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Asynchronous hydroclimatic modeling is proposed for the construction of physically based
streamflow projections over regions characterized by meteorological observation scarcity.
The novel approach circumvents the requirement for meteorological observations by 1)
calibrating quantile mapping transfer functions simultaneously to the parameters of the
hydrologic model, 2) forcing the hydrologic model with post-processed climate
simulations, and 3) intentionally ignoring the correlation between simulated streamflow
values and observations. As a result, relative humidity, solar radiation and wind speed are
integrated to a full hydroclimatic modeling chain, allowing the construction of streamflow
projections forcing the Penman-Montheith reference evapotranspiration formulation over a
forested catchment that flows into the St-Lawrence River, Canada. Results confirm amore
accurate simulated hydrological response relative to a conventional hydroclimatic
modeling chain employing reanalyses as description of the climate system. They also
highlight the contribution to uncertainty in streamflow projections from biased climate
variables issued by the reanalyses. The suggested framework assumes the hydrologic
regime as a functional proxy to corresponding climate drivers. We believe the latter opens
promising perspectives in the scope of producing more reliable estimations of water-
related and energy-driven processes such as streamflow generation, snow accumulation
and melt, river ice jams, water temperature, or vegetation growth under evolving climate
conditions.
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INTRODUCTION

The analysis of climate change impacts on water resources commonly involves a hydroclimatic
modeling chain (Muerth et al., 2013; Ott et al., 2013; Arheimer and Lindström, 2015), with
components including climate simulations from global or regional climate models (GCMs or
RCMs), statistical post-processing of these simulations, and hydrologic modeling using post-
processed simulations as inputs and projecting perturbations of the hydrologic regime at the
catchment scale. Using climate scenarios as inputs, hydrologic models simulate streamflow at a given
catchment outlet by reproducing water-related processes such as evapotranspiration, snow
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accumulation and melt, soil water content fluctuations, and
routing within the river network (e.g., Najafi et al., 2011;
Teutschbein et al., 2015).

Hydrologic models can be categorized on how processes are
represented. On the one hand, conceptual models favor the usage
of simpler empirical formulations, estimating hydrologic
processes with available climate drivers, generally air
temperature and precipitation. On the other hand, physically
based models rely on a more exhaustive integration of
fundamental laws of physics such as mass and energy
conservations. Since laws of physics are not expected to be
affected by climate change, physically based models are
assumed, at least from a theoretical perspective, to provide
more reliable streamflow projections (Lofgren et al., 2013;
Shaw and Riha, 2011; Feng et al., 2017). Recent works confirm
the sensitivity of streamflow projections to the structure of
hydrologic models (Velázquez et al., 2013; Dams et al., 2015;
Seiller and Anctil, 2016).

Figure 1A schematizes the construction of streamflow
projections resorting to a conventional configuration of the
hydroclimatic modeling chain. Typically, a statistical post-
processing (here quantile mapping) is applied to a raw climate
simulation when it differs from a trusted reference product
(ideally high-quality meteorological observations) over a
period long enough to encompass local climate variability
(Maraun et al., 2017). A transfer function is defined by
comparing the raw climate simulation to corresponding
meteorological observations over a calibration period generally
set within the reference period of the climate model, namely the
time interval corresponding to a simulated recent past. A post-
processed climate simulation is subsequently constructed by
applying the transfer function to the raw climate simulation

over a given application period, generally including both
reference and future periods simulated by the climate model.
Independently, a hydrologic model is calibrated in order to
minimize errors between observed and simulated streamflow
at the catchment outlet. The latter model is forced with
meteorological observations while the optimization algorithm
iteratively searches for an optimal set of free parameters
according to a selected objective function. Streamflow
projections are finally constructed by forcing the calibrated
hydrologic model with post-processed climate simulations.

Within a conventional hydroclimatic modeling framework,
the construction of streamflow projections using physically based
hydrologic models is often limited by the lack of meteorological
observations. Quantile mapping and calibration of the hydrologic
model both require meteorological observations (Figure 1A,
dashed lines), the former for defining transfer functions, the
latter for forcing the hydrologic model while calibrating its
parameters. The most prevalent hydroclimatic modeling chain
reported in the literature exclusively considers air temperature
and precipitation as inputs, thus employing empirical
representations of the hydrologic processes (Das et al., 2013;
Tramblay et al., 2014; Rössler et al., 2019). Additional climate
drivers such as relative humidity, solar radiation, and wind speed
(hereafter referred to as HRW variables) are required when
evaluating energy-based representations of the hydrologic
processes like the Penmann-Montheith reference
evapotranspiration formulation (Kay et al., 2013; Boulard
et al., 2016). Yet the scarcity of HRW observations places an
important limitation to the implementation of hydroclimatic
modeling chains using physically based hydrologic models. To
our knowledge, the latter are being documented exclusively for
regions where corresponding observations are readily available

FIGURE 1 | (A) A conventional configuration of the hydroclimatic modeling chain. (B) The suggested asynchronous configuration circumventing the requirement for
meteorological observations.
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(Willkofer et al., 2018) or by using variables issued from
reanalyses (Roy et al., 2018; Didovets et al., 2019; Ricard and
Anctil, 2019).

Asynchronous hydroclimatic modeling is an adaptation to the
conventional hydroclimatic modeling framework circumventing
the limitations imposed by the requirement for meteorological
observations and thus allowing the construction of streamflow
projections using physically-based representations of the
hydrologic processes based on climate simulation forcing.
Asynchronous hydroclimatic modeling relies on three core-
principles: 1) quantile mapping transfer functions are
calibrated simultaneously to the parameters of the hydrologic
model, optimizing the simulated hydrologic response issued by
the modeling chain; 2) the hydrologic model is forced with post-
processed climate simulations instead of meteorological
observations; and 3) the selected objective function
intentionally ignores the correlation between observations and
simulated values issued by the modeling chain.

Figure 1B schematizes an asynchronous configuration of the
hydroclimatic modeling chain. Instead of employing
meteorological observations as target distributions (or any
other reference products such as reanalyses), transfer functions
are calibrated together with the free parameters of the hydrologic
model (dashed lines). Initial random (non-parametric) transfer
functions are defined and applied to the raw climate simulation
over the calibration period. The hydrologic model is
concomitantly assigned with a set of initial free parameters,
then forced with the post-processed climate simulation. Since
streamflow series issued by forcing the hydrologic model with
climate variables simulated by GCMs or RCMs are not
synchronized with observations, the calibration metric must
intentionally ignore the correlation between both series. Such
metric is referred to as an asynchronous objective function (AOF,
Ricard et al., 2019). Once transfer functions and the hydrologic
model are calibrated, streamflow projections are constructed
identically to a conventional approach: the calibrated
hydrologic model is forced with the resulting post-processed
climate simulations.

Asynchronous hydroclimatic modeling assumes that the
streamflow fluctuations are functional proxies to the
corresponding climate drivers and, thus, can be used to post-
process climate simulations. In our view, the suggested approach
offers noteworthy outcomes for hydroclimatic modeling practices
by circumventing the requirement of relative humidity, solar
radiation and wind speed, for which data availability places an
important limitation in constructing physically based streamflow
projections in most regions worldwide. We also believe the
suggested framework opens promising perspectives in the
scope of producing more reliable estimations of water-related
and energy-driven processes such as streamflow generation, snow
accumulation and melt, river ice jams, water temperature, or
vegetation growth under evolving climate conditions.

The main objective of this study is to construct physically
based streamflow projections circumventing data scarcity of less
common meteorological observations, namely relative humidity,
solar radiation, and wind speed (hereafter referred to as HRW
variables). The specific objectives are 1) to extend the notion of

asynchronous hydroclimatic modeling proposed by Ricard et al.
(2019) to a full modeling chain by calibrating HRW transfer
functions together with the parameters of a hydrologic model and
2) to evaluate the adequacy of the resulting post-processed HRW
time series and of the simulated hydrologic response in
comparison to a conventional configuration of the
hydroclimatic modeling chain using reanalyses as descriptors
of the reference climate system. The paper first describes the
experimental design (Methodology), focusing on how both
conventional and asynchronous modeling chains are
implemented over a forested watershed that flows into the St-
Lawrence River. Results are presented and discussed in Results
and Discussion, respectively.

METHODOLOGY

Quantile Mapping
Quantile mapping defines correction factors that map raw
simulated climate variables (X) into post-processed estimates
(Y) by linking source (src, issued from simulated values) and
target (trg, issued from observations or equivalent reference
products describing the climate system) empirical cumulative
distribution functions (ecdf) such as (Themeßl et al., 2011):

Yval
t � ecdf trg,cal

−1
t (ecdf src,calt (Xapp

t )), (1)

where ecdf −1 is the inverse ecdf, cal and app, quantile mapping
calibration and application periods, and t, a given temporal
resolution. The resolution of a given transfer function is
defined by the number of nodes (quantile values for which
correction factors are applied) and its temporal resolution
(subsampling scale of the annual cycle, annual, bi-annual, bi-
monthly, monthly, daily, etc.). According to Reiter et al. (2018),
sub-annual quantile mapping improves bias correction of
precipitation issued by Regional Climate Models (RCMs).
Discontinuities in the annual cycle of post-processed variables
are typically minimized by applying a moving window centered
on the period-of-the-year to be corrected (Smitha et al., 2018).

Tables 1, 2 detail how quantile mapping is applied to the
simulated climate variables in the scope of this study.
Throughout, air temperature and precipitation (Table 1) are
post-processed using meteorological observations as target
distributions. Transfer functions are defined considering 100
nodes (from percentile 0.5 to percentile 99.5 by increments of
1) and a daily temporal resolution. A 31-days moving window,
centered on the day-of-the-year to be corrected, is applied in
order to avoid discontinuities within the representation of the

TABLE 1 | Quantile mapping of air temperature and precipitation.

Air temperature Precipitation

Target distribution Observations Observation
Number of nodes 100 100
Temporal resolution Daily Daily
Moving window 31 days 31 days
Correction type Additive Multiplicative

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 5567813

Ricard et al. Asynchronous Hydroclimatic Modeling

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


post-processed annual cycle. Correction is additive for air
temperature and multiplicative for precipitation.

Table 2 details how quantile mapping of HRW variables
differs from the conventional to asynchronous modeling
chains. To overcome the limited availability of HRW
observations within the study area, the conventional
configuration uses climate reanalyses as target distributions.
Climate reanalyses are reconstruction of past climate through
the blending of observations with numerical models that are
spatially and temporally complete, they are thus produced from a
consistent physical representation of the climate processes. On
the other hand, reanalyses are known to be biased relative to
observations in a magnitude that varies locally (Li et al., 2013;
Jones et al., 2017; Martins et al., 2017). Recently, reanalyses have
been used to provide target distributions for statistical post-
processing of climate simulations (Grenier, 2018) and to force
hydrologic models during calibration (Fuka et al., 2014; Lauri
et al., 2014). Corresponding transfer functions are configured
with 100 nodes and a monthly temporal resolution.

Table 2 also details how quantile mapping of HRWvariables is
applied within the asynchronous hydroclimatic modeling chain.
Since transfer functions are calibrated minimizing the error
affecting the simulated hydrologic response, no description of
the observed climate system is required to define the target
distributions. In order to set resolvable optimization problems,
coarser transfer functions are defined (relative to the
conventional configuration) using 10 nodes (instead of 100,
from percentile 5 to percentile 95 by increments of 10) and an
annual resolution (no subsampling of the annual cycle), instead of
a monthly resolution. For both configurations, HRW variables are
post-processed considering the 1980–2009 calibration period,
without considering inter-variable relations (univariate
quantile mapping) neither the application of a moving
window is applied to post-processed variables. Correction is
additive for relative humidity and multiplicative for solar
radiation and wind speed.

Hydrologic Modeling
Hydrologic processes are simulated at a daily time step using
WaSiM-ETH (Schulla, 2019), a distributed, physically based
hydrologic model mostly operated for local and regional water
resources assessments in Europe (Willkofer et al., 2018; Rössler
et al., 2019) and more marginally in North America (Velázquez
et al., 2013). An exhaustive description of the modeling setup is
provided by Ricard and Anctil (2019). Snow accumulation and
melt are simulated with a temperature-index degree-day
approach while surface runoff is driven by precipitation

intensity and hydraulic conductivity. Unsaturated vertical
fluxes and transient soil hydraulic properties are based on
Richards (Richards, 1931) and Van Genuchten equations (Van
Genuchten, 1980). The portion of snow melt taken as surface
runoff is defined empirically. Interflow simulation considers
hydraulic conductivity and slope. Recession constants delay
surface runoff and interflow. Reference evapotranspiration is
assessed with the Penman-Montheith formulation (Allen et al.,
1998).

Calibration
Both conventional and asynchronous configurations of the
hydroclimatic modeling chain are calibrated with the PA-
DDS multi-criteria optimization algorithm (Asadzadeh and
Tolson, 2012). The calibration of the hydrologic model
operates from 1980 to 1989 given an optimization budget
of 500 iterations (the model is burned by running simulations
from 1979). The calibration period of the hydrologic model is
shorter relative to the quantile mapping calibration period in
order to alleviate computational requirements of the
optimization process. A 10-year period is generally
considered sufficiently long for calibrating the hydrologic
model. A bi-criteria asynchronous objective function
(AOF, Ricard et al., 2019) is defined as:

AOF � [RMSDQa,RMSDQn], (2)

where RMSDQa (Eq. 3) is the root mean square deviation between
simulated (sim) and observed (obs) daily mean annual cycle for
streamflow (Qa, sim and Qa,obs) and RMSDQn (Eq. 4), between
simulated and observed streamflow values below the 10th
quantile (q10) from June to November (JJASON).

RMSDQa �

������������������∑365
a�1 (Qa,sim − Qa,obs)2

365

√√
, (3)

RMSDQn � RMSD[Qsim <Qq10
sim,Qobs <Qq10

obs]JJASON, (4)

The optimization algorithm assigns initial random values to the
given transfer functions (TF) used to post-process climate
variables as well as for the free parameters of the hydrologic
model (h), defining a p-dimensions space such as:

pv,t,q,h � TFv,t,q + h, (5)

where v represents the post-processed climate variables, t and q
stand for the temporal resolution and the number of nodes defining
TF, respectively. Considering a given n-iterations optimization

TABLE 2 |Quantile mapping of relative humidity, solar radiation and wind speed for both conventional and asynchronous configurations of the hydroclimatic modeling chain.

Configuration Relative humidity Solar radiation Wind speed

Conventional Asynchronous Conventional Asynchronous Conventional Asynchronous

Target distribution Reanalyses N.A. Reanalyses N.A. Reanalyses N.A.
Number of nodes 100 10 100 10 100 10
Temporal resolution Monthly Annual Monthly Annual Monthly Annual
Moving window None None None
Correction type Additive Multiplicative Multiplicative
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budget, the algorithm converges incrementally to an optimal
parametric solution (P), which can be expressed as:

P � pv,t,q,h
∣∣∣∣∣MIN(AOF)
n

, (6)

where MIN(AOF) stands for the minimization of a given
asynchronous objective function (Ricard et al., 2019).

Tables 3, 4 present the calibration range of values assigned to
HRW transfer functions and to hydrologic model free
parameters. Boundaries of transfer functions are set according
to a prequel evaluation of the bias of the climate simulation,
piloting the optimization algorithm toward realistic values.
According to Eq. 5, the conventional configuration of the
hydroclimatic modeling chain explores an 7-dimension space
(v � 0 and p � 7), while the asynchronous configuration, a 37-
dimension space (v � 3, q � 10 and p � 7). In order to assess
equifinality (Beven and Freer, 2001) resulting from the
asynchronous configuration, 16 realizations of the
optimization process are conducted with independent random
initial conditions (seeds). With the conventional configuration, 4
realizations are conducted for each (4) reanalysis, resulting also in
16 realizations of the optimization process.

Domain and Data
The study is conducted over the Du Loup catchment, Canada
(515 km2, Figure 2). The latter is characterized by moderate
slopes (highest elevation is 600 m) and a dominant forested land
use (77%). Monthly mean air temperature varies from −12°C to
18 °C and total precipitation reaches roughly 1,000 mm each year.
Seasonal hydrologic fluctuations are driven by snow melt in
spring and the intensification of synoptic liquid precipitation
in autumn. Low flows are generally observed in winter and
summer, due to the snow accumulation and the intensification
of evapotranspiration, respectively.

Table 5 describes the source of the climate data employed
within the experimental design. Daily air temperature and

precipitation are extracted from the gridded interpolated
product provided by Livneh et al. (2015), from 1980 to 2009.
They are used as target distributions applying conventional
quantile mapping to simulated air temperature and
precipitation and for forcing the hydrological model during
calibration. Observed wind speed and relative humidity are
taken from Environment and Climate change Canada weather
monitoring network (station 7056616, 47.81°N and −69.55°E,
26 km north from Du Loup catchment, Figure 2), from 1994
to 2009. Downwelling shortwave radiation observations are
collected at the Forêt Montmorency experimental site (Isabelle
et al., 2018; 47.27°N and −71.12°E, Figure 2), from 2016 to 2018.
The latter is located 120 km west from Du Loup catchment, with
similar latitudes. It is important to clarify that HRW observations
are exclusively given as reference in order to estimate biases of
reanalyses and post-processed variables, consequently they are
not employed for operating quantile mapping nor calibrating the
hydrologic model.

HRW variables are also taken from four common reanalyses,
namely the NCEP Climate Forecast System Reanalysis (CFSR,
Saha et al., 2014), the NASA-Modern Era Retrospective-analysis
for Research and Applications, Version 2 (MERRA-2, Gelaro
et al., 2017), the European Center for Medium-Range Weather
Forecasting (ECMWF) reanalysis (ERA-Interim, Dee et al., 2011),
and the Japanese 55-years atmospheric reanalysis (JRA-55, Chen
et al., 2014; Kobayashi et al., 2015). Relative humidity, solar
radiation, and wind speed, taken from 1980 to 2009 and
aggregated into a daily time step, are used as target
distributions operating conventional quantile mapping.
Simulated daily air temperature, precipitation, relative
humidity, solar radiation, and wind speed are finally taken
from three members of the CRCM5-LE (Canadian Regional
Climate Model Large Ensemble, Leduc et al., 2019; von
Trentini et al., 2019). CRCM5-LE follows RCP8.5 and is used
for constructing streamflow simulations from 1955 to 2100.

Daily streamflow observations are taken from Quebec
Hydrometric Network (station 022507, 47.61°N, −69.64°E, data
available since 1978). A burned 50-m digital elevation model
(DEM) and land use information are provided by Quebec
Ministère de l’Environnement et de la Lutte contre les
Changements Climatique (MELCC, 2016). Soil texture are
assessed based the global soil data set collected by Shangguan
et al. (2014). Physiographic data are aggregated to a 500-m
resolution.

TABLE 3 | Calibration range for relative humidity, solar radiation and wind speed
transfer functions.

Climate variable Correction type Unit Boundaries

Relative humidity Additive % [0,20]
Solar radiation Multiplicative — [0.8,1]
Wind speed Multiplicative — [0.75,1.25]

TABLE 4 | Calibration range of WaSiM-ETH free parameters.

Hydrologic process Parameter Unit Boundaries

Precipitation correction Threshold temperature for snow/rain transition °C [-2,2]
Snow accumulation Temperature-dependent melt factor mm °C−1 d−1 [0,5]

Temperature limit for snow melt °C [-2,2]
Unsaturated zone fluxes Fraction of surface runoff on snow melt — [0,1]

Scaling parameter for river density m−1 [1,100]
Surface runoff recession constant H [1,75]
Interflow recession constant H [75,150]
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RESULTS

Relative Humidity, Solar Radiation, and
Wind Speed Variables From Reanalyses
Figure 3 presents daily mean annual cycles for HRW variables
issued by MERRA-2, CFSR, ERA-Interim, and JRA-55 reanalyses
for the Du Loup catchment between 1980 and 2009.
Corresponding empirical cumulative distribution functions
(ecdfs) constructed from daily values (mean in the case of
relative humidity and wind speed, summed, in the case of
solar radiation) are also presented. Available observations from
nearby sites are also given as reference (black dotted lines). The
observed daily mean annual cycle of relative humidity
(Figure 3A) presents moderate seasonal fluctuations, ranging
from 70% in winter and early spring to 80% in summer and
autumn. All reanalyses fail in representing the seasonal
fluctuations of the relative humidity. CFSR and JRA-55
provide notable overestimations in winter and spring
(∼+20%). Most reanalyses underestimate relative humidity in
summer and early autumn (∼−5%–10%), except for CFSR that
issues a more accurate representation. Winter biases related to
CFSR and JRA-55 cause systematic overestimations of the ecdfs
(Figure 3D) while MERRA-2 and ERA-Interim are much closer
to the observations.

As expected, the daily mean annual cycle of solar radiation
(Figure 3B) is characterized by a marked seasonal fluctuation,
ranging from 0.5 kW hm−2 in January up to 5.5 kW hm−2

around the summer solstice. Solar radiation issued from one
reanalysis to another is comparable except for MERRA-2 that
provides lower values in spring and summer. Reanalyses
systematically overestimate solar radiation relative to
observation. The short length of the observation chronicle
(2016–2018) and the distance from the studied site (120 km)
must be taken into account as important limitations while
assessing the biases affecting solar radiation issued from
reanalyses. No closer observations exist.

The daily mean annual cycle of wind speed (Figure 3C) is
lowest in summer (∼2.2 m s−1) but fairly constant and higher
otherwise (∼3 m s−1). Reanalyses tend to provide a sound
representation of the seasonal wind fluctuations. They differ,
however, one from the other by the scale of annual biases. JRA-55
provides the most accurate representation of the wind speed
annual cycle (confirmed by corresponding ecdf). CFSR and
MERRA-2 moderately overestimate mean annual wind speed
(∼+0.5 m s−1 and ∼+1 m s−1, respectively), while ERA-Interim
underestimates wind speed values throughout the year
(∼−1 m s−1).

Post-processed Simulations of Relative
Humidity, Solar Radiation, and Wind Speed
Variables
Figures 4A–C illustrate daily mean annual cycles for HRW
variables from the raw CRCM5-LE simulations (no statistical

FIGURE 2 | Du Loup catchment, Canada.
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post-processing) for the Du Loup catchment between 1980 and
2009. The figure also illustrates corresponding post-processed
HRW simulations issued by both conventional (Figure 4D–F)
and asynchronous (Figure 4G–I) hydroclimatic chains. Available
observations are given as a reference. Transfer function quantile
values optimized by the asynchronous configuration are given in
Appendix. Discrepancies between simulated HRW variables and
corresponding observations may be explained by the distance of
neighboring meteorological stations observations (120 km in the
case of solar radiation), but also by other external factors such as
vegetation or elevation.

As for reanalyses (Relative Humidity, Solar Radiation, and
Wind Speed Variables From Reanalyses), CRCM5-LE raw
simulations fail in representing seasonal fluctuations of relative
humidity (Figure 4A), the latter is overestimated in winter and
underestimated in summer. The spread of post-processed
simulations issued by the conventional configuration increases
notably in respect to the raw simulations (Figure 4D), these latter
replicating biases embedded within the reanalyses employed as
target distributions for the quantile mapping. Post-processed
simulations tend to reduce summer biases relative to raw
simulations but to overestimate relative humidity in winter.
The asynchronous configuration issued equivalent seasonal
fluctuations of relative humidity (Figure 4G) in comparison to
raw simulations, reducing the spread of post-processed
simulations in comparison to the conventional configuration.

Raw simulations of solar radiation (Figure 4B) are similar to
reanalyses, these latter systematically overestimating available
observations. Post-processed simulations issued by both
configurations show comparable features (Figures 4E,H). The
spread of post-processed simulations is generally higher relative
to raw simulations; bias is also smaller.

Raw simulations of wind speed (Figure 4C) provide a sound
representation of the annual cycle, bias is small and seasonal
fluctuations accurately represented. As for the relative humidity,
the spread of post-processed simulations issued by the
conventional configuration (Figure 4F) is much larger relative
to the raw simulations, these latter also replicating biased
embedded within the reanalyses. An enlargement in the spread
of post-process simulations issued by the asynchronous
configuration is again observable (Figure 4I), but to a lesser extent.

Streamflow Simulations and Projections
Figure 5 illustrates an example of WaSiM-ETH simulated
streamflow driven by CRCM5-LE climate simulations, over the
reference period (1980–2009). Conventional and asynchronous
configurations of the hydroclimatic modeling chain are compared
to raw climate simulations. Optimized values ofWaSiM-ETH free
parameters are given in Appendix. One can observe that raw
climate simulations and conventional configuration tend to
generate spring flood too early (Figure 5A), while raw
simulations underestimate its magnitude. On the other hand,
the asynchronous configuration reproduces more accurately
spring flood synchronicity and magnitude. All simulations
tend to overestimate mean flow from August to October,
which is more noticeable for the conventional configuration.
Low flow overestimation is confirmed in Figure 5B for bothT
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the conventional configuration and raw simulations, whereas the
asynchronous configuration offering a more accurate ecdf. Annual
hydrographs (Figures 5C-K) confirm that all simulations depict the
same sequence of hydrologic events. A higher variability in high flow
values issued by the asynchronous configuration is also noticeable.

Figure 6 compares the performance of streamflow simulations
over the reference period. Performance is expressed through the
root mean squared deviation (RMSD) applied to the annual cycle
(Figure 6A), the inverse empirical cumulative distribution
function (ecdf−1, Figure 6B), and seasonal quantile values
(Figures 6C-K). Each distribution is composed of 16
realizations of the optimization process. Considering median
RMSD values, both conventional and asynchronous
configurations provide an improved representation of the
annual cycle and ecdf−1 in comparison to the raw simulations.
Asynchronous modeling offers, however, a much more accurate
representation of seasonal extreme values (Figures 6C–E,I–K).
As an example, from Figure 6E, the mean RMSD value computed
on pluvial low flows is 0.37 m³ s−1 for the asynchronous
configuration, 1.09 m³ s−1 for the conventional configuration,
and 0.64 m³ s−1 for raw simulations. Asynchronous modeling
also offers a more robust representation of the hydrologic regime;
RMSD values are systematically affected by a smaller spread.
Conventional modeling provides a comparable (sometime
weaker) representation of seasonal extreme values relative to
raw climate simulations. It is also more prone to provide
outlying degraded performance.

Figure 7 illustrates the projected change of eight hydrologic
indicators (Table 6) from 1980–2009 to 2040–2069 using raw

simulation, conventional and asynchronous hydroclimatic
modeling chain. For each indicator, 48 change values are
evaluated: 3 climate simulation realizations (members) and 16
optimization realizations (seeds). Projections are first expressed
through the magnitude of change, which is assessed using the
median of the 48 projected changes. All runs project an increase
in mean flow (+4.5% to +5.5%), nival high flow (+6.3% to +9.2%),
and evapotranspiration (+13% to +16%). They also project a
decrease in pluvial high flow (−3% to −9%) and snow water
equivalent (−3% to −7%). They also agree on the direction of
change affecting low flows, even if the magnitudes of the
projected change are noticeably different.

Conventional modeling projects a much higher increase in
nival low flow (+26%) relative to raw simulations (+9%) and
asynchronous modeling (+5%). Conventional modeling also
projects a much smaller decrease in pluvial low flow (−19%)
relative to raw simulations (−34%) and asynchronous modeling
(−41%). Finally, projections disagree on soil water content.
Conventional modeling projects a small increase (+1%), while
raw simulations (−6%) and asynchronous modeling (−8%), a
decrease. Figure 7 also presents the dispersion of change, namely
the spread affecting the projected change values expressed by the
10th and 90th percentile interval (absolute difference).
Conventional modeling provides more scattered projections
for low flows (both nival and pluvial), and soil water content
relative to raw simulations and asynchronous modeling. The
spread affecting other hydrologic indicator does not appear
much affected by the configuration of the hydroclimatic
modeling chain.

FIGURE 3 | Relative humidity, solar radiation, and wind speed issued by CFRS, MERRA-2, ERA-Interim and JRA-55 reanalyses over Du Loup catchment between
1980 and 2009. First row presents daily mean annual cycles. Second row presents corresponding empirical cumulative distribution functions issued from daily values.
Observations from neighboring meteorological stations (dashed black) and from Forêt Montmorency experimental site (dashed gray, 120 km) are given as a reference.
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DISCUSSION

Relative humidity, solar radiation, and wind speed (HRW
variables) have been introduced into a full hydroclimatic
modeling chain using an asynchronous configuration
adapted from Ricard et al. (2019), allowing the construction
of streamflow projections using the Penman-Montheith
reference evapotranspiration formulation. The WaSiM-ETH
hydrologic model was driven with post-processed climate
variables while quantile mapping transfer functions were
calibrated together with the parameters of the hydrologic
model, minimizing the asynchronous error affecting the
simulated hydrologic response. The suggested approach
circumvents the requirement for reference HRW
observations, the latter placing an important limitation in
representing energy-driven hydrological processes in many
countries such as Canada.

Asynchronous hydroclimatic modeling provided a fairly
accurate representation of post-processed solar radiation and
wind speed in comparison to conventional quantile mapping
using reanalyses as target distributions. Figures 3, 4 clearly
depicted how conventional quantile mapping mimics biases
affecting HRW variables issued by CFSR, MERRA-2, ERA-
Interim, and JRA-55 reanalyses. Asynchronous hydroclimatic
modeling did not, however, overcome major mismatches in
seasonal fluctuations affecting raw simulations of relative

humidity. Post-processed variables issued from the
asynchronous configuration are fairly similar to raw
simulations, suggesting the simulated hydrologic response is
sensitive to the consistency between post-processed variables.
Increasing transfer-function temporal resolution or broadening
the range of values assigned for calibration could improve the
accuracy of post-processed relative humidity issued by the
asynchronous configuration, most likely to the expense of the
consistency between post-processed variables. Since optimized
transfer functions are constrained in providing the best available
hydrologic performance, they guaranty sound driving conditions
from the perspective of the hydrologic model.

The suggested asynchronous configuration to the
hydroclimatic modeling chain assumes the hydrologic regime
of a given catchment as a functional proxy to corresponding
climate drivers. In other words, and in the case of this study, it
circumvents the requirement for meteorological observations by
exploiting streamflow observations as a surrogate to reference
HRW observations. Comparable hypotheses have been proposed
in paleoclimatology and paleohydrology (Lamarche, 1978; Case
and MacDonald, 2003), but not (at least to our knowledge) for
modeling the impact of climate change on water resources.
Instead of integrating scarce HRW observations (or biased
representation issued from reanalyses) into the modeling
chain, these latter have been used to pilot the calibration
process toward realistic solutions.

FIGURE 4 | Daily mean annual cycles for relative humidity, solar radiation, and wind speed issued by CRMC5-LE over Du Loup catchment between 1980 and
2009. First row presents raw simulations (black, spread given by three CRCM5-LE members). Second and third rows present post-processed variables issued by
conventional (magenta, three members and four reanalysis) and asynchronous (green, three members and 16 optimization realizations) configurations of the
hydroclimatic modeling chain. Observations from neighboring meteorological stations (dashed black) and from Forêt Montmorency experimental site (dashed gray,
120 km) are given as reference.
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Results illustrated in Figures 5, 6 confirm that the
asynchronous modeling issued a better representation of the
hydrologic regime (annual cycle and empirical distributions)
relative to conventional modeling and a much more accurate
representation of extreme seasonal events (high and low flows,
nival and pluvial seasons). Conventional modeling presented
notable flaws in representing seasonal extreme values,
corresponding performances being sometime weaker in
comparison to raw climate simulations. It also appeared more
vulnerable in producing outlying degraded performances. This
can be explicated by the limited capacity of the hydrologic model
to compensate for biased embedded within forcing post-
processed HRW variables. Consequently, an evaluation of
reanalyses biases appears highly recommendable as a
prerequisite to the implementation of the conventional
configuration, keeping in mind that reanalysis products are
constantly updated and potentially improved. Since
asynchronous hydroclimatic modeling assumes streamflow
fluctuations as functional proxies to climate drivers, the
hydrologic model was implemented aiming to limit parametric
compensation as much as possible. No empirical correction was

applied to simulated evapotranspiration and a fairly limited
number of free parameters were available for calibration. The
usage of empirical correction factors for evapotranspiration or
additional free parameters would probably improve the simulated
hydrologic response issued by conventional modeling, but
possibly to the expense of injecting parametric instability into
streamflow projections (Brigode et al., 2013).

Since the projected changes of the hydrologic regime varies
from one configuration to another, one can argue that the scarcity
of HRW observations contributes to uncertainty affecting
physically based streamflow projections. By construction, the
suggested asynchronous configuration the hydroclimatic
modeling chain alters the nature of this uncertainty, trading-
off a biased representation of the HRW variables issued from
reanalyses with equifinality (Beven and Freer, 2001). Equifinality
is directly related to the definition of the optimization problem
and will generally increase with additional degrees of freedom
(free parameters) to explore. In the context of the study, Eq. (5)
clarifies how calibrating HRW transfer functions increases the
scale of the parametric space in relation to post-processed
variables, as for the number of nodes and the temporal

FIGURE 5 | Streamflow simulations issued by CRCM5-LE climate simulations forcing the WaSiM-ETH hydrologic model over Du Loup catchment between 1980
and 2009. First row presents daily mean annual cycles and corresponding empirical cumulative distribution functions (ecdf) of daily values. Streamflow observations
(dashed black) are given as reference. Following rows present a sample of simulated annual hydrographs (time step of 3 years, from 1980 to 2009). Streamflow
simulations issued by conventional (magenta) and asynchronous (green) configurations of the hydroclimatic modeling chain are compared to raw climate
simulations (full black).
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resolution defining calibrated transfer functions. Figures 6, 7
confirmed that uncertainty affecting simulated streamflow
projections is less impacted implementing the asynchronous
configuration relative to integrating biased HRW variables into
the conventional configuration, thus affecting post-processed
variables and calibrated parameters of the hydrologic model.
Asynchronous modeling appears more capable in producing a
balanced trade-off between an accurate simulated hydrologic
response over the reference period and a diminished
uncertainty affecting the projection of hydrologic indicators.
We thus conclude that asynchronous modeling contributes in
increasing the confidence attributed to streamflow projections,
this being even more noticeable for low flows and soil water
content.

This study explored an alternative methodological
framework aiming to integrate HRW variables to
hydroclimatic modeling on a domain such as Canada where

observations are too scarce to implement a conventional
configuration of the modeling chain. As a demonstration,
the suggested approach allowed the construction of
streamflow projections using the Penman-Montheith
physically based reference evapotranspiration formulation.
We believe this innovative framework offers promising
perspectives in the scope of consolidating the physical
representation of hydrologic processes at the catchment scale
and consequently, the confidence attributed to climate change
impact analyses on water resources. We argue that by
calibrating the whole modeling chain simultaneously, the
accurate streamflow measurements allow to reconstruct the
meteorological drivers, if enough care is taken not to
overparameterize the optimization problem and to keep the
parameters within physically reasonable ranges. We invite our
fellow scientists to further explore the applicability of the
suggested framework integrating additional water-related,

FIGURE 6 | Performance of streamflow simulations issued by raw climate simulations (black), conventional (magenta) and asynchronous (green) configurations
model over Du Loup catchment from 1980 to 2009. Performance is expressed through the root mean square deviation (RMSD). First line presents the daily mean annual
cycle and the inverse empirical cumulative distribution function (ecdf−1). Following lines present seasonal quantiles values (q05, q50, and q95). The nival season runs from
December to May, the pluvial season, from June to November. Each distribution is composed by 16 realizations of the optimization process.
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energy-driven processes such as snow accumulation and melt,
river ice jams, water temperature, or vegetal growth, confirming
(or not) the added value of physically based representations
relative to empirical formulations within non-stationary
climate conditions. We finally acknowledge significant
limitations of the experimental design and most importantly,
the use of a single climate model. Generalizing asynchronous
modeling to larger climate simulation ensembles (such as
CMIP5) will require optimization strategy adapted to
potentially very large parametric space to explore, suggesting
constrains in terms of computational capacities and
equifinality. Since quantile mapping is known to be prone to
overfitting (Lafon et al., 2013), the sensitivity of streamflow
projections to the selection of a given calibration period should
also be addressed. Further works should also aim to construct
the asynchronous configuration to precipitation and
temperature, to larger (regional) domain using multi-site
calibration techniques (Choi et al., 2015; Gaborit et al., 2015;
Xue et al., 2016), and to preserve inter-variable correlations
between post-processed fields (Dekens et al., 2017; Canon,
2018). Experimenting asynchronous modeling on highly
monitored catchments would provide a more robust
validation of post-processed climate simulations and also
clarify the role of parametric compensation on the resulting
uncertainty affecting streamflow projections.

CONCLUSION

The construction of streamflow projections generally involves a
hydroclimatic modeling chain including statistical post
processing of climate simulations and calibration of a
hydrologic model. Since sufficiently long and dense chronicles
are mandatory for the implementation of conventional
configurations of the hydroclimatic chain, the scarcity of
relative humidity, solar radiation, and wind speed (HRW)
observations places an important limitation to the
construction of physically based streamflow projections. The
current study designed and explored an asynchronous
configuration to the hydroclimatic modeling chain that
circumvents the requirement for meteorological observations
while operating quantile mapping and calibration of the
hydrologic model. Asynchronous hydroclimatic modeling
assumes streamflow fluctuations are functional proxies to
corresponding climate drivers and is implemented by 1)
driving the hydrologic model with post-processed climate
simulations instead of meteorological observations and 2)
calibrating quantile mapping transfer functions together with
the parameter of the hydrologic model, minimizing the
asynchronous error affecting the simulated hydrologic
response over the reference period simulated by the forcing
climate model.

FIGURE 7 | Projected change of hydrologic indicators over Du Loup catchment from 1980–2009 to 2040–2069. Changes issued by the conventional (magenta)
and asynchronous (green) configurations of the hydroclimatic modeling chain are compared to raw climate simulations (black). Each distribution is composed by 48
change values (16 realizations of the optimization process × 3 climate simulation members) expressed as percentage. The magnitude of change corresponds to the
median change value, while the dispersion, to the absolute difference between 10th and 90th percentiles.

TABLE 6 | Description of hydrologic indicators.

Indicator Description Unit

Mean flow Mean flow value over the simulated period m³ s−1

Nival high flow Mean value of the annual maxima from December to May m³ s−1

Nival low flow Mean value of the annual minima from December to May m³ s−1

Pluvial high flow Mean value of the annual maxima from June to November m³ s−1

Pluvial low flow Mean value of the annual minima from June to November m³ s−1

Evapotranspiration Mean value of the total annual evapotranspiration mm
Snow water equivalent Mean value of the maximal annual snow water equivalent mm
Soil water content Mean soil water content over the simulated period —
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Implementing this innovative framework, relative humidity,
solar radiation, and wind speed variables have been introduced
into a full hydroclimatic modeling chain, thus permitting the
construction of streamflow projections using the Penman-
Montheith physically based reference evapotranspiration.
Except for relative humidity, results demonstrated a fairly
accurate representation of post-processed variables relative to
conventional quantile mapping using reanalyses as description of
the climate system, ensuring a sound representation of climate
drivers “from the perspective of the hydrologic model.” Results
also demonstrated a more accurate and robust simulated
hydrologic response issued from asynchronous modeling,
suggesting an increased confidence attributed to resulting
streamflow projections. The projection of low flows and soil
water contents were sensitive to the configuration of the
hydroclimatic modeling chain, confirming the scarcity of
HRW observations as a notable contributor to uncertainty
affecting physically based streamflow projections. We believe
the suggested methodological framework opens promising
perspectives in the scope of producing more reliable
streamflow projections, but also estimations of water-related
and energy-driven processes such as snow accumulation and
melt, river ice jams, water temperature, or vegetation growth
under evolving climate conditions.
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APPENDIX

TABLE A1 | Transfer function quantile values for relative humidity, solar radiation, and wind speed optimized by the asynchronous configuration. Minimal, median and
maximal values are obtained from 16 realizations of the optimization process.

q05 q15 q25 q35 q45 q55 q65 q75 q85 q95

Relative humidity (additive)
Min 0 0 0 0 0 0 0 0 0 0
Median 0 0 0 0 0 0.05 0 0.24 0 0
Max 2.42 5.64 4.88 7.94 3.57 6.98 9.27 14.27 17.21 12.20

Solar radiation (multiplicative)
Min 0.80 0.82 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Median 0.92 0.86 0.91 0.94 0.92 0.95 0.87 0.85 0.87 0.90
Max 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99

Wind speed (multiplicative)
Min 0.76 0.86 0.88 0.90 0.91 0.85 0.75 0.83 0.81 0.82
Median 1.19 1.09 1.05 1.23 1.19 1.07 1.12 1.12 1.01 1.18
Max 1.25 1.25 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25

TABLE A2 |Optimized values of WaSIM-ETH free parameters. For the conventional configuration, minimal, median and maximal values are obtained from a combination of
four reanalyses and four realizations of the optimization process. For the conventional configuration, minimal, median and maximal values are obtained from 16
realizations of the optimization process.

Threshold
temperature
for snow/rain
transition (°C)

Temperature-dependent
melt

factor (mm °C−1 d−1)

Temperature
limit

for snow
melt (°C)

Fraction of
surface
runoff

on snow
melt (−)

Scaling
parameter
for river

density (m−1)

Surface runoff
recession
constant

(h)

Interflow
recession

constant (h)

Conventional configuration
Min −1.85 0.00 −1.82 0.00 1.00 6.65 75.00
Median 0.25 1.12 −0.58 1.00 44.73 75.00 75.00
Max 1.61 2.86 0.41 1.00 100.00 75.00 111.47

Asynchronous configuration
Min −2.00 0.28 −1.72 0.18 13.47 8.23 75.00
Median −0.13 1.00 0.23 1.00 65.01 43.86 75.00
Max 1.86 3.35 2.00 1.00 100.00 75.00 104.50
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