The available observation dataset was
composed as follows (observation locations are provided in
Supplementary Figure SI 1.1):

• 35 groundwater level sites, including time series (of varied
lengths); providing a total of 20,702 observations. The 35
observation sites provided the definition of 35 observation
groups. Observations for these sites are provided in
Supplementary Section SI 4.1.1.

• 88 surface water gauging sites. Including, continuous, repeat
and spot gauging observations; providing a total of 4,385
streamflow observations. Surface water flow observations
were partitioned into 12 observation groups, 11 of which
relate to sites with 50 or more observations, and the
remaining group composed of sites with a low
observation count. Observations for these sites are also
provided in Supplementary Section SI 4.1.2.

• 23 simultaneous streamflow gaugings, providing a total of
26 surface water to groundwater exchange estimate
observations. These observations were assigned to a
single observation group.

• 203 groundwater quality monitoring sites, providing a total
of 203 mean nitrate concentration observations, assigned to
a single observation group.

• 14 surface water quality monitoring sites, providing a total
of 14 mean nitrate concentration observations, assigned to a
single observation group.

The model objective function was formulated as the sum of
weighted, squared residuals between simulated outputs and the
historical system observations. Initial observation weights were
defined to reflect the uncertainty in system measurements, as the
inverse of the estimated measurement standard deviation. For
water level observation the standard deviation was defined at
0.5 m; for streamflow observations the standard deviation was
20% of the observed value; for groundwater to surface water
exchange estimates, the standard deviation was 10% of the
observed value. For concentration observations, where values
for each location were averages of different lengths of
measurement record, the standard deviations where scaled to
account for the number of observation in the record (count). For
groundwater concentration the standard deviation used was
defined as the standard deviation of the values in the record,
multiplied by 100/count. For surface water concentrations the
standard deviation used was defined as 100/count multiplied by
the mean of the values in the record. The numerator scaling
attempts to account for the use of temporally sparse, point
concentration measurements, as average system observations.
The measurement uncertainties defined on the basis of these
standard deviation are illustrated in Supplementary Sections SI
4.1.1, 4.1.2, where red shading denotes three standard deviations
from observed values. For the objective function formulation, the
initial observations weights were re-balanced such that each
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group of observations contributed equally to the initial total
objective function (e.g., Doherty and Hunt, 2010).

3.3. Prior Uncertainty Quantification
3.3.1. Model Parameterization
A “highly parameterized” parameterization scheme was adopted,
as advocated by Hunt et al. (2007); Doherty and Hunt (2010).
Model input uncertainty was represented using probability
distributions for a total of 2,129 adjustable parameters, all of
which are expressed as multipliers on parameter values (e.g.,
McKenna et al., 2020). The uncertain model parameters
considered are as follows:

• horizontal and vertical hydraulic conductivity—520 pilot-
point and 82 zonal multipliers

• specific storage—260 pilot-point and 16 zonal multipliers
• specific yield—65 pilot-point and four zonal multipliers
• porosity—260 pilot-point and five layer-constant

multipliers
• denitrification rate—260 pilot-point and 15 zonal

multipliers
• groundwater recharge—one global multiplier; 65 pilot-point

multipliers; and 12 temporal, monthly multipliers
• nitrate loading rate—1 global multiplier and 65 pilot-point

multipliers
• stream-bed conductivity—115 spatial multipliers
• surface-water inflow—117 temporally constant multipliers
• surface-water inflow concentrations—230 spatial

multipliers
• groundwater abstraction—one global multiplier; 11

multipliers, by usage type; and 12 temporal, monthly
multipliers

• surface-water abstraction—two multipliers, by usage type

Initial model parameter values (to which multipliers were
applied) were informed by “expert knowledge” based on
hydrogeological assessments incorporating information from, for
example, bore logs, aquifer pumping test data and literature studies
(e.g., Gyopari andMcAlister, 2010a; Gyopari andMcAlister, 2010b).

More detail on the spatial and temporal distributions of
parameters and the initial native model parameter values is
provided in the Supplementary Section SI 3.

3.3.2. Parameter Uncertainty
Prior parameter uncertainty was specified through a block-
diagonal prior covariance matrix with prior covariances
informed by expert knowledge. Diagonal elements of the
prior covariance matrix represent expected individual
parameter variances; off-diagonal elements define the
correlations between parameters. For the spatially variable
parameter types (e.g., hydraulic conductivity, porosity,
recharge) the correlation between these parameters were
derived from geostatistical analysis of hydrogeolgical field
data (e.g., pumping test data; after Moore et al., 2017).
Geospatial correlation was defined by exponential variogram
with a sill proportional to the expected prior variance (with a

proportionality constant of 0.45), and range of 3,500 m. This
geospatial correlation estimation also supported the pilot-
point parameter interpolation (Doherty, 2003; Doherty
et al., 2011). Temporal and non-spatially distributed
parameters were defined as uncorrelated.

Two hundred prior realizations were drawn from the prior
parameter covariance matrix using a Monte-Carlo multi-
variate Gaussian sampling approach (e.g., Tarantola, 2005)
to produce the prior parameter ensemble. The statistics for
the prior parameter ensemble (in terms of parameters
groups) are provided in Supplementary Table SI 3.1
Grouped prior parameter PDFs are illustrated in
Supplementary Figure SI 3.8.

3.3.3. Propagation of Prior Uncertainty
Parameter uncertainty was propagated to simulated outputs and
forecasts through forward model runs using the 200 prior
parameter realizations in the prior parameter ensemble. An
assessment of the resultant prior simulated output uncertainty
distribution, relative to system observations, was undertaken for
the history matching period to identify potential model
deficiencies. Predictive period simulations using the same
parameter realizations provided forecast distributions which
were evaluated against management decision thresholds to
provide a prior probabilistic expression of management
scenario success or failure.

3.4. Preliminary Posterior Uncertainty Quantification
The preliminary approximation of the posterior forecast
uncertainty was derived after assimilation of state observations
using an abridged single-iteration history matching and a
preliminary approximation of the posterior parameter
uncertainty.

3.4.1. Abridged History Matching
History matching was undertaken with a single iteration of the
Gauss-Levenberg-Marquardt (GLM) algorithm, using PESTPP-
GLM (Welter et al., 2015). The single GLM parameter iteration
upgraded the initial parameter vector, effectively constituting and
update of the mean of the prior parameter distributions
(Supplementary Figure SI 3.8).

The use of a single iteration reduces the computational
resource burden compared to undertaking multiple iterations
but it is sufficient to provide a Jacobian matrix, which is required
to derive the preliminary posterior (see Section 3.4.2), and to
support an analysis of the relevance of the available data to the
forecasts. The abridged history matching required a total of 2,195
model forward simulations; 2,130 to populate the first-order
sensitivity (i.e., Jacobian) matrix, and 65 simulations to test
parameter upgrades (aimed at minimizing an objective
function). The Jacobian matrix was populated using 1% two-
point derivative increments on all parameters, except for surface-
water inflow parameters, which were necessarily offset by a value
of 100 and used a 0.01% derivative increment (e.g., Doherty,
2016).
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3.4.2. Preliminary Posterior Uncertainty Using
Linearized Bayes Equation
Using a linear form of Bayes equation, the posterior parameter
covariance matrix was approximated via the Schur
complement (e.g., Tarantola 2005; Doherty 2015). This
approach required: the prior parameter covariance matrix,
as introduced above; the Jacobian matrix; and the epistemic
noise covariance matrix, which was defined as diagonal with
elements specified on the basis of observation “weights.” To
account for the effect of model error in an approximate
manner, these observations weights were adjusted on the
basis of the model-to-measurement residuals after the
abridged history matching; weights were defined such that
observations within each group contributed equally to the
objective function and the total contribution from each
group was the same (e.g., Doherty, 2015). Note, this differs
from the weighting scheme employed for history matching.
More detail on the linearized Bayes equation and the Schur
complement method is provided in the Supplementary
Section SI 2.

3.4.3. Propagation of Preliminary Posterior Parameter
Uncertainty
As with the propagation of prior uncertainty, propagation of the
preliminary posterior parameter uncertainty to preliminary
posterior forecast uncertainty was achieved through predictive
period model forward simulations for each management scenario
using 200 parameter realizations, sampled from the preliminary
posterior parameter covariance matrix. Sampling was undertaken
using the samemulti-variate Gaussian Monte-Carlo method (e.g.,
Tarantola, 2005), outlined above (Section 3.3.2).

The effectiveness of the abridged history matching was
evaluated by comparing prior and preliminary posterior
parameter and simulated output distributions. The resulting
preliminary posterior forecast distributions were evaluated
against the defined management decision thresholds. On this
basis, the decision points in the workflowwere negotiated, leading
to a “Stop modeling” outcome.

4. RESULTS

Ongoing or iterative model design, history matching and
uncertainty quantification decisions are made on the basis
of the “Prior uncertainty quantification” and “Preliminary
posterior uncertainty quantification” steps of the workflow
depicted in Figure 1. These are decisions that can be informed
by an early uncertainty quantification, and therefore, the case
study results focus on these parts of the workflow, i.e., after the
modeling problem has been defined and a model has been
built. To simplify the presentation of the case study results,
and to facilitate comparisons, the prior and preliminary
posterior uncertainty quantification results figures have
been combined.

Note that the case study is used to illustrate the proposed
workflow, and the process of negotiating the decision points,
within the workflow. It is specifically used to evaluate and

demonstrate the insights gained through the steps that
constitute early uncertainty quantification (“Prior uncertainty
quantification” and “Preliminary posterior uncertainty
quantification”). The case study does not iterate through all
possible decision pathways of the workflow, but instead
demonstrates the workflow in general.

4.1. Prior Uncertainty Quantification
Recall, that purpose of this analysis is twofold. Firstly to check
that model outputs, simulated on the basis of the prior parameter
probability distributions, encompass the measured observations.
Secondly, to assess the proximity of model forecasts to decision
thresholds.

4.1.1. Comparison Between Simulated Outputs and
Historical Observations
Comparison plots of simulated outputs (both prior and
preliminary posterior) and system observations for the history
matching period are provided in the Supplementary Sections SI
4.1.1, 4.1.2. The prior simulated output distributions generally
encompass their associated observation values—i.e., gray bars in
Supplementary Section SI 4.1.1 span the diagonal one-to-one
line in the left-hand plot and the zero residual line in right-hand
plots; and prior realization outputs in Supplementary Section SI
4.1.2 (gray lines) generally overlap with observations, accounting
for observation uncertainty (red shaded areas).

This consistency between the observations and the system
conceptualization, as expressed through the numerical model and
its prior parameters, was particularly robust for those
observations that were of a similar nature and location to the
model forecasts. However, this fortunate outcome was not
absolute, as some prior-data conflict is evident in the results,
e.g., water-level observations for two closely located wells,
“s26_0298” and “s26_0308” (highlighted in Supplementary
Figure SI 1.1A, see associated plots in Supplementary
Sections SI 4.1.1, 4.1.2). Because these observations relate to
water levels at relatively distant locations from the streamflow
reliability forecast locations, this prior-data conflict is not
considered critical to the model forecasts.

Some streamflow observations also demonstrated a degree
of prior-data conflict, particularly when simulating short
duration, extreme events. For example, the simulated
outputs for “fo_s056,” which is close to the streamflow
reliability forecast location MS1, fail to reproduce the
magnitude of the extreme flow events, generally over
predicting high flows (Supplementary Sections SI 4.1.1,
4.1.2). However, the simulated outputs do reproduce the
lower flow conditions. This may relate to simplified
representation of quick-flow and runoff processes in the
numerical model, coupled with the seven-day stress period
duration in the history matching period simulation and the
relatively sparse temporal parametrization. As the forecasts
relate to stream low-flows, this prior-data conflict also not
considered critical.

With respect to the workflow schematic in Figure 1, the
prior uncertainty analysis indicates that there is no prior-data
conflict that is significant for the forecast, and therefore the
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FIGURE 5 | Percent change low-flow frequency (%nday<Q95) prior (grey) and posterior (blue) forecast PDFs at PWV (A), MS1 (B) andMS2 (C). Dashed black lines
represents the 10% change decision threshold. “nreal.” details the number of successful realizations (therefore the number of data points represented in the PDF) for prior
and posterior ensembles, respectively.
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decision was made to progress to assessing prior forecast
uncertainty and (if necessary) approximation of preliminary
posterior uncertainty quantification.

4.1.2. Prior Forecast Uncertainty
The prior forecast probability density functions (PDFs)
(presented in gray in Figures 5–9) provide the initial

indication of the magnitude of the uncertainty surrounding
model forecasts and the proximity of these forecast
distributions to the decision thresholds.

4.1.2.1. Streamflow reliability forecasts
The streamflow reliability forecasts relate to the frequency and
persistence of low-flow conditions at the three sites of interest

FIGURE 6 | PVW low-flow persistence (nconsecday<Q95; A and B) and percent change low-flow persistence (%nconsecday<Q95; C) prior (grey) and posterior
(blue) forecast PDFs. Dashed black lines represent the respective decision thresholds (85 days in A and B and 10% change in C). “NONE” represents the “naturalized”
baseline and “FULL” the abstraction scenario. “nreal.” details the number of successful realizations (therefore the number of data points represented in the PDF) for prior
and posterior ensembles, respectively.
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(PVW, MS1, and MS2; Figure 2), as well as the percentage changes
in these forecasts, associated with abstraction; see Table 1).

4.1.2.1.1. Low-Flow frequency forecasts. For simplicity, the
following presentation of the low-flow frequency forecast
results will focus on the percentage change forecast
(Figure 5) at each location. The full results for the low-flow
frequency forecasts are presented in the Supplementary
Section SI 6.

For this forecast the prior PDFs vary between sites. The
forecast uncertainty is highest at site PVW (Figure 5A). At
this site the prior forecast PDF extends (just) below the
decision threshold, indicating that there is potential (albeit
with low probability) for the abstraction to comply with the
management limit at this site. At MS1 and MS2 sites, the forecast
distributions are entirely above their respective decision
thresholds (Figures 5B,C), supporting the assumption of
certainty that abstraction will cause exceedance of the
management limit, i.e., abstraction is predicted to increase the
number of low-flow days by more than 10%.

On this basis, the results of the prior uncertainty quantification
are sufficient for supporting the management decision relating
to low-flow frequency objectives at sites MS1 and MS2.
Consequently, when considering these forecasts, the prior
uncertainty quantification provides justification for moving to
“Stop modeling” in the workflow. However, at site PVW the
results indicate that benefit may be gained by reducing forecast
uncertainty and the prior uncertainty quantification provides
justification for moving to “Preliminary posterior uncertainty
quantification.”

4.1.2.1.2. Low-Flow persistence forecasts. For the low-flow
persistence forecasts, the PDFs are multi-modal (Figures 6–8).
This is a consequence of their discontinuous nature, where, for
example, for any given realization, two consecutive periods
low-flow periods may, or may not, be bridged, and when
bridging occurs this results in one, significantly longer, low-
flow period. This multi-modal nature is most evident for the
PVW site (Figure 6) where the under naturalized conditions,
the prior forecast PDF spans 23–86 days, beyond the decision
threshold, with no single dominant mode apparent
(Figure 6A). Under the abstraction scenario, the forecast at
this site also indicates high uncertainty and spans the decision
threshold (Figure 6B). The prior forecast uncertainty is also
high for the percentage change forecast at PVW, extending
below the 10% decision threshold, to 0% change, thus
indicating the potential for abstraction to have little effect
on the persistence of low-flow conditions at this site. These
results suggest that the forecast is not sufficiently robust to
allow the workflow to progress to “Stop modeling,” indicating
the “Preliminary posterior uncertainty quantification” should
be undertaken.

For the MS1 and MS2 sites, the prior PDFs for the low-flow
persistence forecasts are similar (Figures 7, 8). Both sites
display a single dominant mode in the forecast PDFs, with
and without abstraction. For the baseline scenario, the prior
PDFs at both sites span the decision threshold (Figures 7A,

8A), this indicates that even under “natural” conditions the
number of consecutive low flow days may exceed 20 days. With
abstraction, the prior PDFs indicate certainty that this decision
threshold will be exceeded, i.e., the prior distributions are
wholly above the decision threshold (Figures 7B, 8B). On the
basis of these absolute forecast results, there would be
justification for moving to “Stop modeling” in the workflow.
However, for the percentage change forecast, the minimum of
the prior PDF at MS1 is at the decision threshold (Figure 7C),
while for MS2 it extends below the decision threshold
(Figure 8C); this suggests that for these normalized
difference forecasts, “Preliminary posterior uncertainty
quantification” should be undertaken.

4.1.2.2. Water Quality Forecasts
For the mean zonal concentration forecasts, prior forecast
PDFs demonstrate high variance and indicate a potential for
mean concentrations to exceed the 5.65 mg L−1 decision
threshold in all zones, under both the land-use
management scenario and baseline conditions (Figures
9A,B). The prior forecast distributions indicate significant
spatial variability in the predicted success of the management
strategy, with respect to the decision threshold of a desired
10% reduction in mean zonal concentration (Figure 9C). In
some zones (e.g., Te Ore Ore, Parkvale, Middle Ruam�ahanga,
Waiohine) the percent change forecasts indicate that there is
a possibility for management scenario success (forecast PDFs
at least span the decision threshold). However, for the other
zones these results indicate failure of the land-use
management scenario. Generally, for the water quality
forecasts, the prior uncertainty quantification indicates
that the workflow should move to “Preliminary posterior
uncertainty quantification.”

4.2. Preliminary Posterior Uncertainty
Quantification
The preliminary posterior uncertainty quantification was
undertaken after an abridged history matching and provides
approximate posterior parameter distributions which are
propagated to approximate posterior forecast distributions.

4.2.1. Parameter Uncertainty
To assist in the interpretation of the uncertainty surrounding the
2,129 model parameters they are grouped by type (Figure 10).
Prior parameter distributions (gray PDFs in Figure 10) reflect
sampled parameter covariances that are based on expert
knowledge alone. Posterior parameter distributions (blue
PDFs in Figure 10) reflect the approximated parameter
uncertainty after the abridged history matching. Together,
the distributions presented in Figure 10 provide an
indication of the level of parameter conditioning achieved
through the abridged history matching. The prior and
posterior distribution statistics for each parameter group are
provided in Supplementary Table SI 3.1.

While the grouping of parameters in Figure 10 and
Supplementary Table SI 3.1 can obscure visual identification
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of the extent of the conditioning of individual parameters within a
group, it is clear that the abridged historymatching has achieved only
minor reductions in the uncertainty of most parameters. Generally,
reductions in uncertainty are more notable for the lumped, global or
layer-wide, parameters, than for the spatially distributed parameters.
Illustrations of the spatial distribution of the variance reduction for
both zone and pilot point parameters are shown in Supplementary

Section SI 5. These plots also highlight that the abridged history
matching achieved only minor reduction in parameter uncertainty
over large areas of the numerical model spatial domain, coinciding
with areas lacking in observation data (Supplementary Figures SI
5.1-5.18). The streamflow reliability forecast locations are coincident
with areas where the reduction in parameter variance is minimal
(e.g., see Supplementary Figures SI 5.5-5.14).

FIGURE 7 | MS1 low-flow persistence (nconsecday<Q95; A and B) and percent change low-flow persistence (%nconsecday<Q95; C) prior (grey) and posterior
(blue) forecast PDFs. Dashed black lines represent the respective decision thresholds (20 days in A and B and 10% change in C). “NONE” represents the “naturalized”
baseline and “FULL” the abstraction scenario. “nreal.” details the number of successful realizations (therefore the number of data points represented in the PDF) for prior
and posterior ensembles, respectively.
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Collectively these results indicate that the conditioning ofmodel
parameters reflects significant parameter non-uniqueness, which is
as a combined result of data scarcity and the distributed
parameterization required to represent forecast relevant system

detail (e.g., Sanford, 2011; Erdal and Cirpka, 2016; Knowling and
Werner, 2016).

Despite the fact that variance reductions in the parameter PDFs
are very subtle, a number of parameter groups do show uncertainty
reduction. The most notable parameter variance reduction occurs
for the global nitrate surface-loading rate parameter (Figure 10H).
The apparent posterior uncertainty for this parameter is significantly
constrained, with the approximated posterior probability
distribution reducing from a range of 0.13–10 to a range of
0.45–1.57, with a variance reduction of 91%. This reflects the
highly aggregated nature of this parameter; it captures
information from all available nitrate concentration observations.

Only a few parameter groups show any evidence of first
moment changes after history matching, i.e., the mean of the
prior and posterior distributions are generally similar. Differences
between mean values of prior and posterior parameter distributions
indicate that either themean in the prior distribution is inadequately
defined, or alternatively, that there is a potential for bias due to
inadequate model or parameter complexity. The only parameter
group that shows a significant first moment response to data
assimilation is the layer-constant porosity group (Figure 10J)
which displays a first moment shift to higher values; the
distribution mean for this porosity multiplier group shifts from
1.01 to 1.17. Higher porosity values effectively reduce simulated flow
velocities, which in turn cause increased contaminant reaction
(denitrification, in this instance). This inference of higher
porosity results from the flow of information in the nitrate
concentration observations to groundwater and surface water
concentration simulated outputs which are the only simulated
outputs that are sensitive to groundwater flow velocities. Over
90% of the 203 groundwater concentration observations are
below 10mg L−1; prior simulated outputs corresponding to many
of these observations, however, spanned significantly higher values
(up to 80mg L−1; see Supplementary Section SI 4.1.1). So, while the
prior distribution of simulated nitrate concentrations span the
observed concentrations (i.e., there is no prior-data conflict), this
indicates that the prior distributions for nitrate-loading and layer-
based porosity parameters require some refinement.

4.2.2. Comparison of Simulated Outputs With
Historical Observations
We note that the prior and posterior simulated output
distributions in Supplementary Section SI 4.1.1 indicate
that, for these outputs at least, the prior distribution is
conservative relative to the posterior distribution, i.e., the
prior distributions (gray in Supplementary Sections SI
4.1.1, 4.1.2) fully encapsulate the posterior distributions
(blue in Supplementary Sections SI 4.1.1, 4.1.2).

However, after the preliminary posterior uncertainty
quantification some simulated output distributions no longer
overlap with observations (blue bars and lines in
Supplementary Section SI 4.1.1, 4.1.2). An example of this
behavior can be seen with the preliminary posterior simulated
outputs that relate to observations from well “s26_0656” (see
Supplementary Section SI 4.1.2). Discrepancy between posterior
simulated output distributions and observed system behavior may be
a manifestation of observation error, causing tension in the history

FIGURE 8 |MS2 low-flow persistence (nconsecday<Q95; A and B) and
percent change low-flow persistence (%nconsecday<Q95;C) prior (grey) and
posterior (blue) forecast PDFs. Dashed black lines represent the respective
decision thresholds (20 days in A and B and 10% change in C). “NONE”
represents the “naturalized” baseline and “FULL” the abstraction scenario.
“nreal.” details the number of successful realizations (therefore the number of
data points represented in the PDF) for prior and posterior ensembles,
respectively.
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FIGURE 9 |Water quality prior (grey) and posterior (blue) forecasts distributions for mean zonal concentration in GMZs (see Figure 2). The width of the distribution
indicates the distribution density. Box plots are also displayed to indicate the inter-quartile range (IQR, Q3-Q1, box), median (line in box), and 5th and 95th percentile
(whiskers) of the distributions. Red dashed lines represent decision threshold values; for absolute mean zonal concentration forecasts (mean.conc, A and B) this
threshold is 5.65mg l–1; for percentage-change forecasts (%mean.conc, C), the threshold is10% reduction in concentration.“no.real.” details the number of
realization completed—therefore the number represented in the PDF—for prior and posterior ensembles, respectively. In A and B, “n” represents the mean number of
active model cells in each zone, across all prior (black text) and posterior (blue text) realizations. “LOADCHANGE” represents the land-use management scenario explored
relative to the baseline (denoted as “BASELOAD”).

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 56561315

Hemmings et al. Early UQ for Decision Support

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


FIGURE 10 | Posterior parameter distributions (blue) plotted over prior parameter distribution (grey). The total number of parameters in the grouped distributions
are detailed in the individual plot titles. If distributions refer to the log10 transformed parameters values, this is also detailed in the individual plots. Plot of grouped prior
parameter distributions alone are presented in Supplementary Figure SI 3.8.
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matching, or it may be an indication of insufficient complexity in the
model parameter conceptualization, which inhibits simulation of
system behaviors that are captured by the data. Evaluation of the
source and implication of such results is important for assessing the
robustness of posterior model forecast distributions.

For the specific example of well “s26_0656” observations, the
preliminary posterior simulated outputs for the nearby
“s26_0155” well effectively capture the observed water levels.
Well “s26_0155” is in model layer 1, while “s26_0656” is in model
layer 4, and as such it is anticipated to be more important for
informing for the streamflow reliability forecasts. This supports
continuing to the assessment of preliminary posterior forecast
uncertainty. However, as the presence of such conflict could be an
indication of insufficient parameter complexity, this assessment
could provide justification for returning to the “Prior uncertainty
quantification” step in the workflow and potentially reassessing
discretization as well as parameterization, especially before any
further history matching is considered.

4.2.3. Preliminary Posterior Forecast Uncertainty
4.2.3.1. Streamflow Reliability Forecasts
4.2.3.1.1. Low-Flow Frequency Forecasts. The abridged history
matching, undertaken as part of the preliminary posterior
uncertainty quantification, has reduced the uncertainty of the
low-flow frequency percentage change forecasts, as
demonstrated by narrower posterior PDFs (blue) compared
to prior PDFs (gray) in Figure 5. However, the magnitude of
the forecast uncertainty reduction varies between sites. The
reduction in uncertainty is greatest at site PVW (Figure 5A)
and results in the posterior forecast PDF moving above the
decision threshold, indicating a certainty that the abstraction
scenario will exceed the decision threshold; such certainty was
not achievable based on the prior forecast PDF. At MS1 and
MS2, the reduction in forecast uncertainty is relatively low
(Figures 5B,C). However, as the prior forecast PDF is already
wholly above the decision threshold, this limited reduction in
uncertainty is of little consequence in the specific decision
support context considered here. On the basis of these results,
the workflow could move to “Stop modeling” after this
preliminary posterior uncertainty quantification.

4.2.3.1.2. Low-Flow Persistence Forecasts. For the low-flow
persistence forecasts, some apparent uncertainty reduction is
achieved by the abridged history matching. At PVW, the
reduction in forecast uncertainty moves the baseline scenario
forecast away from the decision threshold (Figure 6A). However,
for all other forecasts (at all sites), the abridged history matching
has had limited impact on the position of forecast distributions,
relative to their respective decision thresholds, and therefore
provides little additional benefit for decision support. For these
forecasts the observation dataset may be considered to be of little
benefit for reducing forecast uncertainty. In this case, continued
history matching would not be expected to sufficiently reduce
forecast uncertainty and the modeling process should move to
“Stop modeling.”

4.2.3.2. Water Quality Forecasts
The abridged history matching reduces the uncertainty for the
absolute mean zonal concentration forecasts, for all zones (blue
PDFs in Figures 9A,B). For the land-use management scenario
the variance reduction is such that only forecast outliers
(beyond the 95th percentile) extend beyond the decision
threshold (Figure 9B). For some zones the variance
reduction is such that the posterior PDFs move entirely
below the decision threshold (e.g., Te Ore Ore, Parkvale and
Mangatarere). While the preliminary posterior forecast PDFs
indicate low probability that the nitrate loading management
scenario will result in mean zonal concentrations above the
decision threshold of 5.65 mg L−1, they are not sufficiently
constrained through the abridged history matching to
provide apparent certainty. However, the reduction in
forecast uncertainty indicates that the observation dataset
contains information that is beneficial for this forecast and
the preliminary posterior uncertainty quantification provides
justification to “Continue history matching.”

For the percentage change forecast, there is relatively little
reduction in uncertainty as a result of the abridged history
matching (Figure 9C). Consequently, the variability of the
predicted outcome of the management strategy, between
zones, still persists. This result suggests that although the
absolute forecast is informed by the observation data, the
conditioning of parameters appears to have little influence on
the normalized change forecast. This indicates that if
uncertainty reduction for the percentage change in mean
zonal concentration forecast is desired, there would be little
benefit in continuing history matching with this combination of
numerical model and observation data.

5. DISCUSSION

The role of uncertainty quantification in modeling for decision
support is widely recognized in the literature (e.g., Freeze et al.,
1990; Gupta et al., 2006; Moore and Doherty, 2006; Vrugt, 2016;
Ferré, 2017). A requirement for the proposed decision support
workflow, is that the forecasts of interest, and the decision
thresholds associated with them, are defined at the outset, as
outlined by the “Problem definition” step in Figure 1. This
follows from a growing recognition that for decision support
applications, model design should be based on the pre-
definition of decision-relevant forecasts and the hypothesis to
be tested (e.g., Guthke, 2017; White, 2017; Doherty and Moore,
2019).

We extend this ‘start from the problem and work
backwards’ approach, to one that explicitly considers the
environmental threshold that a management decision is
seeking to avoid. In this context we demonstrate the
important insights provided by a workflow which
incorporates a preliminary assessment of forecast
uncertainty. This can then support a number of ongoing
modeling decisions, e.g.:
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• the potential to assess the ability of a model and its
associated prior parameter uncertainty to robustly
simulate historical system observations, particularly those
that are aligned with forecasts (i.e., to evaluate prior-data
conflict);

• an opportunity to revisit model design and parameterization
to allow simulated outputs to better reproduce system
observations that are pertinent to forecasts;

• an opportunity to assess the extent to which forecasts are
informed by observation data;

• an opportunity to process system observation data to
provide the most appropriate information to inform the
parameters that forecasts are sensitive to;

• provision of a defensible basis for undertaking (and
continuing or stopping) history matching; and

• potentially, an opportunity to forgo history matching
altogether, where it is not necessary to further support
the decision making process.

As a result of the benefits listed above, the proposed workflow
has the potential to reduce the time and effort required for
decision support model deployment. For example, the prior
uncertainty quantification and preliminary posterior
uncertainty quantification (if required) can be achieved at low
computational cost, relative to a more complete derivation of
posterior uncertainty after a more exhaustive history matching
effort. In the case study example, further history matching
iterations would require 2,195 model runs per iteration, this
equates to a computational cost of around 300 CPU days per
iteration.

It should be noted however, that the history matching
method used here follows a traditional approach,
employing finite-difference gradients. Alternative
approaches exist that support efficient data assimilation
and uncertainty quantification with relativity few model
forward simulations; for example, using ensemble based
approximations (e.g., Chen and Oliver, 2013; White, 2018).
Nevertheless, such approaches still require additional model
forward simulations to approximate and propagate posterior
parameter uncertainty. As the general workflow presented in
Figure 1 is agnostic of the specific uncertainty quantification
methods employed, it still provides the potential for time and
effort savings potential as well as protection (and potential for
mitigation) against model failure induced by inappropriate
history matching.

5.1. Assumption of a Conservative Prior
The proposed workflow is underpinned by the assumption
that prior parameter distributions, and therefore prior
forecast distributions, are “conservative.” In this context,
a conservative prior means that a forecast distribution will
tend to inflate the inherent uncertainty in the modeled
system behavior. This follows the need to avoid
uncertainty variance under-estimation in modeling for
decision support (e.g., Doherty and Simmons, 2013).
Unfortunately, verification of whether the prior is
sufficiently conservative is challenging, requiring, for

example, paired model analysis, whereby prior forecast
distributions are compared for pairs of models of differing
complexity in order to highlight and expose predictive bias or
variance corruption induced through model simplification
(e.g., Doherty and Christensen, 2011; Gosses and Wöhling,
2019). In real-world decision support applications,
undertaking such an analysis is rarely considered due to
time and resource limitations, and the uncommon
availability of multiple models of varying complexity.

Notwithstanding the challenges associated with formulating
and verifying a conservative prior, a number of strategies to
circumvent the effects of a non-conservative prior have been
postulated in previous studies. These include: adopting high
parameter dimensionality (e.g., Hunt et al., 2007; Knowling
et al., 2019), with parameterization expressing system
uncertainty at different spatial and temporal scales (e.g.,
White et al., 2020a; McKenna et al., 2020), and processing
or transforming simulated outputs to minimize uncertainty,
and thereby also the effects of an inadequate prior (e.g.,
Sepúlveda and Doherty, 2015; Knowling et al., 2019).
Deploying such strategies is an important component of
“Model definition” and prior formulation in “Prior
uncertainty quantification” in the proposed workflow.
Accordingly, in the case study presented herein, a highly
parameterized scheme was adopted (e.g., Hunt et al., 2007),
incorporating a combination of pilot points and zone- and
layer-based parameters, with expert knowledge-based
parameter variance and correlation; this aligns with an
“intermediate” parameterization scheme in Knowling et al.
(2019) which was found to be relatively robust for making
predictions related to the depletion of low streamflows in
response to groundwater pumping. We also considered
“differenced” forecasts (e.g., percentage-change forecasts) in
an effort to reduce possible ill-effects due the potential presence
of large-scale boundary condition errors (e.g., Doherty and
Welter, 2010; Sepúlveda and Doherty, 2015).

5.2. Insights and Advantages of Prior
Uncertainty Quantification
The “Prior uncertainty quantification” step in the proposed
workflow provides insights into the appropriateness of the
conservative prior assumption, through comparison of the
prior uncertainty surrounding simulated outputs with
observations of system behavior (e.g., assessing the presence of
prior-data conflict). Through this process the prior uncertainty
quantification can also reveal errors in observation data at an
early point in the workflow, before effort is wasted trying tomatch
model outputs to errant data. Under the assumption that the
observation errors are minimal, and are appropriately
represented by the observation weights and the epistemic
noise covariance matrix (see Section 3.4.2), the presence of
prior-data conflict between simulated outputs and system
observations may be an indication of potential inadequacy in
the specified prior parameter uncertainty and/or in the way that
the forecast relevant aspects of the system are parameterized (e.g.,
Nott et al., 2016). Where conflicts exist for data that are closely

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 56561318

Hemmings et al. Early UQ for Decision Support

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


related, in type and/or location, to the decision-relevant forecast,
this inadequacy has the potential to propagate to the expression of
forecast uncertainty—with the associated risk of incurring
“model failure” (Doherty and Simmons, 2013).

In the presented case study example, the “Prior uncertainty
quantification” step does indicate instances of prior-data conflict,
for example, for some water level and high streamflow
observations, as highlighted in Section 4.1. For the specific
forecasts in the case study, the conflicts were not considered
critical; i.e., the location and/or nature of the conflict between
simulated outputs and system observations was not expected to
impact on the reliability of the forecasts.

However, where model inadequacy, highlighted through the
assessment of prior-data conflict, is deemed to risk the reliability
of forecasts, additional work can be undertaken to improve the
model parameter representation of forecast relevant aspects of the
system and/or formulation of the prior parameter probabilities.
The appropriate remedy depends on an assessment of the
sufficiency of the model, its parameters, and of the expression
of the prior parameter uncertainty, to adequately represent the
system processes that are pertinent to the forecasts. If the
parameter representation of the modeled system is deemed to
be sufficiently complex to support full expression of the processes
and process uncertainty that forecasts are sensitive to, the prior-
data conflict indicates underestimated prior parameter variances.
This can be remedied by revisiting the “Prior uncertainty
quantification” step and inflating parameter variances. If
however, the prior-data conflict is deemed to be due to an
inadequate parameterization of specific processes, essentially
creating a type of model structural defect, then the workflow
should also return to the “Prior uncertainty quantification” step
to revisit the parameterization scheme itself, as well as its
probability distribution. In some cases, it will be the model
definition itself that needs to be revisited, if the
parameterization of a simulated process is not the issue, but
rather the complete omission of the process. Iteration through
these steps may be required. Importantly, undertaking this prior
uncertainty quantification provides the necessary insights for
identifying and rectifying model and parameter inadequacies
at early stage in the workflow, before significant damage is
done to the decision making process.

Once the model and prior parameter distribution is
considered to adequately represent forecast relevant system
processes, the prior uncertainty quantification also provides
an opportunity to forgo a formal history matching effort. In
the case study presented here, an example of this justification
for forging history matching, is provided by the low-flow
frequency forecast at MS1 and MS2 (Figures 5B,C). For this
example, the prior forecast PDFs are wholly above the 10%
decision threshold indicating that breaching of the
management limit is almost certain to occur. In this case,
and under the important assumption that the prior forecast
uncertainty is conservative, the management decision could
be made from a prior stance, with very low apparent risk of an
incorrect assessment; efforts to reduce the uncertainty of the
prediction through data assimilation would be unnecessary,
as this would not change the evaluation of decision threshold

exceedance, and the workflow can proceed to “Stop
modeling.”

Unfortunately, however, the capability of prior uncertainty
quantification to provide a sufficient basis for a particular
decision support context, is expected to be highly case specific.
It is likely to depend on, for example, the inherent subjective
definition of the decision threshold, the system parameterization
and how the uncertainty of these parameters is defined (especially
in regional-scale numerical models where parameters are
abstractions of true natural system properties; Watson et al.,
2013), as well as the risk tolerance of the decision-maker.
Where the prior quantification of forecast uncertainty fails to
provide sufficient certainty to support decisionmaking (and prior-
data conflict issues are minimal) the modeler may choose to
undertake history matching with the aim of reducing model
forecast uncertainty (e.g., the low-flow frequency forecast at
PVW and the mean zonal concentration forecasts in the case
study). In this instance the results of prior uncertainty
quantification provides justification for moving to the
“Preliminary posterior uncertainty quantification” step of the
workflow.

5.3. Undertaking Approximate Preliminary
Posterior Uncertainty Quantification
If history matching is considered necessary, approximation of the
preliminary posterior uncertainty surrounding simulated outputs
and forecasts at an early stage of the process provides another
opportunity to assess the relationship between the model, its
parameters, observation data, and ultimately, forecasts.
Specifically, this early approximation of the posterior can
provide insights into the ability of the observation data to
sufficiently and appropriately inform model parameters that
forecasts are sensitive to. Additionally, the resulting forecast
uncertainty may be such that the preliminary posterior
uncertainty quantification is sufficient for decision support
model deployment.

For example, from the presented case study, the prior
distribution of the low-flow frequency forecast at PVW
extends just below the 10% decision threshold (Figure 6A).
Consequently, for a decision maker with low risk tolerance
(i.e., they desire low probability that the critical condition will
not be violated), the prior uncertainty quantification does not
provide sufficient support for the specific management decision.
However, for this forecast, conditioning of parameters through
the abridged history matching in the “Preliminary posterior
uncertainty quantification” step was effective at achieving a
sufficient reduction in forecast variance to support an
assessment of management scenario outcome, with relative
certainty; i.e., after the abridged history matching, the
posterior forecast distribution was entirely above the decision
threshold (Figure 6A). For this example, further history
matching is not required, as no further uncertainty reduction
is necessary to support management decision making. The
modeling workflow could move to “Stop modeling.”

As with the “Prior uncertainty quantification” step of the
workflow, the potential to move to “Stop modeling” after
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“Preliminary posterior uncertainty quantification” is also likely to
be highly case specific. For example, for the absolute mean zonal
concentration forecasts in this case study (Figure 9), the
uncertainty remaining after abridged history matching, is still
too high to provide certainty that the tested management
scenarios will not result in conditions that exceed the decision
threshold. However, in this instance the prior uncertainty
quantification and subsequent preliminary approximation of
the posterior uncertainty was still beneficial. It provided; i) an
early indication of the ability of the model and prior
parameterization to reproduce system observations that are
pertinent to the forecasts; ii) an indication of the ability for
system observations to inform model parameters to promote a
sufficient reduction in forecast uncertainty; and, iii) indication of
the likely implications of continuing history matching in an
attempt to further reduce forecast uncertainty.

For the water quality forecasts in the case study, the data that
were most directly relevant for the forecasts were measurements
of groundwater nitrate concentration. While these observations
are generally encapsulated by the prior simulated output
distributions, and although some protection against the ill-
effects associated with history matching may have been be
gained by employing relatively high parameter dimensionality
at multiple-scales, together with the spatially aggregated (mean)
nature of the forecasts (e.g., Doherty and Christensen, 2011;
White et al., 2014; McKenna et al., 2020), the simulated
output distributions associated with the approximated
posterior no longer reproduce higher concentration
observations (see Supplementary Section 4.1.1). This indicates
that the model parameterization and its prior probability
distribution may not be sufficiently complex, and potentially
may even require a refinement of the model discretization,
which for the purposes of the workflow, can be considered
part of a parameterization scheme. While further history
matching iterations may result in the necessary variance
reduction to provide the apparent certainty desired for the
water quality forecasts, given the current model
parameterization, the efforts to assimilate system data may
induce bias in simulated outputs; therefore, further history
matching (i.e., moving to the “Continue history matching”
step) risks model failure (e.g., Doherty and Simmons, 2013).

6. CONCLUDING REMARKS

This study demonstrates the critical role of uncertainty quantification
in model-based decision support. The quantification of uncertainty
of simulated decision-relevant forecasts underpins the assessment of
risks associated with management scenarios. Our case study
demonstrates that the suggested workflow, which includes
undertaking uncertainty quantification before comprehensive
history matching efforts, brings significant advantages.

Quantification of model forecast uncertainty on the basis of
prior parameter uncertainty is generally straightforward and
relatively computationally efficient. It may be sufficient for

informing an evaluation of the efficacy of a management
strategy without the need for history matching. Depending on
the proximity and considered robustness of the prior forecast
probability distribution with respect to the decision threshold, it
may be possible to conclude a modeling project this stage.

Prior uncertainty quantification also provides an opportunity
to assess the validity of prior parameter distributions, through
comparison of historical observations with prior simulated
output distributions. Where prior-data conflict exists for
forecast relevant observations, a modeler has the opportunity
to revisit the model conceptualization and specification, including
reformulation of prior parameter uncertainty, before embarking
on history matching with a potentially flawed conceptualization.

Using a computationally efficient, albeit approximate, method
for quantifying preliminary posterior uncertainty provides a
defensible basis for undertaking further history matching.
Importantly, this insight can be provided at an early stage of
the modeling workflow.

Additionally, undertaking uncertainty quantification early in
the modeling workflow can provide important insights into how
the information in observation data flows to model parameters
and forecasts. These insights can guide further model design and
parameterization efforts, objective function formulation and
observation processing, if deemed necessary, for example, on
the basis of prior-data conflict.

We recommend adjusting the traditional modeling workflow,
so that decision support modeling projects can benefit from the
insights and potentially significant cost savings afforded by this
early uncertainty quantification approach.

In summary, the approach provides:

• an early indication of the capacity of the numerical model
and the chosen parameterization to numerically represent
the decision-relevant forecasts, and therefore support
decision making;

• an indication of the ability of observations to inform model
parameters that the decision-relevant forecasts are sensitive
to, and the opportunity to rectify incompatibilities between
the model (parameters or structural design), observations
and forecasts;

• the potential that the forecast uncertainty is sufficiently
constrained to support a management decision or assess
management strategy effectiveness without requiring
history matching; and

• a quantitative and defensible basis for undertaking (and
stopping) history matching for the purpose of reducing
forecast uncertainty, with respect to management decision
thresholds.
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