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The size of continents is an essential parameter to understand the growth of the continental
crust and the evolution of the solid Earth because it is subject to tectonism and mantle
convection and affects the preservation of the crust. This article reviews the secular change
in the size of continents on the early Earth, focusing on terrigenous clastic rocks, especially
quartzose sandstones occurring on relatively large continents. The earliest continental
crust in the Hadean or early Archean was produced with a width of ∼200–500 km, similar
to modern oceanic island arcs along subduction zones or oceanic islands in hot spot
regions by mantle plume heating. Through the collision and amalgamation of such primitive
continental crusts, continental blocks over 500 km in width and length evolved and
appeared by ca. 3.5 Ga. Through further amalgamation, during ca. 3.3–2.5 Ga, the
Archean continents emerged with widths and lengths greater than 1,000 km, which
were still smaller than those of modern continents. Continents with widths and lengths
of nearly 10,000 km have existed since ca. 2.4 Ga (early Proterozoic). Further analyses of
the composition and formation mechanism of clastic rocks will help reveal more
quantitative secular changes in the sizes of continents.
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INTRODUCTION

The bimodal topography, land masses consisting of several major continents with islands of various
sizes and an ocean with an average depth of nearly 4,000 m, is unique to the Earth among other
planets of our Solar System. Since the establishment of plate tectonics (Wilson, 1965; Morgan, 1968),
the subduction zones of oceanic plates are characterized by the production of granitic continental
crust through arc magmatism and its subsequent reworking by sedimentary and metamorphic
processes (Dewey and Bird, 1970; Matsuda and Uyeda, 1971). Recycling of the continental crust into
the mantle is also significant in the subduction zones through tectonic erosion (subduction erosion),
sedimentary subduction, and subduction of the island arc crust (e.g., von Huene and Lallemand,
1990; Scholl and von Huene, 2007, 2009; Clift et al., 2009; Yamamoto et al., 2009; Stern and Scholl,
2010). The growth history of the continental crust is a cumulative result of the production, recycling,
and reworking processes; in addition, it has been debated for a long time.

By compiling the worldwide whole-rock geochronological data available before the 1960s, Hurley
and Rand (1969) demonstrated the age structure of modern continents. They clarified that Archean
crusts occupy only 20% of the total continental volume. Considering the influence of crustal
reworking and recycling on the age structure of the modern continents, many studies aiming to
reconstruct the growth history of the continental crust appeared (e.g., Fyfe, 1978; Armstrong, 1981;
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O’Nions et al., 1979; Dewey andWindley, 1981; Allègre and Luck,
1980; McLennan and Taylor, 1982; Reymer and Schubert, 1984;
Figure 1). After the technical development and popularization of
in-situ zircon U–Pb dating using SHRIMP (Froude et al., 1983;
Stern et al., 2016) or LA-ICPMS (Hirata and Nesbitt, 1995) and
zircon Lu-Hf isotopic analysis (Thirlwall and Walder, 1995;
Vervoort et al., 1996; Knudsen et al., 2001; Griffin et al.,
2004), many studies have contributed to the elucidation of
continental growth history based on zircon analyses and data
compilation (Rino et al., 2004; Rino et al., 2008; Condie et al.,
2009; Hawkesworth et al., 2009; Belousova et al., 2010; Voice
et al., 2011; Dhuime et al., 2012). By comparing the age structure
given by Rino et al. (2004; 2008), older crust (before ca. 2 Ga) is
known to be rare in modern continents, even after the exclusion
effect of the intra-crustal sedimentary processes, as previously
shown by Hurley and Rand (1969). Furthermore, based on
compilations of the zircon U–Pb age and Lu–Hf isotopic
analyses, several studies considered the crustal reworking in
continental growth models (Belousova et al., 2010.; Komiya,
2011; Dhuime et al., 2012; Roberts and Spencer, 2015; Cawood
and Hawkesworth, 2019). These studies can possibly evaluate the
relative degree of crustal reworking and the fraction of new crust
from the depleted mantle at each period. However, they cannot
directly determine the volumes of crustal production and
destruction because some assumptions for geotectonic
processes are required. Subsequently, advanced statistical
techniques or box model calculations have been adapted to
interpret the zircon data compilation (Cheng, 2017; Puetz
et al., 2017; Dhuime et al., 2018; Korenaga, 2018; Puetz and
Condie, 2019), but the estimation of crustal production and
destruction through time are still unclear.

To improve the understanding of the growth history of
continental crusts, this study focuses on the secular change in
the size of continental blocks as a major factor in determining the
preservation and destruction of continental crust and as a
physical parameter to constrain the evolution of the solid
Earth. Previous studies on continental growth simplified the
crustal differentiation and did not focus on a concrete
geological entity of the continental crust. When the total
amount of continental crust in the early Earth was not large,
continental crusts should have existed as small continental blocks.
With the increase in the total continental crust amount, the size of
continental blocks should have increased through repeated
amalgamations of smaller continental blocks. The size of
continents affects the preservation of old crusts and the
growth rate of the total amount because the production and
destruction of new and preexisting continental crusts have
occurred along the plate subduction zones, respectively. In the
modern continental crust, the preservation of old crust occurs in
the interior of continents, several hundred kilometers away from
subduction zones (Figure 1). In contrast, if the size of continental
blocks on the early Earth was substantially smaller than that of
modern ones, the ratio of plate subduction margins to the total
mass of the continental crust should have been larger than the
present ratio. Additionally, small continental blocks are easily
recycled into the mantle through continental subduction. As a
result, the old crust was rarely preserved on the surface of the
early Earth (Figures 2A,B). In the early Earth, plate subduction
could have been limited, and the production of felsic rocks was
mainly caused by a mantle plume (Figure 2D: e.g., Sizova et al.,
2010; discussed in the next chapter). Before the start of plate
subduction, the production and destruction of continental crust

A B

FIGURE 1 | (A) Previous growth models of the continental crust (F1978: Fyfe, s1978; A1981: Armstrong, 1981; MandT 1982: McLennan and Taylor, 1982; MandB
1994: McCulloch and Bennett, 1994; B+2010: Belousova et al., 2010; D+2012: Dhuime et al., 2012). Black solid and dashed lines show the age structure of the modern
continents based on geochronological data (Hurley and Rand, 1969; Rino et al., 2008) which commonly indicate the rareness of the ancient crust in modern continents.
The growth curves of the continental crust differs largely between studies, considering the great effects of crustal recycling/reworking (red lines) and the limited
effects of crustal recycling/reworking (green lines). (B) Geotectonic map of the modern continents with localities of Hadean zircon grains modified after Tsutsumi et al.
(2018) (GS, Greenstone). The abundant occurrence of Hadean detrital zircon is limited in ca. 3.0–3.3 Ga sandstone and quartzose clastic rocks (Froude et al., 1983;
Compston and Pidgeon, 1986; Wilde et al., 2001; Cavosie et al., 2007; Nebel et al., 2014; Valley et al., 2014; Nelson, 2002; Wyche et al., 2004; GSWA; 2005; Wyche,
2007; Paquette et al., 2015; Byerly et al., 2018), even though many odd localities have been reported (Mojzsis and Harrison, 2002; Iizuka et al., 2006; Martel et al., 2008;
Diwu et al., 2013; Nadeau et al., 2013; Cui et al., 2013; Xing et al., 2014; Li et al., 2016).
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were inactive and would have occurred regardless of the size and
other topographic features of the continental blocks. Nonetheless,
the size of continents would significantly contribute to the
preservation of the crust immediately after the plate
subduction had begun. Furthermore, the secular change in the
size of continents possibly reflects the evolutionary history of the
planetary interior because amalgamation and rifting of
continental blocks are controlled by plate motion and mantle
convection. To determine the growth history of the continental
crust, numerical calculations involving mantle convection and
tectonic activities are ultimately necessary. Geological
observations and petrological-geochemical signatures can work
as constraints in the numerical simulation. Among them, the size
of continents can be used more directly for such geotectonic
simulations, as a special physical parameter. This study aims to
examine the existing knowledge regarding the size of continents
on the early Earth. Prior to this, the tectonic regime on the early
Earth, especially with regard to the time of initialization of plate
subduction and the generation of the granitic continental crust, is
reviewed in the next section.

START OF PLATE SUBDUCTION AND
PRODUCTION OF GRANITIC CRUST

There are many theories on the initiation of plate tectonics or
plate subduction. Hereafter, this paper uses the term “plate
subduction” to indicate the sheet-shaped continuous dropping
of the lithosphere composed of the mafic oceanic crust and
ultramafic mantle rocks into the deeper portion of the mantle.
This definition offers a clear distinction between the Archean
plate subduction and modern-style plate tectonics, which implies
a continuous subduction of large, cooled, and rigid oceanic plates

(Figures 2A,B). Archean oceanic plates and their subduction
would have been different from their modern counterparts. Due
to the hotter Archean mantle (Herzberg et al., 2010), more
extensive partial melting occurred at the mid-oceanic
spreading center to form an Archean oceanic crust that was
less depleted and over 4–5 times thicker than at present (∼7 km)
(Sleep and Windley 1982; Abbott et al., 1994; Hastie et al., 2016).
The Archean oceanic plates are considered to have been subjected
to shallow dip angles underneath the other oceanic plates
(Figure 2C; de Wit and Hart, 1993; de Wit, 1998; Komiya
et al., 2002; Smithies et al., 2018; Martin et al., 2005; Ernst,
2009; Hastie et al., 2016; Ernst, 2017).

Clear geological records of plate subduction are as old as ca.
3.0 Ga (late Archean). Through geological observations and
seismic profiling, the internal structures of cratons have been
investigated. Many cratons preserve the crustal structure of
terranes arranged in parallel and bounded by low-angle faults,
suggesting the downward stacking of crustal blocks by repeated
subduction and accretion processes; e.g., the Superior (Ludden
and Hynes 2000; White et al., 2003; Angus et al., 2009), Yilgarn
(Blewett et al., 2010; Czarnota et al., 2010; Goscombe et al., 2019),
and Dharwar cratons (Mandal et al., 2017). A recent
paleomagnetism study of the Honeyeater Basalt in the East
Pilbara Craton suggests a modern plate motion velocity of
≥2.5 cm/year between ca. 3.4–3.2 Ga (Brenner et al., 2020).
Conversely, plate subduction before ca. 3.0 Ga is controversial,
as units >3.0 Ga are much rarer and their original geological
structures are not well preserved. Several studies have identified
ca. 4.0–3.8 Ga accretionary complexes with duplex structures and
oceanic plate stratigraphy from the Isua Greenstone belt and
Nulliak supracrustal rocks (Komiya et al., 2002, Komiya et al.,
2015; Shimojo et al., 2016; Komiya et al., 2017). These could
provide an important view of the early Earth subduction

FIGURE 2 | Difference in the preservation of older continental crust from subduction orogen depending on the size of continental blocks (A) In a large continent,
there aremany areas of continental interior far from the subduction orogen and the older crust can be preserved (B) In a small continental block like the oceanic island arc,
most of it is covered with subduction orogenic belt and there is only limited preservation of relatively older crust (C) Archean subduction model similar to modern oceanic
island arcs (D) Archean pre-subduction model.
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tectonics, but these interpretations still do not reach a consensus.
Recent studies on the petrology and geochemistry consider that
the start of plate subduction was between 3.5 and 3.0 Ga (e.g.,
Dhuime et al., 2012; Naeraa et al., 2012; Griffin et al., 2014;
Dhuime et al., 2015; Tang et al., 2016; Brown and Johnson, 2018;
Smithies et al., 2018; Smit et al., 2019), even though other studies
argue that subduction was initiated in the early Archean or
Hadean eras (e.g., Harrison, 2009; Hoffman et al., 2011; Polat
et al., 2011; Furnes et al., 2014; Komiya et al., 2015; Ernst et al.,
2016; Koshida et al., 2016; Greber et al., 2017; Maruyama et al.,
2018; Sawada et al., 2018; Liu et al., 2020; Nutman et al., 2020).
However, most of them have implications on the basis of some
geochemical signatures. In these studies, a high occupancy of
mafic rocks on the early Archean crust has often been regarded as
an indication of no plate subduction. Instead, plume-related
crustal production processes, such as oceanic islands or
oceanic plateaus, have been envisaged for the ancient period.
Even if plate subduction had started, a small amount of felsic crust
would have occurred in the initial period because the first plate
subduction should have started between two oceanic plates. For
example, in oceanic island arcs like the Izu-Bonin-Mariana (IBM)
arc occurring on a subduction zone between the Pacific Plate and
Philippine Sea Plate, geophysical observations have detected
primitive granitic continental crust with a thickness of over
20 km, in contrast to the basaltic or andesitic islands above sea
level (Suyehiro et al., 1996). Most of the geochemical studies listed
above mainly reflect the composition of materials in limited parts
of the crust or mantle where the initiation of plate subduction is
difficult to judge. Therefore, the discussion of subduction
initiation is still inconclusive.

Limited plate subduction in the early Archean era has been
suggested by estimating the buoyant oceanic plates because of the
thick basaltic crust, approximately five times thicker than the
present crust (Davies, 1992; Davies et al., 1995), or the highly
depleted and mechanically strong peridotitic lithosphere
(Davaille and Jaupart, 1993; Solomatov, 1995). Under a
tectonic regime without plate subduction, a single plate
referred to as the “stagnant-lid” covered the surface of the
Earth, and crust formation was caused only by mantle plume
upwelling (Solomatov, 1995). Recent numerical simulations of
mantle convection combined with crustal production processes
suggested a slightly more complex model of “lid-plume
tectonics,” wherein the intermittent sagging and dropping of
the mafic crust into the mantle is assumed, known as
sagduction (Sizova et al., 2010; Thébaut and Rey, 2013). They
considered that Archean felsic continental crusts were generated
through the melting of the mafic crust sagging into the mantle.
Sagduction was originally proposed by the geological observation
of Archean granite-greenstone terranes (Gorman et al., 1978;
Goodwin and Smith, 1980). The similarity between the
sagduction model for the Archean granite-greenstone terranes
and geosyncline model for Pacific-type orogenic belts should be
noted, which was predominant as a pre-plate tectonics idea
(Dewey and Bird, 1970; Isozaki, 1996).

However, the claims against the Archean plate subduction can
be refuted by several factors. Firstly, recent modeling of the MOR
melting and thermal structure of the lithosphere based on the

assumed Archean geotherm suggests that the Archean oceanic
lithosphere was dense enough to subduct into the mantle (Weller
et al., 2019). Furthermore, the thick mafic crust on the oceanic
lithosphere can promote plate subduction because of the mineral
phase-change to eclogite, which is denser than the mantle
peridotite (Komiya et al., 2002; Komiya et al., 2004). Secondly,
most numerical simulations of mantle convection have a serious
problem in explaining plate subduction because they adopt a
yielding model to express the behavior of the lithosphere
(Tackley, 1998; Tackley, 2000). As observed in many
geological records of orogenic belts and rifted basins, a
fractured lithosphere does not adhere again, and
convergence boundaries continue to exist at almost the
same position; however, numerical simulations with a
yielding model cannot reproduce such features (Ogawa,
2014). Additionally, the Peierls mechanism in rock
rheological strength, which is exponentially dependent on
stress, enhances the deformation at a significantly lower
stress than the rheology with diffusion creep and power-
law creep (Tsenn and Carter, 1987; Katayama and Karato,
2008; Demouchy et al., 2013; Azuma et al., 2017). This is
presumed to have contributed to promoting plate subduction
in the early Earth. Recently, several researchers have pointed
out that the first fracture of the stagnant-lid lithosphere,
produced by the solidification of the magma ocean, would
have been shredded by meteorite impact events and allowed
the initiation of subduction (Maruyama et al., 2018; O’Neill
et al., 2020).

The petrology of the Archean tonalite-trondhjemite-
granodiorite (TTG) series has been discussed with strong
relevance to the initiation of plate subduction. The trace
element composition of the Archean TTG is depleted of heavy
rare earth elements and lacks Eu and Sr anomalies, which reflect
the presence of garnet and the lack of plagioclase in the residual
material (Barker and Arth, 1976; Smithies et al., 2003; Rapp et al.,
2003; Martin et al., 2008). Two types of environments for the
Archean TTG magma genesis have been advocated by many
researchers: the hot plate subduction zone (Figure 2C; Martin
et al., 2008; Hoffman et al., 2011; Nagel et al., 2012; Laurie et al.,
2013; Martin et al., 2014; Roman and Arndt, 2020), and mantle
plume heating of preexisting thick mafic crust (Figure 2D; Van
Karnendonk et al., 2007; Kamber, 2015; Palin et al., 2016;
Johnsson et al., 1991). The plume heating model is apparently
supported by the computer simulation of the early crust and
upper mantle evolution. This model showed a similar mechanism
to produce felsic magma during the transition from the stagnant-
lid regime to the plate subduction regime (Sizova et al., 2010). The
computer simulation is based on the stagnant-lid model for the
initial stage of the early Earth and possesses the problems
discussed above. Conversely, the plate subduction model for
the Archean TTG genesis has the strength to supply hydrated
metabasite into the deeper regions where garnet is stable.
Presently, it is difficult to definitively reject either model. Both
plate subduction and plume heating processes for the TTG
genesis may have occurred once in the Archean crust.

To date, there is no consensus on the timing of the start of
plate subduction in the Archean or Hadean eras. Ancient plate
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subduction was probably intertwined with the mantle plume
activity (Wyman et al., 2002), which would have been similar
to the back-arc spreading activity in the Phanerozoic Earth. Based
on the two models of the early Earth tectonic regime, the next
chapter discusses how the primitive continental crust, such as the
oceanic island arc or hot spot oceanic islands, developed into
massive continental blocks.

SIZE OF CONTINENTS OVER TIME

Size of Continents and Terrigenous Clastic
Rocks
It has long been postulated that continents in moderate size
formed through collision and amalgamation of small continental
blocks (de Wit and Hart, 1993; Hoffman, 1988; Hoffman, 1989),
but the actual size of these small blocks has not been well
understood yet. Based on modern continental blocks and plate
margins (Inman and Nordstrom, 1971), this study classifies
continental blocks as follows. Class 1 includes ca. 200 km wide
continental crusts without large exposure above sea level like the
IBM island arc along the Pacific subduction zone or the Hawaiian
islands on a hot spot. Class 2 includes ca. 500 kmwide continental
blocks like the Japanese islands and Greater Sunda islands along
the subduction orogenic belts or Iceland on a hot spot. Class 3
includes continental blocks greater than ca. 1,000–3,000 km in
width and length like Greenland and Australia. Class 4
continental blocks are above ca. 5,000–10,000 km in width and
length like North America. Considering this classification of
modern geographic features as a guideline, we discuss the
secular change in the size of continents over time.

The modern extant pre-Cambrian terranes can constrain the
minimum size of continents at that time, but we need to
investigate the actual size of the continents from geological
records taking into account later continental break-up. To
estimate the land surface area of continental blocks indirectly,
terrigenous clastic rocks are useful because their composition and
stratigraphy reflect the size of the provenances. Small continental
blocks with lengths and widths less than several tens of kilometers
yield only immature clastic rocks with compositions close to
rocks in the provenance and various grain sizes. Larger
continental blocks with lengths and widths of several hundred
kilometers can produce clastic rocks comprised of detrital grains
sorted by mineral species and grain size through prolonged
weathering. On even larger stable continental areas, highly
quartzose sandstones are characteristic of the cratonic cover
(Dickinson et al., 1983). Subsequent studies, especially those of
the Orinoco River in South America, have indicated that tropical
weather and low relief topography play major roles in the
formation of quartzose sandstone and the size of continents
do not relate to its formation directly (Johnsson et al., 1991).
Nonetheless, it is important to note that many quartzose
sandstones have actually been observed as cratonic cover
sequences on large continents. This geological observation is
likely related to preservation potential of sedimentary basins.
Additionally, the thickness of such quartzose sandstone strata is

mainly controlled by tectonic setting. In Proterozoic and
Phanerozoic continents of class 3 or 4, several kilometers thick
quartzose sandstone strata deposited on continental rift basins
and passive continental margins over nearly 100 million years as
the continents were large enough to exist stably for a long period
of time. Based on these considerations, here we focus on the
quartzite sandstone for the estimation of the size of continents in
conjunction with lithology of the sedimentary sequences.

Detrital zircon age patterns from sandstones also have the
potential to estimate the size of the provenance area. It is well
known that the complexity of a detrital zircon age pattern is
largely controlled by the topographic features and tectonic setting
(Cawood et al., 2012; Aoki et al., 2014). In sedimentary basins on
small continental blocks, such as island arcs and oceanic islands,
most detrital zircons are derived from young igneous rocks
related to arc magmatism, and zircons far older than the
depositional age are not found. In contrast, sedimentary basins
in rift settings or passive margins on large continents have a
supply of detrital zircon from multiple aged crusts in their
provenance.

∼1.8Ga Continents in Modern Size
The Rodinia Supercontinent, formed ca. 1.2–0.8 Ga and rifted ca.
0.75–0.6 Ga, is the oldest supercontinent whose paleogeography
is well constrained by paleomagnetic analysis and the succession
of geological units (Moores, 1991; Karlstrom et al., 2001; Li et al.,
2008; Evans, 2009). Although several Proterozoic supercontinents
before 1.3 Ga have been proposed such as Columbia (Rogers and
Santosh, 2003), Sclavia, Superia and Vaalbara (Bleeker, 2003), the
paleogeography and size of the continents are still under debate
(e.g., Bradley, 2011; Nance and Murphy, 2013; Piper, 2018).
Nonetheless, the 2.0–1.8 Ga shield of the “Nuna continent” is
preserved in modern North America and is one of the most
substantial records for the existence of a continent above
5,000 km in width and length at least. Moreover, it also
provides evidence for the successive growth of the continent
size during the Proterozoic era (Hoffman, 1988; Whitemeyer and
Karlstrom, 2007). The ∼1.8 Ga middle Proterozoic quartzose
sandstone stratum is over 1,000 m thick that occurs
worldwide; for example, the ca. 1.7–1.6 Ga Sioux and Barron
quartzites in the southern Lake Superior region of North America
(Southwick and Mossler, 1984; Holm et al., 1998), ca. 1.8–1.6 Ga
Waterberg Supergroup in southern Africa (Meinster and Tickell,
1975; Tankard et al., 1982), the ca. 1.7–1.6 GaMcArthur Group in
Australia (Rawlings, 1999; Rawlings et al., 2004; Jackson et al.,
2007), and ca. 1.8–1.3 Ga Cuddapah, Kaladgi, and Pranhita-
Godavari basins in the Indian Peninsula (Saha et al., 2016).
Deposition of these thick sedimentary units is considered to
be due to stable large continents during the Proterozoic era.

2.4–1.8Ga Early Proterozoic Sandstone and
the Size of Continents
During the early Proterozoic era, between ca. 2.4 and 1.8 Ga,
large-scale sedimentary sequences had formed on many
continental rift basins and passive continental margins (Martin
et al., 2013). The increased sedimentary sequences caused the
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great oxygenation of the surface environment of the Earth (Rye
and Holland, 1998; Bleeker et al., 1999), and possibly the
emergence of eukaryotes (Han and Runnegar, 1992; El Albani
et al., 2010; Edou-Minko et al., 2017). The thickness of the
quartzose sandstone strata in the continental rift basins and
passive continental margins are over 1,000 m and are
comparable to those after 1.8 Ga. For example, the 2.4–2.2 Ga
Huron Supergroup on the Superior Craton and the Snowy Pass
Supergroup on the Wyoming Craton deposited in a broad basin
on the passive continental margin contain quartzose sandstone
strata that are over several thousand meters thick (Roscoe and
Card, 1993). The size of continents during the early Proterozoic
period should have been similar to that after 1.8 Ga,
i.e., continents of class 4. The continents may correspond to
the previously named Sclavia and Superia (Bleeker, 2003) based
on age dating and the paleomagnetic analysis of radial dyke
swarms. Although the paleogeography of these continents is not
well constrained, it is certain that continents as large as those after
1.8 Ga have existed since ca. 2.4 Ga.

Quartzose Sandstone and the Size of
Continents in the Archean Crust
Before the ca. 2.5 Ga Archean-Proterozoic boundary, direct
geological records for the size of continents are rarely
preserved. Some continents larger than the modern-extant
Superior Craton, over 1,000 km in width and length, must
have existed at ca. 2.7 Ga (late Archean). Other, mostly
Archean, cratons have a width and length of 500–1,000 km or
less (Figure 1). The presence of Archean quartzose sandstone has
been interpreted as an important indicator of cratonic interior on
relatively stable large continents at the depositional age (Rogers,
1996; Eriksson et al., 2013; Cawood et al., 2018), even though the
origin of Archean quartzose sandstone is subject to debate
because the Archean surface environment and climate is
different from modern ones (Condie, 1981). The absence of
vegetation on the Precambrian land possibly hindered
chemical weathering by accelerating the transport of clastic
particles (Dott, 2003). On the other hand, a Precambrian CO2-
rich atmosphere could have promoted chemical weathering
(Sleep and Hessler, 2006). Due to these differences in the
continental surface, the conditions for the formation of
quartzose sandstone would have been different between the
modern and Precambrian environments. In the Archean
supracrustal units, we can find both immature non-quartzose
sandstones such as graywacke and mature quartzose sandstones
as a cratonic cover for the Archean terranes (Condie, 1993). This
indicates that the formation of quartzose sandstone requires flat
topographic features even under the Archean atmospheric
conditions. We proceed on the assumption that the conditions
for quartzose sandstone formation were not extremely different
from those at present.

Archean quartzose sandstone on a granitic basement with a
clear unconformity can be traced back to 3.0 Ga; for example, the
ca. 2.6 Ga Moeda Formation of the Minas Supergroup in the Sao
Francisco Craton (Minter et al., 1990; Alkmim and Marshak,
1998; Alkmim and Martins-Neto, 2012; Koglin et al., 2014), ca.

2.7 Ga Hardey Formation of the lowermost Fortescue Group in
the Pilbara Craton (Thorne and Trendall, 2001; Hall, 2005), ca.
2.8–2.7 Ga Central Slave Cover Group in the Slave Craton
(Bleeker et al., 1999), ca. 2.9 Ga Steep Rock, Lumby Lake,
Savant Lake, and other greenstone belts of the Superior
Craton (Wilks and Nisbet, 1988; Davis and Jackson, 1988;
Davis et al., 1988; Donaldson and de Kemp, 1988), ca.
3.0–2.8 Ga Lower and Upper Burawayan greenstone units on
the Zimbabwe Craton (Wilson et al., 1995; Fedo et al., 1996;
Hunter et al., 1998), ca. 3.0–2.9 Ga Witwatersrand and Pongola
groups in the Kaapvaal Craton (Beukes and Cairncross, 1991;
Robb and Meyer, 1995; Kositcin and Krapez, 2004), and so on.
These quartzose sandstone strata mostly occupy the lowermost
part of sedimentary sequences and are shallow marine deposits
overlain by pelitic rocks, basaltic-komatiitic lava flow including
pillow structure, and banded iron formation (Bleeker, 2003). This
characteristic lithology indicates that the sedimentary sequences
deposited on the continental rifting basin or passive continental
margin. Quartzose sandstones within a similar lithological
combination are also found in highly metamorphosed Archean
terranes; for example, ca. 3.1 Ga Beit Bridge Group of the
Limpopo belt (Eriksson et al., 1988), ca. 3.2 Ga Mt. Narryer
complex, Jack Hills belt and Reynard Hills belts on the Yilgarn
Craton (Myers, 1988; Spaggiari et al., 2007), ca. 3.2 Ga Beartooth
Mountain on the Wyoming Craton (Maier et al., 2012), ca.
3.2–3.0 Ga Bababudan Group in the Dharwar Craton
(Srinivasan and Ojakangas, 1986), ca. 3.0 Ga Keonjhar
Quartzite in the Singhbhum Craton (Ghosh et al., 2016), ca.
3.0 Ga Naharmagra quartzite of the North Delhi belt in the
Aravalli Craton (Raza et al., 2010), and ca. 3.3 Ga Sebakwian
quartzite on the Zimbabwe Craton (Bolhar et al., 2017). Older
Archean siliceous sandstones also exist, for example, the ca.
3.4 Ga Noisy Formation in the Kaapvaal Craton (de Wit et al.,
2011), and ca. 3.5 Ga Mt. Goldworthy quartzite in the Pilbara
Craton (Sugitani et al., 2003); however, these quartzose sandstone
strata do not have the lithology of ∼ca. 3.3 Ga continental rift
basins or passive continental margins. Local hydrothermal
silicification is considered to be a major factor for the origin
of the ∼ca. 3.3 Ga quartzose sandstone shown above.

It is notable that most of the Archean quartzose sandstone
layers are less than a hundred meters thick, in contrast to
Proterozoic ones (Figure 3). For example, the basal quartzite
of the 2.8 Ga Central Slave Cover Group on the Slave Craton is a
typical example, which is less than ∼100 m thick (Bleeker et al.,
1999; Figure 3). The Moeda Formation in the lowermost Minas
Supergroup is less than 350 m thick (Minter et al., 1990). Most of
the other Archean quartzose sandstone strata are similar or
thinner than the Moeda Formation (Bleeker, 2001). The
change in thickness of quartzose sandstone on continental rift
basins or passive continental margins suggests that such basins
with continental or shallow marine environments for deposition
in the Archean era did not remain for long periods. The short life
span of such basins can be explained by the smaller size of
continents or thinner continental crust than those after the
Proterozoic period. The model of thin continental crust is
denied by seismic data of Archean terranes, which indicates
that the Archean cratons were nearly 30 km thick since ca.
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3 Ga (Drummond, 1988). The smaller size of continents is more
plausible for the reason of short life span of the depositional
basins because the model can explain the short-lived continental
break-up and subsidence. Therefore, the relatively thin ca.
3.3–2.5 Ga quartzose sandstones in the continental rift basin
and passive continental margin imply the emergence of
relatively stable continental interior environments, but the size
of them was still not as large as that of the continents after the
Proterozoic era, probably ∼1,000 km in width and length, similar
to class 3 continents. The exceptionally thick the ca. 3.0 Ga West
Rand Group of the Witwatersrand Supergroup in the Kaapvaal
Craton may indicate a slightly larger continent at that time than
in the previous and subsequent ages, or that a local continental
collision affected to increased sedimentary supply (Burke et al.,
1986; Catuneanu, 2001).

Some of the older Archean supracrustal units contain well-
classified clastic rocks, for example, the conglomerate in the ca.
3.5 Ga Warawoona Group on the Pilbara Craton (Buick et al.,
1995). The well-sorted clastic rock indicates that the size of the
continental block at that time was similar to that of class 2
continents. Before ca. 3.4 Ga, the size of the continents might
have been less than several hundred-kilometers in width and
length, similar to that of classes 1 and 2.

Additionally, detrital zircon age patterns in Archean quartzose
sandstone and other clastic rocks are also important geological
records for the estimation of the size of continents. The ca.
3.3–2.5 Ga quartzose sandstone and quartzite in the
continental rift basin or passive margin show complex detrital
zircon age patterns and often contain Eoarhcean and Hadean
ones (e.g., Sircombe et al., 2001; Maier et al., 2012; Zeh et al., 2014;
Bolhar et al., 2017), indicating that their detrital grains are widely
provided from relatively large areas. Furthermore, it is

noteworthy that Hadean detrital zircon grains occur in ca.
3.3–3.1 Ga sandstones. Ancient detrital zircon U–Pb ages are
extremely rare in clastic rocks with depositional ages younger or
even older than ca. 3.3–3.1 Ga (Figure 1). A lesser occurrence of
Hadean zircon in clastic rocks younger than 3.0 Ga (late Archean)
simply indicates that the Hadean geological units had been
destroyed by crustal reworking and recycling by 3.0 Ga.
Conversely, no occurrence of Hadean zircon in >3.3 Ga clastic
rocks suggests that only small provenances existed because
continental blocks were fragmented through rifting and
sedimentary basins did not receive detrital grains from
Hadean units. The detrital zircon age pattern in Archean
rocks would also reflect the secular change in the size of
continents.

Estimated Secular Change in the Size of
Continents
The secular change in the size of continents estimated above is
summarized as follows: 1) mature clastic rocks older than ca.
3.4 Ga have not been found, but ca. 3.5 Ga well-sorted clastic
rocks occur in several cratons. This indicates that ca. 3.5–3.4 Ga
continental blocks were in scales of several hundred kilometers or
less. 2) During ca. 3.3–2.5 Ga (late half of Archean), quartzose
sandstone of the continental rift basin or passive margin thinner
than a hundred meters occurred on many cratons, indicating that
the continents were nearly 1,000 km in width and length or more.
3) After ca. 2.4 Ga, quartzose sandstone strata thicker than
1,000 m are widely deposited worldwide. Since this period, the
width or length of continents has been nearly 10,000 km until the
present. Figures 4A and B are schematics of the above-described
secular change in the occurrence of quartzose sandstone and the
size of continents.

FIGURE 3 | Stratigraphic columns of representative quartzose sandstone layer from ca. 3.0 Ga to ca. 2.3 Ga. (A) ca. 2.3 Ga Huron Supergroup on the
Superior Craton (Roscoe and Card, 1993). (B) ca. 2.6 Ga Minas Supergroup in the Sao Francisco Craton (Minter et al., 1990; Koglin et al., 2014); (C) ca. 2.8 Ga
Central Slave Cover Group in the Slave Craton (Bleeker et al., 1999); (D) ca. 3.0 Ga West Rand Group of the Witwatersrand Supergroup in the Kaapvaal Craton
(Frimmel, 2010).
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The secular change in the size of continents is shown in
Figure 5 as a global map. Figures 5A and B show the model
of the early initiation of plate subduction. After the start of plate
subduction in the Hadean and early Archean era, a narrow and
thin continental crust formed like that in modern oceanic island
arcs (Figure 5A). These primitive continental crusts had
amalgamated to form slightly larger continental blocks over
500 km in width by ca. 3.5 Ga at the latest (Figure 5B). In
contrast, Figures 5A9 and B9 show the model of limited plate
subduction on the early Earth. Early felsic crust was formed in
hot spot regions by a mantle plume, dominated by a mafic crust
and ∼500 km in diameter (Figure 5A9). After ca. 3.5 Ga
initiation of the plate subduction, the plume crusts had
amalgamated to form felsic continental blocks (Figure 5B9).
In any case, the primitive continental crust had further
amalgamated and the first continents with a width greater
than 1,000 km, larger than modern Greenland or Australia,
appeared around ca. 3.3 Ga. The Archean continents
repeatedly rifted and collided and had been smaller in size
than those after the Proterozoic. A small peak in the size of
continents might have occurred at ca. 3.2–3.0 Ga, as suggested
by thick quartzose sandstone strata with eolian structures. The
continents were likely rifted into smaller blocks after 3.0 Ga,
which was related to the late Archean peak in the mantle
potential temperature (Komiya, 2004; Herzberg et al., 2010;
Figure 4C). By ca. 2.4 Ga, the continental blocks further
amalgamated to form larger continents greater than
5,000 km, like modern North America. The stabilization of
large continents during the early Proterozoic era was also
possibly related to the decreased mantle temperature
(Höning and Spohn, 2016).

WHAT WE NEED TO DO FOR FURTHER
UNDERSTANDING

This study attempts to estimate the secular change in the size of
continents by using limited information, mainly from the
occurrence of quartzose sandstones. However, this estimation
is still crude, and the size of continents before ca. 1.8 Ga is not
well constrained. Unfortunately, most parameters in the
petrology and geochemistry of igneous and metamorphic
rocks and their minerals do not contain any information on
the length, area, or volume, but only on the temperature,
pressure, time, and the relative amount of fractionation. To
obtain physical parameters related to the size of continents,
more investigation on the Archean clastic sedimentary rocks is
required.

Further information about the size of continents can be
obtained from the U-Pb age pattern of detrital mineral grains
because it can reflect the age structure of the provenance area on a
continent. A compilation of detrital zircon ages and isotopic data
were undertaken by combining large datasets and investigating
the peaks in the compiled datasets (e.g., Condie et al., 2009;
Belousova et al., 2010; Roberts and Spencer, 2015). However, such
data compilations, without checking the depositional ages of the
host clastic rocks, would obtain superimposed signals of the
production and destruction of the continental crust over time,
resulting in a misunderstanding of the true evolution of
continents. To disclose the secular change in the age
distribution pattern of detrital zircon grains, the age structure
of continents, evolution of continents, and time-lapse analysis of
the detrital zircon age pattern are important (Parman, 2015;
Spencer et al., 2017; Sawada et al., 2018; Puetz and Condie, 2019).

FIGURE 4 | (A) Schematic diagram of the maximum scale of continental blocks through the history of Earth in Supercontinental periods (Bradley, 2011). (B) Secular
trend in the mantle potential temperature estimated through petrological methods (Komiya, 2004; Herzberg et al., 2010).
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The differences in detrital zircon age patterns have the potential
to determine the size of continents, especially during the early
period in which geological units and structures are poorly
preserved. Although a perfect correspondence between the size
of continents and detrital zircon age patterns is not always
achieved, it is possible to detect the general trend in the size of
continents by using a large dataset. Detrital zircon Lu-Hf
isotopic studies to estimate crustal reworking through time
should be reexamined because Hf isotopic values are likely
affected by the mineral composition of residual rocks during
the partial melting and crustal assimilation processes
according to recent detailed zircon analysis combined with
geological and petrological observations (Chen et al., 2015;
Petersson et al., 2019). Trace element analyses of zircon

combined with Lu-Hf isotopic analysis could help in solving
this problem as they reflect the parental magmatic
composition and residual mineral assemblage well (Grimes
et al., 2015). The detrital monazite U-Pb age also has the
potential to reveal the crustal evolution, especially by
metamorphism during the orogeny (Itano et al., 2016;
2018). Other minerals, such as apatite, titanite, allanites,
and garnet also have the potential to contribute to our
understanding of the early Earth. However, they are
challenging to use for Archean detrital studies because of
the high content of initial Pb and weaknesses for alteration
(e.g., Chen et al., 2015; Seman et al., 2017). Presently, it is not
easy to prelaunch the success of the massive chronological data
by minerals other than zircon.

FIGURE 5 |Map view of secular change in the size of continents modified after Sawada et al. (2018). (A) After the start of the plate subduction, many narrow and
thin oceanic island arc-like continental crust were produced. (B) Through the amalgamation of the narrow, thin continental crust, evolved continental blocks with a width
of over 500 km. Old Hadean and early Archean crusts had been preserved in the interior of the continental blocks. (A9) Plate subduction was still limited and the thin felsic
crust was conceived in plume-related mafic crust. (B9) After the start of plate subduction, the plume crust gradually amalgamated and larger continental blocks
emerged. Production of arc crust likely started. (C) Larger continents with over a 1,000 kmwidth appeared around 3.3 Ga. Most of the continents during this period were
not as large as the modern ones, although some exceptions with nearly a 5,000 km width likely existed during 3.2–3.0 Ga. (D) The Archean continents finally
amalgamated to form large continents similar to modern ones.
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This study used the quartzose sandstone strata for the
estimation of the size of continents, but the correlation
between the occurrences and size of continents was not
always perfect because of the intense chemical weathering
caused by the Precambrian atmosphere. The sedimentary
structures of the Archean sandstone strata depend on the
preservation of the sedimentary basin in the Archean
terranes. In contrast, the geochemistry of clastic
sedimentary rocks is worth exploring. For example, by
using whole-rock Zr/Sc vs. Th/Sc plots for modern
turbidites, McLennan et al. (1990) pointed out that
relatively hard zircon is more concentrated in sediments
along passive continental margins than those along active
margins. This is because the narrow and limited provenance
along active margins allow the composition of clastic rocks to
be close to igneous rocks, whereas clastic rocks on wide and
large provenances along passive margins are strongly affected
by sedimentary sorting. Likewise, it is possible to detect the
size of the provenance from a whole-rock composition of
clastic rocks, especially from relatively coarse-grained ones
such as sandstones. Based on the sedimentary structure and
mineralogical-chemical composition of relatively young,
well-preserved Phanerozoic and Proterozoic quartzose
sandstone and quartzite, chemical proxies need to be
developed and applied to Archean ones. These expected
chemical proxies should be applicable for metamorphosed
and fragmented Archean quartzite, and more information for
older continents can be obtained.

In the above estimation of the size of continents, some
significant difficulties still exist in obtaining the actual
evolutionary history of the solid Earth. Constraints on the
amount of continental crust produced through magmatism
and recycled into the mantle has been a major issue for solid
Earth studies. Due to the small and thin continental crust in
the initial stage of the plate subduction, like that of modern
oceanic island arcs or hot spot islands, most of the primitive
continental crust should have been subducted to the mantle
without any detectable geological records (Santosh et al.,
2009; Yamamoto et al., 2009; Spencer et al., 2017; Sawada
et al., 2018). Although some geochemical signatures of
subducted continental crust have been found from
modern hot spot lavas (Jackson et al., 2007; Workman
et al., 2008; Willbold and Stracke, 2010), it seems almost
impossible to estimate the total amount and influx of the
subducted continental crust during the Hadean and Archean
periods through conventional, petrological, or geochemical
methods for geological samples. To understand the surficial
environments and the interior of the early Earth, more
realistic computer simulations of the crust–mantle
evolution are required. Modeling of the mantle convection
in a 3D spherical shell is necessary, which is free from
significant approximation and simplification, and is able
to reproduce plate subduction based on the significant
contrast of viscosity. Through these simulations, many
parameters can be calculated, such as the speed of plate
subduction, size and life span of plates, production and
destruction rates of new continental crust, and movement

and amalgamation of the generated continental crust.
Geochemical and petrological studies can determine some
of these parameters and evaluate the results of computer
simulations. Combined with numerous petrological and
geochemical data reported previously, estimating the size
of continents must be relevant in the near future, and
research on coarse-grained clastic sedimentary rocks can
offer a solution for this purpose.

SUMMARY

This paper reviewed the crustal development in the early Earth
and the current understanding of the size of continents over
time. The size of continents is emphasized as an essential
parameter to determine the geotectonic evolution of the
continental crust. Clastic sedimentary rocks are possibly the
key for estimating the size of continents because their
composition reflects the physical processes occurring on the
continental surface, such as transportation to the depositional
basin. The present paper summarizes the tentatively estimated
secular changes in the size of continents in the Archean and
Proterozoic eras based on the occurrence of quartzose
sandstones, which indicate a high degree of mineral sorting.
We can trace back the existence of massive continents with
widths and lengths of nearly 10,000 km like modern North
America to ca. 2.4–2.3 Ga. The first continents, which were
over 1,000 km in width and length, appeared at ca. 3.3 Ga.
Most of the Archean continents were still not as large as those
after ca. 2.4 Ga. Further analyses of clastic rocks can enable a
more quantitative estimation of the size of continents, which
can contribute to understanding the geotectonic history of the
early Earth.
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