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Diorites, granites, and associated magmatic enclaves and dykes constitute the bulk of the
Ladakh Batholith, which is an integral part of the Trans-Himalayan magmatic arc system. In
this paper geometry of microgranular enclaves hosted in the granites has been examined
from the Leh-Sabu-Chang La and surrounding regions of the eastern Ladakh Batholith to
infer the mechanism and schedule of mafic to hybrid magma injections into evolving felsic
magma chambers and the resultant enclave geometry. Mafic or hybrid magmas inject into
felsic magma at low volume fraction (<0.35) of crystals and form the rounded to elongated
microgranular enclaves in the Ladakh Batholith. Angular to subangular (brecciated), rounded
to elongated pillow-like microgranular enclave swarms can also be documented as disrupted
synplutonic mafic to hybrid dykes and sheets, when intruding the felsic magma with high
volume fraction (>0.65) of crystals. A large rheological difference between coeval felsic and
mafic magmas inhibits much interaction. Mafic magma progressively crystallizes and evolves
while minimizing thermal and rheological differences. Consequently, the felsic-mafic magma
interaction process gradually becomes more efficient causing the dispersion of enclave
magma globules and undercooling into the partly crystalline felsic host magma. Thus the
evolution of the Ladakh Batholith should be viewed as multistage interactions of mafic to
hybridmagmas coeval with felsicmagmapulses in plutonic conditions from its initial towaning
stages of evolution.
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INTRODUCTION

Granites (sensu lato) may contain any type of lithic inclusion or fragment, which is commonly
referred to as enclave (a French term, Lacroix, 1890 in Didier, 1973). The diverse nature and origin of
enclaves hosted in granites are described in many studies (e.g., Didier, 1984; Vernon, 1984; Furman
and Spera, 1985; Castro et al., 1991a; Castro et al., 1991b; Shellnutt et al., 2010; Kumar et al., 2004a;
Kumar et al., 2004b; Kumar et al., 2005; Clemens et al., 2016; Kumar et al., 2017), and are considered
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to represent: 1) xenolith (Sollas, 1894) as solid fragment of
country rocks mostly confined to the margins of a pluton or
may represent enroute deeper-derived lithology or unmelted
source material, 2) surmicaceous enclave (Lacroix, 1933) as
segregation of refractory source materials (restite) left after
partial melting, 3) cognate or autolith (Pabst, 1928) as early-
crystallized cumulus phases or segregation of mafic clots or
fragments of chilled border rock series of cogenetic felsic
magma, 4) microgranular (Didier and Roques, 1959) or
microgranitoid (Vernon, 1983) enclaves representing felsic,
mafic, and mafic-felsic (intermediate) hybridized magmas
entrained, mingled, and undercooled into relatively cooler
partly crystalline felsic host magma at any stage of its
evolution. However, when mafic or hybrid magma is injected
into a largely crystallized felsic magma chamber, it is commonly
distributed as swarms of microgranular enclave together with
synplutonic dykes (Barbarin, 1989; Kumar, 2014). In the present
paper, the term enclave refers to the mafic and mafic-felsic
(hybrid) varieties of microgranular or microgranitoid enclaves.

Enclaves in granites can offer significant insight into the
understanding of operative physical and chemical processes
during the evolution of a felsic plutonic system. The similar ages,
chemical, and isotopic signatures of enclaves and host granites have
been interpreted in various ways. Some favor the cogenetic relation
between the enclave and host granites (e.g., Pin et al., 1990; Shellnut
et al., 2010) whereas some argue their derivation from common
crustal sources (e.g., Güraslan and Altunkaynak, 2019; Lu et al.,
2020); and some advocate mafic-felsic magma mixing, mingling,
chemical modification, and isotopic re-equilibration at varying
degrees responsible for their partial to nearly equivocal chemical
and isotopic features (e.g., Holden et al., 1987; Eberz and Nicholls,
1990; Elburg, 1996; Kumar and Rino, 2006; Adam et al., 2019). The
geochemical and isotopic features do not provide unambiguously a
viable model of enclave origin. Therefore in most cases, discussion
on the origin of enclaves in granites largely revolves around the
interpretations of megascopic and microscopic features (e.g., Didier,
1973; Sparks et al., 1977; Vernon, 1983; Eberz and Nicholls, 1988;
Vernon et al., 1988; Barbarin, 1989, Castro, 1990; Didier and
Barbarin, 1991; Fernandez and Gasquet, 1994; Kumar, 1995;
Kumar et al., 2004a; Kumar et al., 2004b; Kumar, 2010a; Wiebe
et al., 2007; Vernon, 2014).

The enclaves are usually ubiquitous in metaluminous (I-type),
calc-alkaline granites, but are also found in other granite types
such as anorogenic A−, hybrid H−, and shoshonitic SH-types.
However, the enclaves are relatively rare in peraluminous (S-type)
granites and absent in anatectic or leucogranite. The
surmicaceous enclaves are rare in anorogenic (A-type), post-
collisional granites (Didier, 1984). The enclaves may also enclose
xenoliths and are considered to be double enclaves (Didier, 1987),
however, large enclaves can enclose several other smaller
enclaves, which can be referred to as composite enclaves (e.g.,
Kumar, 2010a). Zoned enclaves with different cooling history are
also reported in the granites (e.g., Adam et al., 2019).

Felsic and associated magmatic rocks constitute the bulk of the
Ladakh Batholith (600 km long, 20–80 km wide) roughly
trending NW-SE covering an area of ca 30,000 sq km, which is
an integral part of the Trans-Himalayan calc-alkaline magmatic

arc system located in the north of Indus Tsangpo Suture Zone
(ITSZ) (Figure 1A). The Ladakh Batholith is largely formed by
the melting of Neo-Tethyan ocean crust subducted below the
Asian plate during early Cretaceous-Lower Eocene (Thakur,
1992), and is characterized by mafic to felsic composite
intrusions of variable compositions. The mafic-felsic magmatic
suites range from gabbro-diorite-tonalite to granodiorite-granite-
leucogranite of magnetite (oxidized) and ilmenite (reduced)
series granites corresponding to metaluminous (I-type) and
peraluminous (S-type) granites, respectively, which are
crosscut by several post-plutonic mafic dykes (Auden, 1935;
Wadia, 1937; Frank et al., 1977; Rai, 1980; Honegger et al.,
1982; Ahmad et al., 1998, Kumar, 2008, Kumar, 2010b). Felsic
magmatic rocks forming the Ladakh Batholith are collectively
referred as granites unless stated for a specific rock type. Earlier
mafic (diorite) stock-like bodies are also found disrupted by
intruding granite magma that is more pronounced in the
eastern parts of Ladakh Batholith (e.g., Weinberg, 1997;
Kumar, 2010a; Kumar et al., 2016). Enclaves as xenoliths of
older mafic volcanics in granites are also reported (Rai, 1980;
Ahmad et al., 1998; Jain et al., 2003; Singh et al., 2007). Redox
conditions of Ladakh granites and related rocks have been
assessed in terms of magnetic susceptibility and phase
petrology (Kumar, 2008; Kumar 2010b). The occurrence and
origin of mafic to hybrid microgranular enclaves hosted in
Ladakh Batholith are reported and discussed (Kumar, 2010a).

In this paper, new spectacular field and petrographic features of
microgranular enclaves, and dyke- and sheet-like enclave swarms,
referred as synplutonic dykes, hosted in the granites exposed in
and around Leh, Sabu, and Chang La regions of Ladakh Batholith
have been documented and examined in order to understand the
style and schedule of mafic to hybrid magma injections into felsic
magma chambers from its initial to waning stages of evolution
(i.e., with increasing crystallinity and rheology).

Geology, Geochemistry, and
Geochronology
In the Trans-Himalaya, the Kohistan–Ladakh-Karakoram
Batholiths have evolved as a single entity during the late
Cretaceous and early Palaeogene (Pundir et al., 2020, and
references therein). The Ladakh Batholith represents an integral
part of the Trans-Himalayan calc-alkaline magmatic belt
extending from east of Nanga Parbat to Lhasa (Figure 1A) and
is bounded by Shyok Suture Zone (SSZ) in the north and ITSZ in
the south (Figure 1B). The Asian plate in the north and Indian
plate in the south are juxtaposed and accreted along the ITSZ with
the closure of Neo-Tethyan Ocean. Ahmad et al. (1998) stated that
the enclaves in the granites probably represent the initial pulses of
magmatism in response to intra-oceanic northward subduction of
Neo-Tethyan Ocean beneath an immature arc, and subsequently,
a huge amount of felsic magmatism was generated as the arc
matured forming the Ladakh Batholith.

The Ladakh Batholith is differentially unroofed in the western
(p � 3.35–4.27 kbar), central (p � 2.99 kbar), and eastern (p �
2.17 kbar) parts, as inferred from Al-in-hornblende
geobarometer (Kumar, 2010b). The FeOt/MgO ratio of biotites
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from the granites of western (1.44–2.19), central (1.31–1.90), and
eastern (1.71–2.63) parts suggests the contribution of dominant
calc-alkaline, metaluminous (I-type), and subordinate amount of
peraluminous (S-type) felsic magmas in the evolution of Ladakh
Batholith. Ahmad et al. (1998) observed that the enclaves and
mafic dykes in granites of the Ladakh Batholith are basaltic-
andesite and andesite belonging to subalkaline, calc-alkaline
series in terms of major and trace elements. The negative
relationship of MgO, Fe2O3

t, MnO, TiO2, CaO, Al2O3 against
SiO2, and positive trends of TiO2, CaO, CaO/Al2O3 against MgO
may indicate fractionation of gabbroic assemblage, however, the
absence of negative chondrite normalized Eu and primitive
mantle normalized Sr anomalies shows that plagioclase was
not an important fractionating phase. Based on geochemical
features of enclaves, Ahmad et al. (1998) proposed the cognate
or autolith origin for some selected enclaves sampled from
western Ladakh, as inferred by Honegger et al. (1982), and
others as entrained xenoliths of pre-existing mafic rock into
the granites. However, Kumar and Singh (2008) suggest that
the enclaves and host granites are largely as calc-alkaline, mildly
to strongly metaluminous (molar Al2O3/CaO + Na2O + K2O �
0.9–1.05), which are compositionally different from diorite,
gabbro, and mafic dykes. Near linear to curvilinear variation
trends observed for TiO2, CaO, Fe2O3

t, MgO, MnO, and TiO2

against SiO2 of enclaves and host granites can be attributed to
synchronous mafic-felsic magma mixing and fractionation. The

large data scatter for Al2O3, Na2O, K2O, P2O5, Rb, Ba, Nb, Yb,
and Zr against SiO2 is, however, a combined outcome of
elemental diffusion at varying degrees and sorting of minerals
hosting these elements during mixing-fractionation events.

The extent and duration of calc-alkaline felsic magmatism
constituting the Ladakh Batholith have been constrained based
on a variety of chronological database, without taking into
account the mafic to hybrid magma contributions. Magmatism
within the Ladakh Batholith was most intense during Late
Cretaceous to Early Paleogene (67 and 45 Ma) (Singh et al.,
2007; Upadhyay et al., 2008; Jain and Singh, 2009; Ravikant
et al., 2009; White et al., 2011a; White et al., 2011b; Kumar et al.,
2012; Shellnutt et al., 2013; Jain 2014) with early discrete pulses at
ca. 102 and 97 Ma identified in the western part (Honegger et al.,
1982). Some sporadic geochronological data (Singh et al., 2007)
on coarse grained diorite (58.4 ± 1.0 Ma) and granodiorite (60.1 ±
0.5 Ma) from Karu and Chang La regions of the Ladakh Batholith
suggest a coeval nature between the diorite and granodiorite. A
subvolcanic mafic dyke (45.7 ± 0.8 Ma) and granites (45.27 ±
0.56 Ma) at Daah-Hanu (Weinberg and Dunlop, 2000) provide
the same ages of their formation. The likely reasons for
synchronous diorite and granodiorite magmatism are not yet
described. However, in and around the Leh and Sabu regions,
stock-like dioritic bodies are also found as pre-existing older
lithological units as compared to the granites (Kumar et al., 2016;
Weinberg, 1997).

FIGURE 1 | (A) Geological structure of Himalaya showing the tectonic elements, Trans-Himalayan magmatic arc and location of the Ladakh Batholith (after
Gansser, 1977). (B) Geological map of Ladakh Himalaya (after Sharma and Chaubey, 1983; Thakur, 1987). Relative abundance of magnetite series and ilmenite series
granites in western, central and eastern parts of the Ladakh Batholith is shown by wheel diagrams (Kumar, 2008; Kumar, 2010b).
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MATERIALS AND METHODS

More than 35 outcrops along planned traverses exposed in and
around the Leh-Sabu-Chang La regions of eastern Ladakh
Batholith have been investigated in order to establish the field
relationships between mafic lithological units including the
enclaves and host granites. The enclave typology, synplutonic
dykes and sheets, and their morphology, size, and contact
relations with host granites were recorded and documented.
The preferred criteria in classifying the enclave types are their
macro- and micro-structures (shapes: spheroidal to ellipsoidal;
roundness: as their corners, and edges are rounded, subrounded
or angular; contact relationships: sharp, diffused, crenulated to
highly convoluted; primary igneous flow-lamination, fine- to
coarse-grained phenocryst-bearing or phenocryst-free,
cumulates, and solid-state deformation defined by foliation,
schistosity, gneissosity, etc.). Representative rock thin sections
were prepared for petrographic study and estimating the modal
volume percentage of constituting minerals to assign the name of
the rocks. The petrographic features relevant to infer the physical
properties and processes such as viscosity contrast, magma-
mixing, mingling, and undercooling have also been documented.

Megascopic and Microscopic Results
Field Observations
The Ladakh Batholith is mainly composed of diorite,
granodiorite (±enclaves), leucogranite, and pegmatite.
Granodiorite is the most dominant rock type among all of the
observed varieties of granitic rocks. The granite hillocks with
melanocratic bodies and patches of diorites are widespread in

and around the Leh and Sabu regions. Such diorite outcrops as
stock-like bodies are exposed widely at several sq meters to a
hundred sq km scale, which can be seen even from far distances.
The granite-leucogranite-pegmatite system intrudes the diorites
(Figure 2A). Leucogranites and pegmatites are devoid of
microgranular enclaves. The intrusive relationships are very
well displayed by the presence of partially assimilated
xenoliths of diorites and network of leucogranite-pegmatite
veins (Figure 2B). At several places, the granite exhibits linear
sharp contacts with the diorites. Near Sabu, the granite shows a
rare feature of modally graded, crudely layered igneous
structures with alternate bands of coarse grained mafic
(hornblende, biotite) and felsic (quartz, feldspars) minerals
(Figure 2C). At Leh, near the western end of town,
undeformed, equigranular medium to coarse grained biotite
granites are widely exposed, which occasionally host elongated
fine grained mesocratic lithic materials showing diffuse
boundaries with the host granites (Figure 2D). At this
particular outcrop, amphibole is absent or rare and is devoid
of enclaves.

At places, the fine grained mafic rock with devitrified glassy
xenocrysts shows jigsaw-like crenulated margins (Figure 3A). A
mesocratic porphyritic enclave of nearly circular shape with
sharp and slightly diffused margins contains variable
proportion of mafic-felsic xenocrysts that appear as
phenocrysts (Figure 3B). The felsic xenocrysts, in particular,
are rounded to subhedral that indicate their partial resorption in
hybrid magma. Fine grained mafic enclaves commonly having
subrounded to elongate shapes (up to 15 cm across) are
intimately linked with fine mafic schlierens and aggregates.

FIGURE 2 | (A) Panoramic view of diorite and granite-leucogranite-pegmatite hills near Sabu, showing the intrusive relationships between them. (B) Diorite is
dismembered as xenoliths and partially assimilated by the intruding granite-leucogranite-pegmatite system. (C) Modally graded crude igneous layering shown by
alternate bands of mafic and felsic minerals in the granite. (D) Biotite granite contains elongated mesocratic fine grained facies with diffused boundaries.
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FIGURE 3 | (A) Fine grained mafic body contains frequent quartz (glass) xenocrysts and shows serrated contacts with host granite. (B) A large enclave containing
mafic-felsic phenocrysts showing sharp contact with host granite. Partial diffuse contact can also be noted. (C) Elongated mafic enclave swarms follow a particular
direction in the host granite. Note the enclaves form monadnock ridge. (D) Randomly oriented closely spaced holomelanocratic, melanocratic to mesocratic enclaves
with variable shapes and sizes are hosted in granite from northern margin of Ladakh Batholith.

FIGURE 4 | (A) Mafic enclaves with variable shapes and sizes showing the common sharp and occasional cuspate margins. Note the presence of minor mafic
schlierens. (B) Mafic schlierens correlate well with mostly digested enclaves within the host granite. (C) Mafic enclaves of variable shapes and sizes. Note an enclave
shows viscous finger texture and cuspate margin (white arrows). These features of enclaves are from a large part of outcrop as shown in Kumar (2010a). (D) A nearly
circular composite enclave encloses circular melanocratic to elongate mesocratic enclaves (shown by black arrows).
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These mafic enclave swarms are oriented in a particular direction
of magmatic flowage within the host granite, and they exhibit
monadnock like features (Figure 3C). The enclaves showing all
kinds of diverse geometry (rounded to subrounded, elliptical,
angular to subangular, moderately to highly curved, platy and
small spotted) and color index (holomelanocratic, melanocratic,
and mesocratic) are randomly distributed and embayed within
the host granite without any marked flowage pattern
(Figure 3D). Some of them are closely spaced. At some
outcrops, a few fine grained mafic enclaves (maximum up to
30 cm across) of variable shapes and sizes with sharp and
irregular boundaries follow wavy trails of mafic schlierens that
appear to be detached or disaggregated fragments of large
enclave magma body (Figure 4A). Some moderately to highly
stretched enclaves with or without diffused margins connected
with straight and curvilinear mafic schlierens indicate an arrested
(frozen) state of magmatic flowage and comingling structures
(Figure 4B). These are typical magmatic features resulted from
the disaggregation of enclaves during progressive stages from
mingling to mixing.

An enclave showing viscous fingering texture (Figure 4C) also
exhibits a crenulated boundary outline with a concave contact
outline toward the felsic host, a kind of pillowing structure that is
the result of differences in temperatures and viscosities between
the interacting mafic and felsic magmas. A circular, relatively
large, mesocratic hybrid (felsic-mafic xenocryst-bearing) enclave
has sharp contact with felsic host granite (Figure 4D). A few
small-sized fine grained, rounded to elongated, melanocratic to
mesocratic enclaves are enclosed within the hybrid enclave
(Figure 4D), which together form a composite enclave. The

small enclaves yet again show sharp contacts with the
enclosing hybrid enclave (Figure 4D). The composite
enclaves can be seen at several outcrops in the Ladakh
Batholith. Few elongated and stretched enclaves (Figures
5A,B) may give the wrong impression of solid-state
deformational objects that are commonly considered suitable
for marking the brittle or ductile strain. However, these features
were most likely formed during synchronous mafic-felsic
magmatic flowage under the influence of a prevailing
convection current in the magma chamber.

A few outcrops of enclaves were preferably chosen, which can
exhibit 3D geometry (longitudinal section across the horizontal
plane) of the enclaves (Figures 5C,D). On both the surfaces, the
enclaves show irregular to chaotic, subrounded, curvilinear, and
extreme elongate geometry. Moreover, the enclaves exhibit
variable color indices and sharp contacts with host granites
(Figure 5C). On the horizontal surface, the enclave swarms
display elongate, and spindle shaped geometry whereas on the
longitudinal section they manifest closely spaced, platy, and
irregular shapes (Figure 5D). Hence, the true geometry of
enclaves cannot be easily discerned in the field.

Synplutonic (or synmagmatic) fine grained (mafic) to
porphyritic (hybrid) composite dykes intrude the granites at
some places. Some of them appear as pillow-like sheets. These
are the spectacular field features formed by the injection of mafic
or hybrid magmas into the mostly crystallized (>65%) host
granite magma (Figures 6A–D). These composite dykes and
sheets are emplaced and exposed on both sides of a hillock
covering a small area of about 5,000 sq meters. These dykes
and sheets are discontinuous and disrupted to form platy and

FIGURE 5 | (A,B) Elongated and stretched enclaves follow a flow direction of host granite magma. (C,D) Transverse and longitudinal sections of outcrops showing
diverse geometry of numerous enclaves that suggest the chaotic nature of some enclaves.
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parallel enclave swarms, which are oriented along the dyke strike
direction (NE-SW). They commonly have sharp contacts with
host granites (Figure 6A). A closer view of the dykes reveals their
mafic (Figure 6C) and hybrid (Figures 6C,D) characteristics.
Some offset of these injections form rounded to elliptical shaped
enclaves (Figure 6B), because of the heterogeneous viscosity of
host granite magma. This is primarily governed by differential
crystal contents that may allow dispersal of injecting mafic to
hybridmagmas as enclave globules. The synplutonic hybrid dykes
contain abundant felsic xenocrysts (Figure 6D) that are sourced
and injected from mafic-felsic mixed zone hidden at depth below
the host felsic magma. The host granite shows medium to coarse
grained equigranular textures.

A synplutonic mafic injection into partly crystalline (>65%)
granite is moderate to highly disrupted to form clusters of angular
(brecciated), subrounded, and elliptical enclave swarms
(Figure 7C), which are commonly aligned, disposed, and
broadly meander in the strike directions of N-S, E-W, and
NE-SW. The disruption of synplutonic mafic dykes (nearly
crystallized) into enclave swarms within the granite matrix
depends upon the rheology of felsic host magma. This
determines the yield strength (crystal-mush plus residual-
melt), viscous passages of mafic intrusion, and flow departure
of enclave swarms likely under the influence of tensional stress
applied to the felsic magma chamber with heterogeneous crystal
contents, as demonstrated in the model (Figures 7A,B). It is
remarkable that at this outcrop only a mafic synplutonic dyke has

intruded the granite whereas in the previously described outcrop
both the mafic and hybrid synplutonic dykes have injected into
the granite.

Microstructural Features
The modal mineralogy of the studied granites represents quartz
diorite, granodiorite, and monzogranite whereas enclaves are
micro-monzodiorite, micro-quartz diorite, micro-tonalite, and
micro-monzogranite. The granites and enclaves have a common
mineral assemblage (hbl-bt-pl-Kf-qtz-ap-zrn-mag ± ilm;
mineral symbols are after Kretz, 1983) but they differ in
modal proportion, the enclaves being enriched in mafic
minerals.

Microscopically, the enclaves exhibit typical magmatic
textures such as fine grained, equigranular, hypidiomorphic to
porphyritic (Figures 8, 9). The contacts between the enclaves and
host granites are sharp and wavy without any reaction signature
(Figures 8A,B). In some instances, the contact outline between
them is marked by the grain boundaries of either plagioclase or
poikilitic amphibole crystallized in the host granite (Figures
8A,B). The grain boundaries of these minerals are devoid of
any thermal effect and probably served as surfaces against which
the enclave magma globules might have undercooled uniformly,
and hence produced fine grained equigranular texture. In some
enclaves, biotite dominates over the amphiboles and vice versa
(Figures 8A,B). The presence of magnetite both in the enclave
and granite indicates oxidizing condition, which is a

FIGURE 6 | (A) Hillock showing disrupted mafic to hybrid synplutonic dykes and sheets injected into most crystallized granite. Note that synplutonic dykes and
sheets are discontinuous and have got disrupted appearing pillowed but they broadly follow the same strike direction (NE-SE). (B) There are numerous mafic to hybrid
enclave globules that are offset from dykes and sheets. (C)Closer view of part of mafic and hybrid synplutonic dykes. (D)Closer view of parts of hybrid synplutonic dykes.
Note the sharp contact and straight contact outline of dyke with host granite, and felsic (quartz and K-feldspar) phenocrysts (xenocrysts) present in the hybrid
synplutonic dyke.
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characteristic of calc-alkaline subduction zone magmatism. The
small flaky and platy biotites are commonly aligned along the
contact outline (Figure 8A), and hence could not penetrate the
semi-solid enclaves during the mingling event.

In a few enclaves, subhedral to euhedral amphiboles along
with a minor amount of biotite are clustered and form the mafic
aggregates (Figure 8C) that are in close association with tabular
plagioclase, interstitial quartz, and K-feldspar. Subhedral to
anhedral elongate amphiboles along with magnetite, quartz,
and plagioclase show magmatic flowage texture (Figure 8D).
Small acicular (needle-shaped) apatite crystals can also be
observed poikilitically enclosed within the interstitial felsic
minerals, which result from the undercooling of enclave
magma globules. Porphyritic enclaves frequently contain
plagioclase phenocrysts with normal, patchy, and oscillatory
zonings (Figures 9A,B). They exhibit resorption surfaces as a
corroded (dissolution) feature over which albitic rims are grown
(Figure 9B). In some cases, the albitic rim appears to be replaced
by sericite (Figure 9A). Synplutonic mafic dykes and sheets
(partly pillow-like) show a typical interlocking subpoikilitic
texture where plagioclase laths are partially enclosed by
anhedral to subhedral amphiboles and less frequently by
biotite, commonly associated with granular magnetite
(Figures 9C,D).

DISCUSSION

Diorite Xenoliths, Layered Granite, and
Cognate Enclave
Pre-existing stock-like dioritic bodies (Weinberg, 1997) are
intruded by the granite-leucogranite-pegmatite system, as
evident from the presence of dioritic xenoliths hosted in the
intruding lithological units (Figures 2A,B). It is likely that the
Neo-Tethyan oceanic subduction-related magmatism may have
been initiated with the emplacement of diorite followed by
profuse granite magmatism in the Ladakh Himalaya. The
rarely occurring layered structure (Figure 2C) in the granite,
exposed close to Sabu, is likely due to mafic-felsic mineral sorting
under the influence of double diffusion convection and gravity
settling operated in a magma chamber (e.g., McBirney, 1985), and
not due to the enclave-forming magmatic pulse. The hornblende
biotite granite is a major rock constituent of the Ladakh Batholith,
which commonly hosts the microgranular enclaves. However, a
biotite granite exposure (Figure 2D) contains a fine grained
mesocratic enclave with diffused contacts (Figure 2D), which
possibly represents cognate enclave of early crystallized fine
grained cumulus phases of host magma.

Evidence Against Restite Origin of Enclaves
in Ladakh Batholith
The origin of igneous enclaves hosted in the granites is still
debated (Clemens et al., 2018, and references therein). The
presence of mafic clots, inherited and metamorphic zircons,
and Ca-rich patchy zoned (resorbed) plagioclase in enclaves
favors the restite origin of enclaves (e.g., Chappell et al., 1987;
Chen et al., 1989; Huang et al., 2018). The studied enclaves from
Ladakh Batholith, however, lack partial melting textures,
deformational, or recrystallization features. In contrast, the
enclaves show typical fine grained to porphyritic textures,
acicular apatite, some elongated amphiboles (Figures 8C,D,
9A,B), sharp, and lobate enclave-granite contact outlines
(Figures 3–5), and patchy zoned core with a corrosive surface
of plagioclase phenocrysts (Figures 9A,B), which together
oppose the restite origin of enclaves. The observed anorthite
rim (bright gray zone) grown over the corroded margin of
plagioclase xenocrysts (Figures 9A,B) likely crystallized in a
new mafic-felsic magma mixed (high-T) environment (e.g.,
Hibbard, 1981; Andersson, 1988; Andersson and Eklůnd, 1994;
Kumar et al., 2017). The enclave-bearing granite may have,
however, experienced later tectono-thermal deformation (e.g.,
Siebel et al., 2012).

Disproving the Cognate or Cumulate Model
of Enclave Origin
The cognate model states that the enclave is a cumulate rock of
early crystallized cumulus phases or rapidly cooled (chilled)
border rock series of the host granite magma or more mafic
cogenetic fractions with trapped interstitial melts (e.g., Phillips
et al., 1981; Dodge and Kistler, 1990; Dahlquist, 2002; Esna-
Ashari et al., 2011; Xiao et al., 2020). The cumulate hypothesis
appears valid where the evidence of excessive nucleation of

FIGURE 7 | Hypothetical model illustrating the likely mechanism of (A)
injection of mafic magma into highly crystallized (>65%) felsic granite magma
that (B) ruptured and brecciated into angular mafic enclave swarms under the
extensional environment of granite magma, which is very well
demonstrated (C) at outcrop scale, similar to as shown in Kumar et al. (2016).
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ferromagnesian minerals by rapid cooling at the margins of a
shallow magma chamber and later its fragmentation and dispersal
by dynamic arc plutonism is preserved (e.g., Esna-Ashari et al.,
2011). Similarly, reheating and remelting of the mafic chilled
margin in the ascent conduits can be dislocated by dyke
injection and the host rocks can be fragmented to sizes similar
to the enclaves (e.g., Fernandez and Castro, 2018). However, in the
present case, numerous features such as sharp and crenulate contact
outline (Figures 3–5), xenocrystic-bearing (hybrid) enclaves
(Figures 9A,B), and large grain size contrast between the
enclave and host granite (Figures 8A,B) strongly oppose cognate
origin of enclaves. Coarse grained plutonic xenoliths have been
reported in the volcanic system (Cooper et al., 2019) but in the felsic
plutonic system, they represent early formed crystal mush pooled at
the base of the magma chamber (e.g., Wiebe et al., 1997).

Evidence of Mafic-Felsic Magma
Interaction, Mingling, and Undercooling
The mafic-felsic magma interacting system truly represents a
composite mafic-silicic intrusive system (Wiebe, 1980; Wiebe,
1994) typical to those observed in the present study.

Most magmas experience three rheological states during
crystallization, 1) Newtonian state at a low fraction of crystals
(F < 0.35), 2) Bingham behavior or stress thinning state with yield
stress (F � 0.35–0.65), and 3) solid-like behavior (F > 0.65)
(Fernandez and Gasquet, 1994, and references therein). Coeval

mafic and felsic magmas with contrasting temperatures and
compositions achieve thermal equilibration at which
crystallization is more advanced in the mafic magma rather
than the felsic magma. At this point, an inversion temperature
exists that governs relative viscosities of magmas such as mafic
magma becomes less viscous than felsic magma at a temperature
higher than the inversion temperature, and vice versa. Thus, the
generated inversion of viscosity between the coeval mafic and felsic
magmas can explain most of the features described here (e.g., Frost
and Mahood, 1987; Fernandez and Gasquet, 1994). However, an
open felsic magma chamber intermittently recharged by mafic to
hybrid magma pulses may behave in a different and more complex
manner. Magma convection ceases once the magma chamber
develops a crystallinity of ca 40–50% (Chen et al., 2018).

Enclaves of variable shapes and sizes are formed within the host
granite magma with a low crystallinity at an initial stage of its
evolution. The enclaves may lack a chilled margin because small
size enclaves (ca. 15 cm) are not capable to generate a thermal
gradient within it, and hence undercooled at a uniform rate. The
large sized enclave globules may, however, generate a thermal
gradient forming the chilledmargin and coarser core, because they
behave as micro-plutons. It is therefore suggested that each
enclave partially crystallizes as a discrete body with a unique
cooling history (e.g., Rooyakkers et al., 2018). Numerical modeling
of deformation of a crystal-rich enclave in a pure shear regime
suggests that enclave particles pack early, quickly erasing

FIGURE 8 | (A)Microphotographs showing magmatic textures and contact relationships between the enclave and host granite. Note the sharp contact of enclave
against the plagioclase of granite. Plane polarized. (B) Contact between the enclave and host granite is sharp and crenulated without any reaction signature even at the
microscopic level. Crossed polar. The base of the photograph equals 2.5 mm. (C)Mafic enclave enriched in amphibole and biotite, which are aggregated at places with
interstitial quartz and feldspars. (D) Elongated and anhedral crystals of amphiboles exhibit magmatic flowage. Note the acicular apatite in the interstitial felsic
minerals. Plane polarized. The base of the photograph equals to 2.5 mm.
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differences in initial content and building a force chain parallel to
the compression axis that transmits stresses to the host granite
(Burgisser et al., 2020). It is observed that the enclaves are not
deformed under solid state and display similar magnetic fabrics
that imply mafic magma globules coexisted and flowed with felsic
host magma (Zhu et al., 2018). The mineral constituents of the
studied enclaves of the Ladakh Batholith are solely unaffected by
deformation, recrystallization, and solid-liquid reaction rims
(Figures 8, 9). Vernon (1983) advocated if the magmatic
flowage passes through the enclaves, the homogeneity may
approach partial to complete disappearance of enclaves, as
observed at some places in the present case (Figures 4A,B).
This is a process leading to homogenization under a flow-
favoured magma mixing environment (e.g., Reid and Hamilton,
1987; Reid et al., 1983; Castro, 1990).

How are the enclaves with diverse geometry and nature
brought together at one place (Figures 3D, 5C) in a felsic
magma chamber? The most plausible reason is either whole
body convection current in the magma chamber or due to
gravity settling at an early stage of granite evolution (e.g.,
Wiebe et al., 2007). However, over the time scale of magma
mixing and mingling, convective patterns are difficult to
recognize (Montagna et al., 2015). The absence of mafic
schlierens among the randomly distributed enclave population
indicates the transportation of enclaves in a much weaker
medium (low viscosity) of host granite magma. Igneous

lamination and schlieren in granites (Figures 3B, 4A,B) are,
however, an expression of concurrent magma injection,
aggregation with or without mingling/hybridization,
hydrodynamic processes coupled with fractional crystallization,
and deformation during the growth of plutons (Barbey, 2009).
Thus, within a given volume of Ladakh granites and based on the
type and behavior of enclaves, one can recognize the comingling
and hybrid zones (e.g., Mariano and Sial, 1988; Perugini et al.,
2003). Although enclaves do not provide precise information on
the depth (pressure) where the felsic-mafic magmas were mixed,
the enclaves appear to have ascended from greater depths than
their surrounding host granites (Didier et al., 1989).

Schematic Model of Enclave Origin
Water content, crystal size, degree of crystallinity, mass fraction,
composition, and temperature determine the rheology of
interacting mafic and felsic magmas (Frost and Mahood, 1987).
Low viscosity, minimal rheological differences, and thermal
equilibrium between the coeval mafic and felsic magmas will
produce convective overturn (Huppert et al., 1984; Sparks and
Marshall, 1986) forming a hybrid magma zone hidden below the
felsic magma at crustal depth. Under the influence of turbulent
convection, the hybrid magma may also be injected into the
overlying felsic magma, forming either rounded to elongated
hybrid enclave globules or disrupted as angular brecciated to
dyke-/sheet-like enclave swarms depending upon the schedule of

FIGURE 9 | (A) Plagioclase xenocryst (Pl-xn) in the porphyritic (hybrid) enclave. Note the sericitization along the plane of corrosion shown by a white arrow. Crossed
polar. (B) Plagioclase xenocryst (Pl-xn) in porphyritic (hybrid) enclave showing patchy zoned core, corroded margin with the growth of An-rich plagioclase (bright gray)
and albite rim. Crossed polar. The base of the photograph equals 2.5 mm. (C) Predominating amphibole and subordinate biotite show subpoikilitic relation with
plagioclase laths in mafic synplutonic dyke. Note the quartz rinds in the center surrounded by minute dusty mafic grains. Plane Polarized. (D)Crossed polar view of
the same as (C). The base of the photograph equals 2.5 mm.
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its injection into evolving felsic magma with changing rheology
(e.g., Barbarin, 1989; Fernandez and Barbarin, 1991; Barbarin and
Didier, 1992; Fernandez and Gasquet, 1994; Kumar, 2014), as
shown by a schematic model (Figure 10). A large fine grained
circular composite enclave (Figure 4D) lacks zoning. Zoned
enclaves are commonly formed either by internal differentiation
mechanism or multiple magma mixing and mingling events from
magma source to emplacement level (Castro et al., 1990; Zhang
et al., 2014; Zhang et al., 2016) or in two different, deep and
shallower, magma chambers (Adam et al., 2019). However, the
observed composite enclaves (Figure 4D) appear to have formed in
an open felsic magma chamber that was essentially recharged
intermittently by mafic to hybrid magmas pooled just below the
felsic magma chamber (Figure 11), as similarly suggested for the
origin of composite and other types of enclaves found in the granites
of western Ladakh Batholith (Kumar, 2010a).

A few sheet-like bodies appear to be pillowed against relatively
cooler host granite magma (Figure 6A), similar to as described
elsewhere (e.g., Clemens et al., 2016). Mafic synplutonic dykes
contain a high volume of crystal content (Figures 9C,D) and hence
behaved more like a solid and become brecciated angular enclaves
(Figures 7A–C). Depending upon the viscosity of enclave-hosting
felsic magma and prevailing local strain, the structures like flowing
or static breccias may develop (Fernandez and Gasquet, 1994).
Brecciation and disruption (break-up) of mafic to hybrid
synplutonic dykes (Figures 6A, 7C) might have occurred within
a transition zone between the crystal mush (>65%) and melt
condition of host felsic magma (Janoušek et al., 2000;
Rooyakkers et al., 2018). However, the hybrid dyke magma
might have been sourced from the felsic-mafic hybrid magma
zone from where the other hybrid enclave globule types were also
derived (e.g., Kumar and Rino, 2006), and hence they could be
genetically linked (Zhang et al., 2014). These aspects need to be
tested further using geochemical and isotopic investigations.

CONCLUSIONS

• Melanocratic to mesocratic, mafic to hybridized, rounded to
elliptical microgranular enclaves hosted in the granites of Ladakh
Batholith are considered products of mingling and undercooling
of enclave magma globules against a relatively cooler, partly
crystalline felsic host magma in a plutonic environment.

• It is more likely that felsic magma chambers were fed
intermittently by mafic to hybrid magma pulses throughout
its crystallization history with progressively changing rheology,
and formed the enclave globules, synplutonic mafic dykes,
sheets, and disrupted enclave swarms.

• Large sized enclave globules may get disaggregated into several
smaller ones or partly to completely homogenize within the
host granites depending upon the crystal content (<35%) and
intensity of convection current prevailed in the chamber.

• The Ladakh Batholith is formed by composite plutons evolved
through multistage interactions of coeval mafic to hybrid and
felsic magma pulses.
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