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Snow models that solve coupled energy and mass balances require model parameters to
be set, just like their conceptual counterparts. Despite the physical basis of these models,
appropriate choices of the parameter values entail a rather high degree of uncertainty as
some of them are not directly measurable, observations are lacking, or values are not
adaptable from literature. In this study, we test whether it is possible to reach the same
performance with energy balance snow models of varying complexity by means of
parameter optimization. We utilize a multi-physics snow model which enables the
exploration of a multitude of model structures and model complexities with respect to
their performance against point-scale observations of snow water equivalent and
snowpack runoff observations, and catchment-scale observations of snow cover
fraction and spring water balance. We find that parameter uncertainty can compensate
structural model deficiencies to a large degree, so that model structures cannot be reliably
differentiated within a calibration period. Even with deliberately biased forcing data,
comparable calibration performances can be achieved. Our results also show that
parameter values need to be chosen very carefully, as no model structure guarantees
acceptable simulation results with random (but still physically meaningful) parameters.

Keywords: energy balance snow modelling, multi-physics model, parameter uncertainty, parameter calibration,
model complexity

1 INTRODUCTION

Information about seasonal snow cover such as the magnitude and timing of melt rates is crucial in
many regions of the world for a whole suite of interests (Viviroli et al., 2011), including water
resources management for hydropower generation (Beniston, 2012), drinking water supply and
irrigation (Barnett et al., 2005), or climate change, flood, drought and avalanche risk assessments
(Hamlet and Lettenmaier, 2007). To better understand and predict the respective snow processes,
many different physically-based snow models have been developed. This type of snow model follows
physical principles of energy and mass conservation in the snowpack. Even though the general
objective of accounting for physical processes is the same for all of these models, their numerical
representations differ in detail and complexity. We acknowledge that model complexity exists on a
spectrum rather than in distinct groups (Mosier et al., 2016). However, a categorization according to
internal layering is outlined here in order to clarify which models are addressed in this study. In our
analysis, we focus on snow models of medium complexity that account for the transport of mass and
heat across multiple snow layers. Unlike more detailed snow physics models such as SNOWPACK
(Bartelt and Lehning, 2002) that simulate detailed, real world snowpack layering based on common
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snow properties, the snow layers in medium complexity models
are numerical constructs and their number depends on internal
thresholds (of snow depth, for example).

Physically-based energy balance snow models are typically
developed and evaluated as 1D models. On the contrary, spatially
distributed snowpack simulations are performed in many
applications such as catchment-scale hydrological or regional
land surface modeling. These models, whether fully or semi-
distributed (e.g., Marks et al., 1999; Lehning et al., 2006; Liston
and Elder, 2006; Vionnet et al., 2012; Endrizzi et al., 2014),
account for spatially heterogeneous snow accumulation and
depletion conditions, and therefore often couple snowpack
thermodynamics and lateral transport processes.

All numerical snowpack simulations suffer from uncertainties
that can originate from themeteorological forcing data, themodel
structure, parameter choices or errors in the evaluation data. For
spatially distributed applications, uncertainties are also associated
with the spatial resolution of the simulations, especially if physical
processes for a certain application are relevant at much finer
scales and have to be parametrized (e.g., lateral snow
redistribution, shading by surrounding terrain, etc.).

Especially when snow models are not applied at well equipped
climate stations where observations of the required meteorological
variables are available (such as in spatially distributed applications
or when observations are missing at the point of interest), the
forcing data are subject to rather high uncertainties. These forcings
are usually obtained by regionalization of point-scale observations
or from outputs of a weather or climate model.

With respect to model structure, many different mass and
energy flux formulations exist that describe the physical processes
in varying detail. How amodel accounts for or simplifies a specific
process adds intrinsic uncertainty to simulations. Just like any
conceptual model, process based snowmodels require parameters
to be set. Where available, parameters with real world physical
counterparts can be obtained through field measurements or
adapted from literature. However, parameter values are often
abstract even in physically-based models, observations may be
lacking, or ones found in literature may be inappropriate. For
spatially distributed snow model applications, especially when
applied in very heterogeneous environments or at large scales, the
problem of suitable spatial parameter aggregation arises (Sun
et al., 2019).

Multi-physics snowmodels in which individual representations of
snow-physical processes can be switched between different options
have been found to be valuable tools for various applications. Such
model systems enable uncertainty quantification (Günther et al.,
2019) and help to generate ensembles for forecasting and assimilation
systems (Lafaysse et al., 2017) or other data driven fusion approaches
(De Gregorio et al., 2019). Multi-physics snowmodels paved the way
for uncertainty quantification in physically-based snow models, as
systematic and simultaneous investigations of various uncertainty
sources including the model structure, parameter choices and forcing
errors became possible. This allowed inclusion of interaction effects
between the uncertain parts in the model chain. Günther et al. (2019)
quantified the effects of various uncertainty sources on snow model
performance at the point-scale in a formal global sensitivity analysis.
They showed that input data uncertainty had the largest explanatory

power for model skill variance compared to parameter and model
structure uncertainty. Large effects of precipitation, incoming long-
and shortwave radiation and air temperature errors, in particular, on
snow mass predictions during the whole winter period became
evident. Model structural uncertainty was found to be introduced
primarily by model options for the surface albedo representation, the
atmospheric stability correction and the formulation of liquid water
transport inside the snowpack. This sensitivity analysis also
accounted for parameter uncertainty and hence allowed inclusion
of interaction effects in the sensitivity estimation.

Snow ensemble models with selectable model options of
different complexities (e.g., Essery et al., 2013; Essery, 2015)
can mimic a whole suite of existing snow models because
many of them draw on a limited number of process
representations (Essery et al., 2013). This allows for
experimental designs where the model complexity can be
controlled. Magnusson et al. (2015) and Essery et al. (2013)
found that a higher degree of model complexity above a
required minimum does not guarantee an improvement in
performance. As stated by Essery et al. (2013), calibration can
compensate for errors in model structure to some degree, so
structural uncertainty and parameter uncertainty are related.

In disciplines such as hydrology, model parameter calibration
is a common step in simulation experiments (e.g., in classical
rainfall-runoff modeling). Typically, after identifying the most
sensitive parameters, automated calibration schemes are set up to
minimize one or multiple error criteria in a calibration period
(Beven, 2012). Such automated calibration techniques, e.g.,
generic algorithms (Seibert, 2000), fit parameter sets efficiently
and avoid local error minima. However, even efficient algorithms
require many model simulations to find best model
performances. For more complex physically-based snow
simulations, the calibration routines are hence often limited by
their computational expense. Particularly in spatially distributed
applications of such complex snowmodels, parameter calibration
is often not feasible due to computational time constraints. This
holds even at point-scales for very detailed snow models
(Magnusson et al. (2015) lists a runtime for SNOWPACK of
190 s/year). Snow models that represent distinct physical
processes are often thought to be free from calibration needs
(Kumar et al., 2013). In fact, a common argument is that if the
physics is well understood and represented, then no calibration is
required. However, we argue that many energy balance snow
models also have a high degree of inherent conceptualization and
make significant assumptions about relevant processes (Mosier
et al., 2016). In practice, calibration is often hidden behind an
expert-knowledge based choice of parameter values for many of
these models. Essery et al. (2013) showed that model structures
that performed poorly with default parameter sets could indeed
be improved by calibration, but not to the level of model
structures that performed well without calibration. This
indicates that parameter optimization cannot fully compensate
for structural deficiencies. However, these experiments were
carried out for an exemplary case, rather than systematically
over a suite of model structures with varying complexities.
Furthermore, the calibration did not include all the parameters
that differed between the model structures compared. Hence, the
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degree to which parameter uncertainty can compensate structural
uncertainty has yet to be systematically investigated.

In many physically-based snow model intercomparisons,
parameter uncertainty is largely ignored and calibration is
minimized or even avoided. The initial hypothesis that motivated
this work was that parameter uncertainty introduces enough degrees
of freedom that any snow model can be tuned to the same optimum
performance. Hence, there is no significant difference in model skill
between optimized models (e.g., between simpler and more complex
models) in a given sample. A more interesting model feature - and
indeed one of the most frequently stated arguments for preferring
physically-based snowmodels over their conceptual counterparts - is
the capability of a model for generalization, i.e., its ability to perform
well out of sample. Therefore, in this study we test whether 1D
energy-balance snowmodels of different complexities can be tuned to
the same optimal performance by means of parameter calibration.
We further test to what degree this is also possible when models are
forced with flawed input data. Calibrated models are then evaluated
out of sample in time (in an evaluation period) and space (in a
distributed snow model) to assess well performing model structures,
and thereby especially focus on the role of model complexity.
Numerous snowpack simulations covering a suite of model
structures are evaluated at the snow monitoring station Kühtai
and the adjacent catchment of the Längentalbach (Tyrolean Alps,
Austria) by means of a multi-physics snow model.

2 METHODS

2.1 Study Site
The catchment of the Längentalbach is a small high-altitude
catchment with an area of 9.2 km2 and an elevation range of
1,900–3,010 m a.s.l. in the Tyrolean Alps (Figure 1). Three

quarters of the catchment consist of bedrock and almost
unvegetated coarse debris (Geitner et al., 2009). The hydrological
characteristics of the catchment are well studied and described
in detail by Meißl et al. (2017) and Geitner et al. (2009). The
catchment was chosen for its small size, and the availability of
meteorological forcing data and point and catchment-scale
evaluation data. The negligible forest cover and absence of
glaciers makes this catchment ideally suited for a snow model
intercomparison study.

2.2 Meteorological Forcing and Evaluation
Data
A snow monitoring station is situated in close proximity to
the catchment outlet. This station (Kühtai, 1,920 m a.s.l.)
provides recordings of the common meteorological variables
air temperature, relative humidity, precipitation and incoming
shortwave radiation. Measurements of snow water equivalent by
a 10 m2 snow pillow and snowpack runoff from an underlying
lysimeter are also available. A 25-years dataset is freely available
(Parajka, 2017). Recordings of wind speed and longwave
irradiance are, however, not available at the Kühtai station
during the years considered. We therefore utilize the 10 m
wind speed product from the now-casting system INCA
(Kann and Haiden, 2011) (1 km × 1 km cell size), which is
based on climate model output and station observations, and
accounts for acceleration and channeling of flow. For spatially
distributed simulations, longwave irradiance is estimated within
the model based on the other meteorological variables. For
point-scale simulations, an analogous computation of longwave
irradiance was performed offline. We compute snowfall and
rainfall fractions based on two wet-bulb temperature thresholds
between which mixed precipitation is allowed. The basin of the

FIGURE 1 | (A) Locations of the Längentalbach catchment (red outline), the gauging station (yellow triangle) and the Kühtai climate and snow monitoring stations
(green pentagon). (B) overview map.
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Längentalbach is gauged with regular updates of the appropriate
rating curves, and quality checked data are available since 1981 from
the Hydrographic Service Tyrol. Furthermore, available MODIS
snow cover maps (250m × 250m cell size) (Notarnicola et al.,
2013) enable additional evaluation of the catchment’s evolving areal
snow cover fraction.

Apart from the Kühtai station, four additional climate stations
are located near the catchment (< 15 km, ranging from 659 to
1,999 m a.s.l.). These stations are used to pre-compute mean
monthly elevation gradients of air temperature, precipitation
and dew point temperatures; this strategy allows rapid
regionalization of the forcing variables for the catchment
domain. Even though all stations used to compute
meteorological gradients are located below the altitude of the
catchment outlet, the extrapolation of station measurements
yields realistic values of simulated long term water balance
components. Applying pre-computed mean monthly gradients
results in average annual catchment precipitation of 1,346 mm/a
(2001–2015) and actual evapotranspiration (QET) of 127 mm/a.

The difference between the two (1,219 mm/a) is close to the
observed mean annual stream flow of 1,232 mm/a for the same
period, strengthening confidence in the applicability of the
extrapolated gradients.

In this study, we consider the 4 years (Figure 2) 2003/2004,
2005/2006, 2008/2009 and 2013/2014—each starting on 1st of
September and ending on 30th of August the following year.
Hereafter, we follow the short denotation of water years, e.g., 2004
for the period 2003/2004). No apparently erroneous or sparse
snow pillow or lysimeter recordings are present in these years.
Mean winter (Nov–Feb) air temperatures range from −5.8°C in
2006 to −2.5°C in 2014 at the Kühtai station. Spring air
temperatures (Mar–Jun) range from 2.1°C in 2004 to 4.0°C in
2014. Seasonal snow water equivalent usually peaks in late
March/mid April (between March 26 and April 4 in the
considered years) with maximum values ranging from 271 mm
in 2014 to 438 mm in 2004. Melt events in mid winter (Dec–Feb)
are rare and rarely produce any outflow from the snowpack. From
March 1 until peak snow water equivalent, melt events are a

FIGURE 2 | Daily recordings of snow water equivalent and lysimeter runoff (top row), MODIS snow cover fraction (cloud cover <10%) and catchment discharge
(center row), and air temperature and incoming shortwave radiation (bottom row) for 4 years (columns).
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common characteristic of the catchment. During this period, the
snowpack lost 28 mm in 2004, 45 mm in 2006, 1 mm in 2009 and
45 mm in 2014.

2.3 Snow Model
In this study, we evaluate various process formulations commonly
found in energy-balance snow models against point-scale and
spatially integrated observations using the Factorial Snow Model
(FSM) (Essery, 2015). FSM is a physically-based snowpackmodel of
medium complexity that accounts for mass and energy exchanges
between a maximum of three snow layers. FSM is a multi-physics
model, allowing inclusion and investigation of different model
structures in different simulation experiments. Five model
switches for options to represent snowpack processes are
available (absorption of solar radiation, heat conduction,
compaction, turbulent transfer of energy, and storage of liquid
water; Table 1). A simpler option (option 0) or a more complex or
prognostic option (option 1) can be chosen, for each of these
processes. All options can be switched on or off independently,
resulting in a total of 32 distinct model structures with different
degrees of complexity.

Point-scale simulations are carried out by the FSM stand-
alone version. For a spatially distributed application of the snow
model, FSM is coupled to the framework of the
hydroclimatological model AMUNDSEN (Strasser, 2008;
Hanzer et al., 2016) in this study. We utilize its ability to read,
process and regionalize meteorological forcings over a regular
grid in complex topography, accounting for shading of terrain,
preferential snow deposition, snow redistribution by wind and
snow-canopy interaction. In the model, unmeasured forcing
variables such as the longwave irradiance and the precipitation
phase can be parameterized. In the AMUNDSEN version we use
here, the coupled energy and mass-balance of the snowpack is
then solved at every grid point by FSM.

2.4 Simulation Design
Due to computational restrictions, we follow a two-tier
experimental design. Tier one consists of point-scale snow
simulations at the monitoring station Kühtai, carried out by
the 1D stand-alone version of FSM. Here, it is possible to

engage in costly optimization procedures. In tier two, the
spatially distributed coupled AMUNDSEN-FSM model is set
up for the domain of the Längentalbach catchment (gridsize
100 m by 100 m). The spatially distributed simulations only allow
a much smaller number of model evaluations. All simulations are
carried out over 4 years (1st of September to 31st of August) and
are based on an hourly time step. To evaluate individual model
realizations out of sample, the four years are grouped into two
separate periods (2004 and 2006; 2009 and 2014). Both periods
are used alternately as calibration and evaluation periods.

We use the 32 combinations of process representations in FSM
to mimic a suite of snow models (model structures) of different
complexities. As described in Table 1, each model option is
represented by an integer value of 0 or 1, with 0 being the simpler
option of the two. A model structure is thus described by a five
digit binary number representing the option choices for the five
process representations. The sum of the binary digits gives a
proxy for model complexity in an ordinal scale from 0 to 5.
Complexity values are not uniformly distributed across the 32
model combinations; more model structures of medium
complexity exist than simpler or more complex ones.

To include the influence of parameter uncertainty on
physically-based snow simulations, all 32 model structures are
configured with parameter values sampled from physically
meaningful ranges. Wherever possible, these parameter ranges
are taken from literature to ensure that values are typical and
generally used in current snow modeling exercises (see
Supplementry Table S1 for details). Depending on the FSM
configuration, between 7 and 14 parameters are perturbed. Four
parameters are shared by all FSM configurations, and individual
options have between 3 and 10 additional parameters (Table 1;
Supplementary Table 1).

2.4.1 Model Calibration
We test whether or not it is possible to reach the same
performance with various complex energy balance snow
models by parameter optimization. Parameter sets for all 32
model structures are optimized against snow pillow and
lysimeter observations (see Section 2.5 for details of the error
function) by employing a differential evolution algorithm (Price
et al., 2005). 150 populations, each consisting of 70–140members,
are evaluated in the course of the calibration procedure. This
results in at least 10,500 iterations per model structure. Visual
inspection suggests sufficient convergence of the results.

Even for small study sites where climate station recordings are
available, the generation of spatially distributed input data entails
uncertainties. Analogously, we test if a comparable error
minimum between different physically-based snow models can
be achieved even when they are forced with heavily flawed input
data at the point-scale. In this study, we utilize the forcing data
described in Section 2.2 (hereafter denoted as baseline). The four
forcing variables air temperature, precipitation, incoming
shortwave radiation and longwave irradiance have been shown
to greatly influence snow model skill (Günther et al., 2019). We
therefore specify eight additional input error scenarios by
applying biases one at a time to the baseline forcing, including
precipitations biases of −20/+30%, air temperature biases of ±3°C,

TABLE 1 | Process representations available in the factorial snowpackmodel FSM
and the number of perturbed parameters per option. The combination of
these model options result in 32 different snow model structures.

Model switch Option No. of perturbed
parameters

Albedo evolution 0: Function of surface
temperature

1

1: Decays with time 3
Thermal conductivity 0: Constant 1

1: Function of snow density 1
Snow densification 0: Constant 1

1: Compaction 4
Correction for atmospheric
stability

0: Off 0
1: On 1

Liquid water storage 0: Immediate drainage 0
1: Bucket model 1
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incoming shortwave biases of ±100Wm−2 (during daytime), and
longwave irradiance biases of ±25Wm−2. These errors reproduce
the 1st and 99th percentiles of the error distribution from
Günther et al. (2019). In reality, errors in the forcing data may
be the combined result of biases, seasonal or event-based errors,
random noise or errors in the spatial extrapolation of a signal
such as a gradient mismatch or special local meteorological
conditions not captured in the observations. However, biases
were found to have the largest influence on model performance
(Raleigh et al., 2015) and are convenient to apply.

2.4.2 Model Evaluation
The model’s capability for generalization is assessed and a
possible linkage to model complexity is explored by evaluating
calibrated model structures out of sample. To assess temporal
parameter transferability, each model structure is calibrated
against point-scale observations in period 1 and evaluated in
period 2 (and vice versa). Parameter transferability from point-
scale simulations to spatially distributed applications is assessed
by evaluating previously calibrated model structures at the
catchment-scale.

To put the global error minima obtained from the
optimization into the context of overall parameter uncertainty,
the relationship between errors in period 1 and 2 are explored in
more detail. We sample the whole parameter space with a
standard latin hypercube stratified sampling technique. Each
parameter is divided into bins (400 for point-scale and 20 for
catchment-scale simulation), out of which samples are taken
according to the overall number of parameters (resulting in
134,400 point-scale and 6,720 catchment-scale simulations).
This procedure maps a large part of the parameter space onto
output performance and hence enables a broader visualization of
the relationship between “in sample” and “out of sample”
performances.

2.5 Model Evaluation Metrics
Model simulations are evaluated against both point-scale and
spatially integrated (i.e., catchment-scale) observations. Model
errors are calculated with daily values for each water year. The
abilities of the model to predict snow water equivalent evolution
and snowpack runoff are assessed by the Kling-Gupta efficiency
(Gupta et al., 2009) only during periods when a snowpack is
present (either modeled or observed). These model efficiencies
are transformed into the model error terms ESWE and ER as
1—Kling–Gupta efficiency.

The ability of the model to correctly predict the timing of snow
disappearance is compared to a 250 m MODIS snow cover
product for cloud free conditions (Notarnicola et al., 2013).
Simulated and MODIS snow cover fraction are compared
during the melt out period starting with the first decrease in
simulated or observed snow cover fraction and ending with snow
free conditions in 85% of the catchment area. After omitting
cloud obstructed MODIS scenes, we calculate the mean absolute
error of observed and simulated snow cover fraction (ESCF).

Because this study focuses on snow modeling only, we want to
avoid possible feedbacks with further abstractions of hydrological

processes (e.g., water flow through the unsaturated and saturated
zone, channel routing etc.). Therefore, we refrain from a classical
hydrograph comparison and assess the performance of the
simulations from a water balance point of view. We therefor
evaluate the catchment-wide water mass temporally stored in the
snowpack from the accumulation period (i.e., winter) into the
depletion period (i.e., the spring freshet). Specifically, we compare
the volume of observed basin discharge during the main snow
melt season (i.e., starting with the first observed melt water release
at the Kühtai station and ending with a snow cover lower than 15%
as observed by MODIS) with the simulated water balance during
this period.We calculate a percentage water balance error (EWB) as

EWB � 100(Rc + Prain − QET − ΔS
Q

− 1) (1)

where it is assumed that the basin discharge (Q) equals the sum of
the catchment-wide water mass drained from the snowpack (Rc)
and the rainfall on snow free areas (Prain) minus bare ground
evapotranspiration (QET) and storage change (ΔS) at this seasonal
scale. During the frozen state of an alpine catchment, i.e., the
period where all precipitation is stored in the snowpack and
snowmelt is not yet occurring, observed baseflow is sustained by
subsurface storage (e.g., groundwater) (Stoelzle et al., 2019). We
estimate the storage change ΔS during each melt season as the
cumulated volume of baseflow discharge during the catchment’s
frozen state, assuming that the subsurface storage is recharged by
this volume during the spring freshet. The frozen state period is
identified by means of the lysimeter recordings.

Using multi-objective criteria in model selection has been
shown in numerous studies (e.g., Finger et al., 2015; Hanzer et al.,
2016) to reduce the risk that a correct model output is produced
for the wrong reasons (Kirchner, 2006). To combine multiple
objective functions within one simulation period, we calculate the
combined error function as the square root of the sum of squared
individual error terms. Model performance at the point-scale for
the simulation period i is described by the error function

ESWE,R;i �
�����������������������
E2
SWE;i1 + E2

SWE;i2 + E2
R;i1 + E2

R;i2

√
, (2)

where i1 and i2 denote the first and second years of period i.
Analogously, combined errors against spatially integrated

observations are computed as ESCF;i �
������������
E2
SCF;i1 + E2

SCF;i2

√
and

EWB;i �
������������
E2
WB;i1 + E2

WB;i2

√
. This error aggregation penalizes

model realizations that perform poorly in certain years and/or
for certain objective functions. The model error over both periods
is then simply given as the mean. All presented error terms imply
unity at a value of 0 and increase with decreasing model skill.

3 RESULTS

3.1 Calibrated Model Performances
We hypothesized that any model structure can have very similar
performance (close to an optimum value after calibration) when
parameter uncertainty is fully accounted for in physically-based
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snow models. To test this, all 32 model structures are calibrated
against point-scale observations of snow water equivalent and
snowpack runoff for the two simulation periods 2004, 2006 and
2009, 2014.

Figure 3 displays errors for all 32 model structures. Individual
model structures are grouped according to their model
complexity class for greater visual clarity. The boxplots
represent model responses over a large part of the parameter
space (as sampled from a latin hypercube of size 400 times the
number of parameters). This represents the distribution of model
responses when parameters are sampled randomly (but are
restricted to physically meaningful values), so model errors
will very likely be within this distribution if a parameter set is
chosen manually without any further restricting knowledge of the
system. As an example, model errors using the default parameter
values for each model option are displayed as gray points.
Furthermore, in order to provide context for the error values
shown, the averages of all model errors are displayed as a
horizontal dashed line. This represents the model skill that can
be expected (in average) when parameters are chosen randomly.
Blue squares show the errors of model realizations with
parameters optimized by a differential evolution algorithm
(i.e., parameters are specifically sampled to minimize errors).

Even though minimum errors do not quite converge to a single
optimal value for all models, it is evident that they are very
similar, and very low error values can be achieved for all model
structures and both simulation periods.

“Garbage in, garbage out” is a well known phrase in computer
science and mathematics, stating that the quality of output is
predetermined by the quality of the input data. However, we
argue that this simple relationship does not hold in snow
modeling (and environmental modeling in general). The
degree of equifinality in modeling systems due to uncertainty
introduced by inappropriate and incomplete representations of
physical properties and processes might even prevent the
modeller from noticing “garbage” input.

To demonstrate this, the average model performance after
parameter optimization for various input error scenarios is
shown in Figure 4. Each boxplot consists of 32 data points for
the 32 model structures, so a low spread in model performance (a
small boxplot) would indicate that all models can indeed be
calibrated close to the same value. In fact, this is observed not only
for the baseline scenario, but also for a air temperature bias of
−3°C and positive and negative shortwave and longwave
irradiance biases to some degree. Except for the longwave
error scenario, calibrated model skills are not statistically
significantly different from skills obtained with baseline
forcings (paired Wilcoxon signed-rank test, α � 10%). It
should again be noted that each boxplot displays theFIGURE 3 | Point-scale simulation errors against snow water equivalent

and snowpack runoff (ESW E ,R) for all 32 FSM model structures and different
parameter sampling techniques, grouped according to model complexity
class. Boxplots encompass all model evaluations obtained from latin
hypercube samples, gray points indicate model skill resulting from the default
parameter set, the horizontal dotted line shows the mean error over all model
realizations, and blue squares show the global error minima obtained through
calibration.

FIGURE 4 | Calibration (blue boxplots) and evaluation model errors (red
boxplots) for snowwater equivalent and snowpack runoff, averaged over both
simulation periods (ESWE ,R). Models are forced with unaltered input data
(baseline) and eight additional error scenarios including positive and
negative biases of precipitation (P), air temperature (Tair), incoming shortwave
radiation (Qsi) and longwave irradiance (Qli).
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calibration results of 32 different model structures, so minimum
and maximum values (i.e., the ranges) are important properties.
When forced with too little precipitation for example, half of the
models are still able to reach a very low (i.e., <0.5) model error. All
of these model structures employ a bucket model for liquid water
storage in the snowpack (option 1). While no model structure is
able to fully compensate for too much precipitation to a very high
level of performance, it is interesting to note that analogously the
better performing half of the models all drain liquid water
immediately (option 0). When forced with an air temperature
bias of +3°C, very good model skill (i.e., errors < 0.5) can only be
achieved by the 16 model structures that utilize the correction for
the atmospheric stability (option 1). For simulations with a
negative bias of longwave irradiance, all model combinations
with error values above 0.5 (i.e., the outliers) use the prognostic
albedo option (option 1), the correction for atmospheric stability
(option 1) and the liquid water storage option (option 1). When
forced with a positive bias of longwave irradiance, the three worst
performing models utilize the opposite options. Looking at the
evaluation errors (red boxplots) reveals that even when forced
with biased input data, evaluation performance can be similar to
an unaltered “baseline”. For an negative air temperature bias, a
negative bias of incoming shortwave radiation and a positive
longwave irradiance bias evaluation performance are statistically
indifferent to the baseline error scenario.

3.2 Evaluating Calibrated Model Structures
at the Point Scale
We proved that all considered model structures can reach very
high model skills via parameter optimization, but the level of trust
one can put in a model is very much dependent on its ability to
perform well out of sample, i.e., how robustly it performs in new
conditions or with new data. Here, we test how well calibrated
model structures can be applied in different years.

All model structures were calibrated during two years and
subsequently their performance was assessed during an
evaluation period of two other years. The calibration and
evaluation periods were then switched and the procedure was
repeated. Figure 5 shows average model errors during the
calibration period and corresponding errors during the
evaluation period. Calibrated model skills are very similar
across the model structures (0.32–0.42) but slightly smaller for
more complex models on average. The models show a much
larger range in evaluation errors (0.58–0.91), but they follow the
same general pattern with more complex models tending to
perform better than simpler ones. The dashed line in the
bottom panel indicates the maximum error of the ten best
performing model structures in the evaluation period. No
model of complexity classes 0 or 1 is part of this well
performing sub-ensemble. However, given the variability of
model errors within one complexity class, it is clear that
model complexity (or our model complexity proxy) alone is
not the dominating feature governing the calibration or
evaluation performance, which might be more influenced by
individual combinations of process options. While there is a
considerable spread of evaluation performances, no model

structure fails dramatically (an error value of 0.9 can be
achieved by a Kling–Gupta efficiency of 0.8 for snow water
equivalent and 0.4 for snowpack runoff in both years, for
example). However, some models do perform better than
others. Consequently, we will disentangle what separates these
better performing models from the model ensemble in
Section 3.4.

3.3 Evaluating Calibrated Model Structures
at the Catchment-Scale
Another way to evaluate a model’s performance out of sample is
to apply it at different locations. We expose the models to various
new conditions within a spatially distributed application over the
domain of the Längental and evaluate its performance integrated
over the whole catchment. As described before, many
considerations differ between point-scale and spatially
distributed applications of snow models, e.g., about important
length scales, parameter aggregation over grid elements or forcing
data uncertainty. However, if a model offers a strong linkage

FIGURE 5 | Calibration errors (upper panel) and resulting evaluation
errors (lower panel) averaged over the two simulation periods for point-scale
simulations of snow water equivalent and snowpack runoff (ESWE ,R). Models
are grouped according to their complexity class and the mean of each
class is indicated by the solid black line. A subset of 10 model structures with
the lowest evaluation errors is located below the dashed line.
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between point-scale and catchment-scale performance, this
would strengthen our trust in its robustness (i.e., in its ability
to generalize).

For each model structure, parameter sets optimized against
point-scale observations are applied within the spatially
distributed AMUNDSEN-FSM. The snow cover in the
catchment of the Längentalbach is simulated over the same
period and evaluated against spatially integrated snow cover
fraction and the spring water balance. In Figure 6, evaluation
errors against snow cover fraction and spring water balance are
shown for all 32 model structures according to their complexity
class. We see a similar picture for both snow cover fraction and
spring water balance compared to the point-scale evaluation
errors presented in Figure 5, in that mean model errors
decrease slightly with increasing model complexity, but
variability within single complexity classes is substantial (e.g.,
complexity class 2 covers almost the whole range of errors).

Evaluation errors range from 0.16 to 0.25 for snow cover fraction
and from 11 to 16% for the water balance. For context, the average
model error that can be expected on average, when parameters
are chosen randomly is 0.35 for snow cover fraction and 17% for
the spring water balance across all models. In contrast to the
evaluation errors at the point-scale (Figure 5) and for snow cover
fraction, where no model of class 0 or 1 is within the 10 best runs,
the evaluation error against the spring water balance is lowest for
one of the models of complexity class 1.

3.4 Can We Identify Model Structures That
Perform Better Than Others?
The ten model structures that show the smallest average evaluation
errors at the point and catchment-scales are selected and the
options that they use are displayed in Figure 7. It is evident
that there is no clear, consistent picture in terms of option
usage across the three evaluation criteria, except that they do

FIGURE 6 | Evaluation errors of the spatially distributed simulations.
Thirty two model structures are calibrated against point-scale observations of
snowwater equivalent and snowpack runoff and evaluated against catchment
average snow cover fraction (ESCF ; upper panel) and spring water
balance (EWB; lower panel). Models are grouped according to their complexity
class and the mean of each class is indicated by the solid black line. The 10
model structures with the lowest evaluation errors are located below the
dashed line.

FIGURE 7 | Model option occurrence (gray: option 0, blue: option 1) in
the the 10 best performing model structures. Best model realizations are
selected against point-scale observations of snow water equivalent and
snowpack runoff (top row), catchment average snow cover fraction
(center row) and spring water balance (lower row).
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not depend very much on the thermal conductivity option used.
While the option to correct for atmospheric stability seems
mandatory for low evaluation errors at the point-scale (all ten
runs use option 1), it has lower importance for the prediction of
catchment water balance and even less so for areal snow cover
fraction. In fact, only two model structures appear in all three
subsets: model 7 (0,0,1,1,1) and model 31 (1,1,1,1,1).

Evaluation performance of a previously calibrated model
is a very interesting feature that allows assessment of its
capability for generalization or overfitting. We acknowledge
that the global error minimum within the parameter space
(assuming it can be found by parameter calibration) is in
some sense the only point in this space where model
structures (and their responses) can be compared.
However, as we argued earlier, global parameter
optimization is not common in physically-based snow
modeling, largely due to the notion that it is not (or at
least should not be) required by these types of models, but
also due to computational restrictions - even for point-scale
applications of the most complex models. It is very unlikely
that a global error minimum can be found when parameters
are perturbed in a limited fashion around a default parameter
set based on expert knowledge. Hence, considering practical
limitations, the relationship between model performances
across sampled parameter values can be informative for
applications of such models. We therefore also sampled

the model parameter space to visualize model responses
over a large part of it, rather than for obtaining global
minima. Parameter values were sampled by a latin
hypercube (2,800–6,800 simulations per model) and the
model responses for simulation periods 1 and 2 are
visualized in Figure 8. Global error minima are alos
indicated (red squares) for each period. Six model
structures that show good performance according to the
mean evaluation error (and can be found in the subset of
the 10 best performing models) are presented as an example.
It is evident from visual inspection that the errors for model
structures 31, 27, and 19 are more strongly correlated
between the simulation periods. We observe a strong
correlation between all models using option 1 for albedo,
atmospheric stability and liquid water storage. We
acknowledge that some critical regions of the response
surface remain hidden (the red squares lie outside the
black circles), but model performance without calibration
by downhill methods is very likely captured by the latin
hypercube sample, and the density of the black circles
represents a proxy for the probability of reaching a certain
performance. This has implications for model
intercomparison studies (of these types of snow models)
where parameter sets are usually predefined. If models are
compared based on the results of a single simulation, the
outcome of this comparison can be manifold and will depend

FIGURE 8 | Relationships of point-scale snow water equivalent and snowpack runoff errors (ESWE ,R) between the two simulation periods 2004/2006 and 2009/
2014. Black circles are model errors for a large part of the parameter space sampled by a latin hypercube with size 400 times the number of parameters. Red squares
indicate evaluation errors in one season when calibrated to minimize errors in the other season.
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on the location of this simulation in the response surface. If
model structures 30 and 31 are to be compared, for example,
one may find that one model results in poor performance in
both years and the other results in good performance in both
years. However, as illustrated by the latin hypercube sample,
it is also possible for model structure 30 to simultaneously
show good performance in 2009/2014 and poor performance
in 2004/2006, while this does not seem possible for model
structure 31. Analogous graphs for all model structures can
be found in the Supplementary Figure S1.

Concerning relationships between combined point-scale
errors of snow water equivalent and snowpack runoff and
catchment-scale errors of snow cover fraction and spring water
balance, we can also identify specific correlation patterns and
link them with individual process options (Figure 9).
Computational effort for the spatially distributed
application restricts the analysis to a much smaller
ensemble (140–340 runs per model). When comparing
mean model errors for snow water equivalent and snowpack
runoff predictions with areal snow cover fraction, three basic
correlation patterns emerge. All models that do not correct for
atmospheric stability follow the general nonlinear pattern seen
for model structure 5, where the highest model skills for point-
scale simulations are associated with lower errors for snow
cover fraction, but a low error in snow cover fraction does not

guarantee good performance for snow water equivalent and
snowpack runoff. When the atmospheric stability option is
switched on but water drains immediately (storage option 0),
the relationship between snow water equivalent/snowpack
runoff and snow cover fraction errors shows a distinct loop-
like pattern where low snow cover fraction errors can be
achieved for very high snow water equivalent and snowpack
runoff errors. A more linear pattern emerges when both
options are switched on, especially when the albedo option
is also set to 1. The same three options also prove to be relevant
for determining the shape of the correlation between point-
scale model errors and water balance errors. In general, the
slope of the correlations tends to be positive when the
atmospheric stability option is switched on (e.g., models 30
and 31) and negative when it is switched off (e.g., model 5).
This correlation is stronger when the albedo option is also
switched off. When water storage is enabled, it is possible to
obtain low water balance errors and high point-scale errors at
the same time. It is also interesting to note that all model
structures that do not correct the turbulent fluxes for
atmospheric stability show much smaller maximum errors
for snow cover fraction and the water balance, compared to
all model structures where this option is switched on. Again,
analogous graphs for all model structures can be found in the
Supplementary Material of this manuscript.

FIGURE 9 | Relationship of mean model errors between point-scale snow water equivalent and snowpack runoff predictions (ESWE ,R) and catchment snow cover
fraction (ESCF ; top row) and catchment spring water balance (EWB; bottom row) for three different model structures. Black circles are model errors for a part of the
parameter space sampled by a latin hypercube of size 20 times the number of parameters. Red squares indicate mean evaluation errors when parameters have been
calibrated at the point-scale with a differential evolution algorithm.
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4 DISCUSSION

4.1 Parameter Uncertainty and Model
Performance
We have proved that it is possible to get a variety of snow model
structures close to an optimum value of an error function for
snow water equivalent and snowpack runoff prediction by
parameter optimization. Although the global error minimum
was not as wide as previously expected for the analyzed model
structures and finding it required specific sampling
(i.e., calibration), this shows that there are enough degrees of
freedom to do so within a physically meaningful parameter space.
Some model structures might converge earlier than others, but
final performances are close enough that meaningful separation
of model structures becomes questionable.

We extended the analysis further and showed that this is even
possible when the models are forced with considerably flawed
input data. Across a range of input biases, many models were
still able to reach a comparable performance optimum after
calibration. Even at monitoring stations with high-end
equipment and frequent visits, the quality of recorded data
will always be uncertain to some degree. This holds true even
more when unmeasured forcing variables have to be
approximated and for spatially distributed applications in
which various assumptions have to be made to extrapolate
point measurements. The applied forcing biases might seem
high when a model is run at the location of a climate station,
but they were selected to represent a range of errors expected
when observations are missing (e.g., in spatially distributed
applications). The ability to compensate for erroneous forcing
data is certainly not a desirable model feature, but we have shown
that compensation effects do exist and can be substantial. Such
compensation effects can hide even large errors in the input data
(if the models are not evaluated out of sample). Surprisingly,
even higher performances can be achieved with deliberately
modified input data after calibration for some model options
because they favor the compensation of specific forcing errors.
Our results confirm an increase in model performance
variability only for some error scenarios (as illustrated in
Figure 4).

Comparing models based on their performance out of sample,
as is common for conceptual models, is a more promising
endeavor. This is of course well recognized, and in recent
snow model intercomparison studies (Krinner et al., 2018)
several snow models have been compared at different locations
with very different climatic characteristics (and consequently
differing importance of processes), while preventing parameter
optimization by withholding evaluation data sets. In this work, we
perturbed parameters over a whole range of physically meaningful
values to highlight that parameter uncertainty can compensate
structural deficiencies for physically-based snow models.
However, if parameter uncertainty is reduced (e.g., by fixing or
reducing the ranges of themeasured parameters), we also expect that
differences in model structures will become more visible in the
results. Still, the point that there will be compensation effects to some
degree remains valid. Consequently, this study shows that model

intercomparisons in the face of parameter uncertainty should
ideally not be based on comparing single, uncalibrated model
realizations even for physically-based snow models, and the
impact of parameter uncertainty should be considered. A
comparison strategy based on an ensemble of simulations
could be a way forward.

4.2 The Role of Model Complexity
Previous model comparison studies have found that model
complexity above a certain minimum is required for good
results, but a higher model complexity does not necessarily
increase model performance (Essery et al., 2013; Magnusson
et al., 2015). In this study, we extend their analyses by
including parameter uncertainty and compare performances of
previously calibrated models. Our results confirm the findings in
that simpler models (of class 0 and 1) can be found less frequently
in a group of well performing simulations when evaluated out of
sample, and models of higher complexity do perform better more
frequently. The highest model complexity, represented by model
structure 31, does not show the highest model performance for
every evaluation criterion. Less complex models often achieve
better results. However, model structure 31 is found along with
model structure 7 (complexity class 3) in all well performing
subsets.

Furthermore, a model of higher complexity does not always
produce good or even acceptable results, even when parameters
are just perturbed within a physical meaningful space. When
looking at the whole model ensemble for the baseline input
scenario, we can find model realizations for each complexity
class resulting in unsatisfactory model performance (ESWE,E > 1.5,
ESCF > 0.4, and EWB > 30%). In fact, the highest errors can be
achieved by the more complex models. Model realizations using
the options for the atmospheric stability correction and water
storage in snow can produce high error values. When air
temperature is higher than the snow surface temperature, the
atmospheric stability option limits the transfer of energy to the
snow surface from the lower atmosphere, which can delay
modeled snowmelt for stable conditions. When this option is
switched off, stratification is neglected and there is no effective
limitation of the turbulent fluxes in stable conditions. Surface
temperature then reacts much faster to air temperature signals.
Liquid water storage inside the snowpack (option 1) allows for
refreezing of liquid water, e.g., during nighttime. For sites with a
strong diurnal cycle of energy input, or with very deep
snowpacks, this refreezing might be crucial for their mass
balance. However, large snow masses can build up and melt
can be delayed when refreezing is not parameterized correctly.
Although the combination of both options can lead to large errors
for snow water equivalent/snowpack runoff, snow cover fraction
and spring water balance, this combination can also be commonly
found in the subsets of the 10 best performing models.
Interestingly, all models that are never found in any of the
three 10 best model subsets do not utilize both options
together. This emphasizes that model complexity (or at least
the complexity proxy used here) is not sufficient to predict well
performing model structures. As each of the complexity classes
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1–4 include multiple model structures, they also include both
options for every process representation.

While the focus of this study lies on the intercomparion of
energy-balance snowmodels, for context we provide the results of
an analogous analysis for a simple temperature index (t-index)
snow model. The t-index model, consisting of an air temperature
threshold value and a varying air temperature-based snow melt
factor for early season and late season, is run at a daily time-step.
We found that for point-scale simulations of snow water
equivalent and snowpack runoff the t-index model did not
lead to lower error values as its physically-based counterparts,
neither in the calibration nor in the evaluation period (ESWE,R �
0.7 and 1.05, respectively). However, as suggested by Seibert et al.
(2018) for benchmarking hydrological models, when run with
randomly chosen parameter-sets (n � 1,000), the average time-
series of the resulting t-index ensemble performs surprisingly well
(ESWE,R � 0.95). In fact, for snow cover fraction this ensemble
average performs better than most individual realizations of the
physically-based models (ESCF � 0.13). Simpler models (or model
options) are usually computationally cheaper, and hence, facilitate the
use of ensemble-based methods (e.g., in operational applications).
Hence, future snow model intercomparison studies could allow
model output aggregation (e.g., ensemble statistics) for simpler
models and explore their benefits in more detail.

4.3Which Process Options are Used byWell
Performing Models?
What is a goodmodel might depend upon the specific application
of the model, e.g., for certain types of melt events, large domain
simulations or individual (critical) events (Bennett et al., 2013).
In this study, we asses model performance for the combined
prediction of point-scale snow water equivalent and snowpack
runoff, and catchment-wide snow cover fraction and water
balance over multiple seasons. Evaluating previously calibrated
model structures in time (during different seasons) and space (in
a spatially distributed application) did not reveal many consistent
results other than that the choice of model structures 7 (0,0,1,1,1)
or 31 (1,1,1,1,1) yield good evaluation results for all error criteria.
The visualization of model responses across a sample of the
parameter space (Figures 8 and 9) allowed the exploration of
model behavior beyond the singular relation of calibration-
evaluation performance. In this study, we did not present a
methodology to analyze the resulting correlation pattern
rigorously. To be robust, the development of such a strategy
would be best done at multiple sites with quality-checked forcing
and evaluation data, and where parameter uncertainty can be
reduced by observations. Instead, we primarily want to show that
there are distinct differences between model structures which
remain hidden if only single (calibrated or uncalibrated) model
realizations are evaluated. In our case, the response surfaces
identified that all four model structures that utilize the
prognostic option for albedo decay, correction of turbulent
fluxes for atmospheric stability and liquid water storage in
snow (1,x,x,1,1) offer a more distinct correlation between the
two simulation periods and between snow water equivalent/
snowpack runoff and areal snow cover fraction errors, and at

least do not have negative correlations between snow water
equivalent/snowpack runoff and water balance errors. Again,
how robust these findings are for other seasons and different
climates remains to be assessed in future studies.

4.4 What Prevents us From Obtaining More
Consistent Results?
In our analysis of a large snow model ensemble, consistent
findings across different performance metrics are rare.
Optimum model performance values achieved through
calibration are all below unity, with errors being slightly
smaller for period 1 (2004/2006) compared to period 2 (2009/
2014). Optimal skill values are not just governed by deficiencies in
the model setup (i.e., model structure and parameter values), but
also further degraded by input and evaluation data quality. How
much these individual components contribute to the degradation
of the optimum value remains unknown, but it is clear that the
forcing and evaluation data might play a major role for the
analyzed dataset. Some of the required inputs are not directly
observed and need to be approximated (precipitation phase,
longwave irradiance, wind speed; see Section 2.2). Also, there
might be erroneous recordings in the evaluation data. It is
possible that our “baseline” forcing scenario includes enough
uncertainty that findings might differ substantially when models
are forced with perfect (or better) data. An implicitly accepted
forcing (or evaluation) data error during the calibration phase
might have nonlinear consequences. There might be model
structures that are not sensitive to a specific kind of error or
even profit from such errors as they can compensate some of their
structural uncertainty. Indeed, we showed that some model
options can compensate specific forcing biases better than
others for the calibration period. Extending the analysis to
better equipped climate stations could be a valuable test, as
the correlated uncertainties of forcing data, model structure
and parameter choice could be reduced.

Assessing a model’s ability to predict a certain output by
condensing the deviations between a simulation and
observations to a single performance measure is always a
difficult task, as different performance metrics are sensitive
to different kind of errors. It also introduces equifinality in
the evaluation, as identical performance values can often be
achieved by different errors (e.g., over- and underestimation of a
variable can lead to the same Kling-Gupta efficiency value). This
is especially obvious when time series (e.g., snow seasons) are
compared. Just as different errors in the accumulation and
ablation season can lead to the same skill values for
individual years, combining evaluation results over multiple
seasons can yield the same values for a whole range of single year
performances. Aggregating results further into multi-objective
performance metrics results in the same kind of equifinality.
Lafaysse et al. (2017) illustrated equifinality in snow model
simulations by comparing two different model structures. The
authors showed that very different contributions of energy
fluxes to the energy balance can result in very similar
evaluation results and highlighted that this increases the
difficulty of selecting a best model.
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5 CONCLUSIONS

Previous studies have already investigated performances of
different snow model structures within multi-physics model
frameworks (Essery et al., 2013; Magnusson et al., 2015;
Lafaysse et al., 2017). However, parameter uncertainty was not
addressed in any of these analyses. As shown by Günther et al.
(2019), the uncertainty introduced by parameter choices
substantially contributes to variability in simulation accuracy.

In this study, we demonstrate that the influence of
parameter uncertainty is substantial even for physically-
based snow models. Due to parameter uncertainty, no
model structure guarantees sufficient model performance,
and care should be taken when selecting appropriate parameter
values. When sampling parameters from a physically meaningful
parameter space, models of different structures and various degrees
of complexity all reached similar good performance values.We further
showed that this is even possible (to some degree) when forcings are
biased. This indicates that parameter uncertainty has a substantial
capability to compensate for input errors. This compensation can even
hide large errors and could potentially lead to good results for the
wrong reasons.

We acknowledge that there are conflicting schools of thought
about how to derive parameters for physically-basedmodels - e.g.,
various types of modellers have been outlined by Pappenberger
and Beven (2006) according to their willingness to accept uncertainty
analysis and parameter calibration. However, we argue that for
energy-balance snow models of medium complexity (as
represented by the multi-physics model used here) a categorical
rejection of parameter optimization or perturbation is untenable,
given the degree of conceptualization with which physical processes
are represented in parts. Consequently, we argue that future
intercomparisons of physically-based snow models need to
consider this in their design. Evaluation of previously calibrated
models against point-scale observations of snow water equivalent
and snowpack runoff, areal snow cover fraction and catchment
spring water balance did not yield many consistent results. Only
two model structures could be found within subsets of the 10 best
performing models for all three evaluation metrics (structures 31 and
7).We further reason that, instead of comparingmodel responses for
single realizations (as has been done in the previously stated studies),
comparison of model ensembles covering possible parameter values

(which might be further restricted by measurements) could be a way
forward. Analyzing relationships in model responses between
different outputs (e.g., between different seasons, during different
kinds of melt events, or between different state variables) while
considering parameter uncertainty (e.g., through ensemble
simulations) might offer a possibility to compare across model
structures in a more comprehensive way. However, such a robust
methodology is yet to be developed for this. We have merely
introduced the idea and shown exemplary results for our dataset.
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