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Chile is well known as a narrow and long country (over 4,000 km) that encompasses many
climate zones and that presents significant west–east gradients as altitudes change from
sea level to several thousand meters. Although Chile is recognized as one of the most
affected countries by climate change, it is also one of the least covered by
hydrometeorological measuring instruments. This data scarcity prevents thorough
characterization of hydrological basins. To solve this problem, we constructed a
decade-long (2000–2011) high-resolution (∼ 800m) monthly gridded precipitation
product for the central-southern zone (34+S–41+S) covering regions from O’Higgins
to Los Ríos. These regions contain most of Chile’s agricultural land, livestock, forestry, and
hydroelectric production. The study zone covers a variety of topographies and climates,
including eight hydrological basins: Rapel, Mataquito, Maule, Itata, BioBío, Imperial, Toltén,
and Valdivia. We develop a dynamic topo-climatic methodology that includes local and
global data. We combined a dynamic downscaling and a spatial-temporal multivariate
model over different geographical areas that considered high-resolution precipitation fields
from model data, in situ stations, and different global precipitation datasets that also
understand satellite observations. Results show that most of the precipitation spatial-
temporal variability is well-captured by the model in the north and central regions, from
O’Higgins to Biobío, with the goodness of fit (R2) fluctuating around 0.86 and 0.82,
respectively. Toward the south, Araucanía and Los Ríos, the goodness of fit (R2)
decreased to values around 0.74 and 0.72, respectively. Both the modified Willmott
coefficient (d) and the nse indicated a good model skill, with values over 0.8 and 0.7,
respectively. Meanwhile, the σe, nrmse, and pbias changed between 0.04–0.2, 0.35–0.52,
and 12–22%, respectively. This database is freely available to different regional or national
institutions and will help the development of a better understanding and management of
local and regional hydrology.
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1. INTRODUCTION

Meteorological spatial data consistent with observational
information are critical for several scientific fields:
environmental, hydrology, agriculture, application of
renewable energy, biology, economy, and sociology, among
others (Parra et al., 2004; Hijmans et al., 2005; Abatzoglou,
2013; Cannon et al., 2015; Liu et al., 2017; Sun et al., 2018).
Within weather variables, precipitation is the driver of the
hydrological cycle and the most difficult to estimate
(Michaelides et al., 2009; Kidd and Levizzani, 2011; Tapiador
et al., 2012; Beck et al., 2017b). Precipitation datasets provide
information for hydrological models such as SWAT or
TOPMODEL (Berezowski et al., 2016) and environmental
verification (Ji et al., 2015; Berezowski et al., 2016;
Brinckmann et al., 2016; Fick and Hijmans, 2017).

Interpolation methods use information from local weather
networks, atmospheric reanalysis products, weather radar,
satellite data, or a combination of these products to construct
global or local gridded rainfall datasets because each one has its
negative sides, in particular precipitation. For instance, datasets
based only on instrumental observation networks depend on the
spatiotemporal distribution, quality, and length of records (Sun
et al., 2014). Atmospheric reanalyses, on the other hand, are at
low resolution and sometimes inadequately parameterize sub-
grid processes, leading to misrepresentation of synoptic-scale and
convective dynamics (Roads, 2003; Ebert et al., 2007; Kidd et al.,
2013). Another example is weather radar, since it provides data at
high temporal and spatial resolution, but of limited spatial
coverage (Koistinen, 1991; Kitchen and Blackall, 1992; Chen
et al., 2008; Beck et al., 2017a). Satellite data allow for direct
coverage of large areas ( ∼ 0.25+) (Sorooshian et al., 2014;
Ashouri et al., 2015) but are partly insensitive to light rainfall
or drizzle events, sensitive to systematic error, and also unfitted
for snow- and ice-covered surfaces on mountain areas (Ferraro
et al., 1998; Ebert et al., 2007; Kidd and Levizzani, 2011; Kidd
et al., 2012; Laviola et al., 2013; Beck et al., 2017a).

Some of these sources for obtaining precipitation grids
(satellite, reanalysis, atmospheric modeling, or statistical
downscaling techniques) may present problems in areas of
complex topography where high spatial-temporal heterogeneity
is difficult to estimate, as for example Chile (Daly et al., 1994;
Chen et al., 2014; Herold et al., 2016; Beck et al., 2017a; Zambrano
M. et al., 2017). Several studies have assessed the insufficiency of
these datasets (e.g., Nastos et al., 2016; Beck et al., 2017b; Camera
et al., 2017; Liu et al., 2017; Hu et al., 2018; Sun et al., 2018;
Timmermans et al., 2019) including some zones in Chile (Muñoz
et al., 2011;Ward et al., 2011). Just recently, this problem has been
addressed at the national level in Chile (Zambrano F. et al., 2017;
Zambrano M. et al., 2017).

High-resolution datasets properly covering Chile are scarce.
This is surprising, given that the country is among those most
affected by climate change (Kreft et al., 2016), although the
complex topography and multiplicity of climates make
development of these datasets difficult. Besides, precipitation
coverage is inadequate and inhomogeneous, limiting water
resources studies (Hosseini-Moghari et al., 2018). To date,

datasets are available only in specific regions by local weather
stations (Román and Andrés, 2010; Zambrano, 2011; Jacquin and
Soto-Sandoval, 2013; Reyes, 2013; Castro et al., 2014; Sijinaldo,
2015; Cifuentes, 2017) or from low-resolution gridded datasets
(Morales-Salinas et al., 2012).

Despite these difficulties, there are known methods that allow
for building high-resolution databases in an efficient way. Among
statistical downscaling techniques for spatial interpolation,
regression-based methods are computationally cheap to run,
easy to understand, and statistically efficient and
straightforward (Semenov et al., 1998; Dibike and Coulibaly,
2005; Hashmi et al., 2011; Pahlavan et al., 2018). Thus,
interpolation methods based on functions describing spatial
changes of the target variable (Brinckmann et al., 2016)
generate continuous spatial data (e.g., Hay et al., 1998;
Marquínez et al., 2003; Ceccherini et al., 2015; Beck et al., 2017b).

The main goal of this study was to improve, quantify, and offer
a new basis for average monthly precipitation at high spatial
resolution ( ∼ 800m) using a dynamic-statistical method. We
focus this analysis on the central-south zone of Chile (Figure 1) in
the period 2000–2011. We structured this article as follows: in
Section 2, we describe the regional climate and topography.
Section 3 includes description of the dynamic topo-climatic
model and the datasets used. This is followed by Section 4,
which reports the major findings. The article ends with a
discussion and conclusion on the robustness of our model and
main findings.

2. STUDY AREA

Variability of the South Pacific subtropical anticyclone and high-
latitude pressure centers dominates Chile’s synoptic climate
(Fuenzalida, 1982; Rojas, 2016). The narrow width (180 km on
average) between the Pacific coast and the Andes (https://www.
gob.cl/nuestro-pais/), along with a north–south extension of
4,000 km, contributes to a variety of climates (Valdés et al.,
2016a). Chile holds a distinct climatic characteristic from low
to high moisture from north to south. Because of the orographic
effect, the main precipitation pattern shows an annual
accumulation moving to the south and the Andes (Pizarro
et al., 2012; Quintana and Aceituno, 2012; Valdés-Pineda et al.,
2014; Valdés et al., 2016a), with annual precipitations in the north
30°S of about 100 mm increasing up to 3,000 mm in the south 40°S
(Pizarro et al., 2012; Barrett and Hameed, 2017). Since elevation
increases from the sea level in the west to some thousandmeters in
a few hundred kilometers to the east, Andean precipitation can
double coastal rainfall (Viale and Garreaud, 2015; Barrett and
Hameed, 2017).

Within Chile, our study area corresponds to the center-south
zone of the country between latitudes (34+S–41+S), from
O’Higgins to Los Ríos regions (Figure 1). This region presents
a well-defined annual cycle characterized by a peak of
precipitation in austral winter and lower values in austral
summer (Valdés et al., 2016a; Valdés et al., 2016b). Besides,
this is one area with the highest humidity in the southern
hemisphere (Miller, 1976) and one of the extra-tropical areas
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most affected by El Niño and La Niña events (Grimm et al., 2000;
Waylen and Poveda, 2002). Due to its transitional location
between subtropical and high-latitude temperatures, climate is
characterized by a significant interannual rainfall variability
(Aceituno et al., 1993; Quintana, 2004; Le Quesne et al., 2009).
The El Niño Southern Oscillation, mostly in the northern section,
and the Pacific Decadal Oscillation to the south affect
hydrological regimes (Arumí-Ribera and Oyarzún-Lucero,
2006; Araya-Ojeda and Isla, 2016). The south-central zone
presents yearly accumulated precipitation between 100 and
3000 mm from the north to south (Quintana and Aceituno,
2012; Valdés et al., 2016a). This is a zone of active recharge
for surface and groundwaters as a result of infiltration and
transport processes in valleys, channels, and fractured systems
in the high zones and the pre-mountain ranges (Arumí et al.,
2012; Carling et al., 2012). Along the Andes, particularly toward
the south, where the role of oceanic fronts is prominent, the
orographic effect increases rainfall.

3. METHODOLOGY

The choice and organization of observed precipitation data are
presented in Section 3.1. Section 3.2 shows the development and
execution of the atmospheric model, and then the adjustment and
selection (which considers the database presented in Section 3.1
of the modeled precipitation fields). The collection of global
gridded precipitation sets and their later data choice are
discussed in Section 3.3. Section 3.4 presents the structure
and procedure in the construction of the topo-climatic
dynamic model. The statistical analysis strategy required for
the process of calibration and validation of the atmospheric
model, choice of global gridded data and topo-climatic

dynamic model, and final construction of the high-resolution
gridded product is addressed in Section 3.5.

3.1. Instrumental Database
The Dirección General de Aguas and the Dirección
Meteorológica de Chile (DMC) support Chile’s meteorological
station network. Although these data are reliable and cover
several decades, many stations are conventional (report only
daily accumulation) and at low elevations (Garreaud et al.,
2016). Also, in most records (Figure 2), data gaps are
common (Zambrano M. et al., 2017b). Within the study zone,
we initially considered 301 stations reporting daily observations

FIGURE 1 | (A) Study area in central-southern Chile (O’Higgins–Los Ríos). (B) River basins used for spatial yield analysis of the weather research and forecasting
model, the gridded precipitation sets (Table 2), and the topo-climatic model. The red dots indicate the 136 stations used as input for the topo-climatic model and the 60
green dots indicate the stations used for performance analysis.

FIGURE 2 | Number of precipitation stations in Chile used by Global
Precipitation Climatology Centre dataset (Schamm et al., 2015). Source:
Zambrano M. et al. (2017).
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(Figure 1). We eliminated stations with more than 30% monthly
data gaps between 2000 and 2011 (105 stations). From the
remaining stations (196), 136 correspond to input for model
calibration and 60 for validation.

3.2. Atmospheric Modeling
An atmospheric numerical simulation was developed using the
Weather Research and Forecasting model (WRF), version 3.6
(Skamarock et al., 2008) for the period 2000–2011 to obtain a
high-resolution robust precipitation dataset. The simulation was
initialized in October 1999 and run through December 2014, with
the first 3 months discarded as model spin-up. As recommended
by the DMC (DMC, 2015), this model must consider a domain
covering some parts of the Pacific Ocean to capture the
phenomena approaching the continent (Yáñez-Morroni et al.,
2018). We used three nested domains for downscaling (Figure 3).
The largest domain, D1, at 36 km resolution, contained two
nested domains, D2 and D3, each with a ratio of 1/3 relative to
its respective parent (Table 1). Initial and boundary conditions
for the D1 domain correspond to the ERA-Interim global
reanalysis, at a spatial grid resolution of 0.75+ × 0.75+

latitude–longitude and 60 vertical hybrid levels (Dee et al.,
2011). Ingestion of ERA-Interim’s atmospheric fields was every
6 hours. The twelve-year simulation took about 22 real
computational months in the Troquil cluster at the Center of
Excellence of Scientific Modeling and Computing at Universidad
de La Frontera. In atmospheric numerical simulations,
parameterizations strongly influence the patterns of simulated
precipitation (Wang and Seaman, 1997; Gallus and William,
1999; Jankov et al., 2005) and also affect model response to
changes in grid spacing (Gallus and William, 1999) or soil
moisture (Gallus and William, 1999; Gallus et al., 2000). A
summary of the settings used is shown in Table 1, selected
following recommendations of the DMC (DMC, 2015).

We implemented a method for systematic error correction
(bias) applied to every WRF’s generated precipitation field within
each regional domain (Figure 1A). We calculated the relationship
between the average monthly precipitation of a station and its
nearest grid point of the WRF model (a virtual station). For each
regional domain, Eq. 1 determined selection of WRF’s virtual
stations. Next, we obtained and applied a fit factor μ(Ps

o)/μ(Ps
wrf )

to each grid point in the region (Eq. 1). Finally, each adjusted grid
point was reevaluated and discarded as input to the dynamic
topo-climatic model if it did not meet the requirement of Eq. 1.

Pcs
wrf �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pwrf if Po
min − 0.05 × Po

min ≤Pwrf ≤ Po
max + 0.05 × Po

max(a)
μ(Ps

o)
μ(Ps

wrf )Pwrf if Pwrf <Po
min − 0.05 × Po

min(b)

μ(Ps
o)

μ(Ps
wrf )Pwrf if Pwrf >Po

max + 0.05 × Po
max(c)

,

(1)

where Po
min and Po

max are the minimum and maximum observed
rainfall, respectively; μ(Ps

o) is the monthly observed average of
stations; μ(Ps

wrf ) is the monthly average of the nearest virtual
stations delivered by the WRF model; Pwrf is the computed
gridbox; and Pcs

wrf is the bias-corrected precipitation.

3.3. Global Gridded Datasets
Our compilation includes eight precipitation products from
diverse sources (observation, reanalysis, satellite, or mix) and
present different spatial and temporal resolutions, and
coverage (semiglobal or global, Table 2). We did not bias-
correct these precipitation products as this was performed by
the teams that built them. Therefore, each product’s dynamics
depends entirely on its source. Three precipitation sets were
based on satellite data (TRMM, CMOPRH, and SM2RAIN),
one set was based exclusively on observed data (CRUv4.01),
and four sets were built with satellite data, reanalysis, and
observations (PGFv3, CHIRPSv2.0, PERSIANN − CDR, and
MSWEPv1.2).

In order to minimize the difference in bias from these
precipitation products (Zhang et al., 2019; Yeh et al., 2020),
each gridded precipitation product used in this study was

FIGURE 3 | Display of the domains used in weather research and
forecasting model. D1: parent domain with 36-km resolution. D2: first nesting
with 12-km resolution (1/3 parent domain size). D3: second nesting, with 4-km
resolution (1/9 parent domain size).

TABLE 1 | Domain configuration and parameterization schemes selected for the
weather research and forecasting model.

Domain Δx, km No. of points Topographic resolutions

D1 36 69 × 48 5′
D2 12 126 × 84 2′
D3 4 234 × 189 30′

Physics Parameterization References

Microphysics WSM3 scheme Hong et al. (2004)
Longwave radiation RRTM scheme Mlawer et al. (1997)
Shortwave radiation Dudhia scheme Dudhia (1989)
Surface layer physics MM5 Monin–Obukhov scheme Zhang and Anthes

(1982)
Boundary layer physics Yonsei University (YSU) scheme Hong et al. (2006)
Soil physics Noah scheme Chen (2007)
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TABLE 2 | Description of the 8 (quasi) global (sub-)precipitation grids used in this study.

Dataset Name and detail Source Spatial
resolution

Spatial
coverage

Temporal resolution Temporal coverage References

1 TMPA (3B42) TRMM Multi-satellite Precipitation Analysis (TMPA)
product 3B42 version 7 https://mirador.gsfc.nasa.
gov/

S 0.25+ 50°N–50°S 3 h, daily 1998–present Huffman et al. (2007)

2 CHIRPSv2.0 Climate Hazards Group Infrared Precipitation
(CHIRPS) V2.0 http://chg.ucsb.edu/data/chirps/

S, R 0.05+ 50°N–50°S Daily, pentadal and
monthly

1981–present Funk et al. (2015)

3 CMORPH CPC MORPHing (CMORPH) https://rda.ucar.edu/
datasets/ds502.0/

S 0.07+, 0.25+ 60°N–60°S 3 h, daily December
2002–present

Joyce et al. (2004) and NOAA (2011)

4 CRUv4.01 Climate Research Unit Time Series version 4.01 http://
www.cru.uea.ac.uk/data

I 0.5+ Global Monthly 1901–2016 Harris et al. (2014) and Harris and Jones
(2017)

5 PERSIANN-
CDR

Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks
(PERSIANN) Climate Data Record (CDR) http://chrs.
web.uci.edu/

S, I 0.25+ 60°N–60°S Daily 1983–present Sorooshian et al. (2014) and Ashouri et al.
(2015)

6 MSWEPv1.2 Multi-Source Weighted-Ensemble Precipitation
(MSWEP) v1.2 http://www.gloh2o.org/

I, S, R 0.25+ 90°N–90°S Daily 1979–2014 Beck et al. (2017a)

7 PGFv3 Princeton University Global Meteorological Forcing
version 3 http://hydrology.princeton.edu/home.php

R, I 0.25+ Global 3 h 1948–2012 Sheffield et al. (2006) and Peng et al.
(2016)

8 SM2RAIN-CCI Rainfall Satellite Soil Moisture CCI http://hydrology.irpi.
cnr.it/download-area/sm2rain-data-sets/

S 0.25+ Global Daily 1998–2015 Brocca et al. (2013) and (2014)

The abbreviations in the Source column, defined as I, S, R are the abbreviations of the derived products: in situ, satellite, and reanalysis, respectively.
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evaluated according to Eq. 2, where every point was discarded
when it was either under or over 5% of the respective minimum
and maximum precipitation observed within the respective
regional domain (Figure 1A). This procedure tries to cover
areas where atmospheric modeling precipitation grids are
discarded (see Section 3.2). Thus, once the best set for each
regional domain was obtained, no overlap of data with the WRF
model was sought. Otherwise, that is, if overlap happens, the one
with the smallest difference in minimum and maximum
precipitation bias is selected according to Eq. 2. Note that if
neither atmospheric nor the gridded data met the admissibility
conditions, that place is not used.

Ps
g �

⎧⎪⎨⎪⎩ Pg if Po
min − 0.05 × Po

min ≤ Pg ≤ Po
max + 0.05 × Po

max

NaN if Pg < Po
min − 0.05 × Po

min

NaN if Pg > Po
max + 0.05 × Po

max

,

(2)

where Pg is the precipitation gridbox of each set in Table 2, Ps
g is

the selected gridbox of the grid set, and Po
min and Po

max are the

minimum and maximum precipitation of each subregion,
respectively. Otherwise, we delete this gridbox.

3.4. Dynamic Topo-Climatic Model
Our model is a multiple linear regression between
precipitation as the dependent variable (Swain et al., 2017;
Navid and Niloy, 2018; Devi et al., 2020) and the following
independent variables: elevation, slope, exposure,
continentality, latitude, and longitude (Zambrano, 2011;
Camera et al., 2014; Cifuentes, 2017). The model fits the
observed values by a least square procedure between the
observed and predicted values (Delbari et al., 2019). The
linear dependence function is given by

P � α + β1 · elev + β2 · exp + β3 · slp + β4 · cont
+ β5 · lat + β6 · lon, (3)

where α is the intercept, and the values βi, i � 1, ., p are called
regression coefficients associated with the variables elevation

FIGURE 4 | Digital terrain model with independent variables: (A) elevation, (B) slope, (C) exposure, and (D) continentality.
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(elev), exposure (exp), slope (slp), continentality (cont), latitude
(lat), and longitude (lon).

To get the dataset gridded at 800 m, we used the Shuttle
Radar Topography Mission digital elevation model (Farr
et al., 2007) at 90-m spatial resolution. This digital
elevation model is aggregated to an 800-m resolution
(Figure 4). Note that the model domain covers five
administrative regions: O’Higgins, El Maule, Biobío (now
Biobío and Ñuble), La Araucanía, and Los Ríos (Figure 1A).
However, the domains correspond to regional boundaries
(Figure 1A), along with a 25% increase in the contribution
from the neighboring regions. With this, we ensured that
basins shared between different regions are covered. Also,
mutual covering between domains ensures greater
consistency and homogeneity to the global solution. Each

month, data used for the construction of the field change
with input data (Sections 3.2 and 3.3).

For each regional domain, we solve the topo-climatic model
monthly, trying different configurations of the independent
variables described in Eq. 3. We carry out tests in which either
a single topographic variable or a set of them is eliminated. Thus,
each month, six (6 !), different tests can be performed. The
structure is tested monthly, and at the end of the 12-year
period (144 months), the most effective model is used as the
basis for the calculation of the monthly topo-climatic model
coefficient. Because it plays a significant role in a topo-climatic
model, elevation is the only variable used in all calculations.
Similarly, the different tests indicated that the elevation and
exposure variables are necessary for all regional domains. In
the following, only the most representative models are shown.

FIGURE 5 | Schematic overview of the dynamic topo-climatic model development.
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Each model developed is labeled according to the variables in
Eq. 3: (all), all the variables; (wexp), without exposure; (wslp),
without slope; (wlat), without latitude; (wlon), without
longitude; and (wcon), without continentality variable.
Subsequently, each model was evaluated through an analysis
of variance (ANOVA) test and a residual analysis. We use
different statistics to determine the most appropriate structure
for each regional domain, namely, the standardized standard
deviation (σe, Eq. 6), standardized mean square error (nmrse, Eq.
7), percentage of the standardized systematic error (pbias, Eq. 9),
correlation coefficient (ρxy , Eq. 8), Nash–Sutcliffe coefficient (nse,
Eq. 10), and the modified Willmott coefficient (d, Eq. 11).

Figure 5 depicts the three phases carried out for the
construction of the dynamic topo-climatic model. The first
phase (F1) determines the number of local precipitation
stations and their subsequent selection (Section 3.1). The
second phase (F2) corresponds to climatic modeling that
produces precipitation fields, which are then bias-corrected
(Section 3.2) using the local data (Section 3.1). The third phase
(F3) (Section 3.3) selects the global precipitation gridded sets
which are used alternatively for the locally adjusted precipitation
modeled fields. Finally, within the fourth phase (F4) (Section 3.4),
on each geographical domain, the tests allow the choice of the
coefficients of variables (elevation, slope, exposure, continentality,
latitude, and longitude) to develop the high-resolution fields.

3.5. Statistical Analysis
This section presents the statistical analysis strategy required for
the atmospheric model correction and adjusting process, global
gridded dataset selection, the topo-dynamic model calibration
and validation, and the final high-resolution gridded product
construction.

Spatial fitting, selection of monthly fields from the WRF
model, and spatial selection of the best monthly products of
global grid precipitation are analyzed for each regional domain
(Figure 1A): The results of these processes are displayed for eight
hydrological basins (Figure 1B). Our strategy uses a range of
statistics following Cardoso et al. (2013), Ji et al. (2015), and
Akhter et al. (2019): standardized standard deviation (σe, Eq. 6),
standardized mean square error (nrmse, Eq. 7), correlation
coefficient (ρxy , Eq. 8), percentage of the standardized
systematic error (pbias, Eq. 9), Nash–Sutcliffe coefficient (nse,
Eq. 10), and modified Willmott coefficient (d, Eq. 11). We used
six indices in the data comparison because each of them
quantifies only one aspect of data agreement or disagreement.

Once the selection of the best grid points is completed, a
different monthly topo-climatic model is constructed over each
regional domain. For this process, a calibration phase is followed by
a validation phase. As previously indicated, we used 70% of the local
rainfall data (136 stations) for calibration and 30% (60 stations) for
validation. In both processes, due to the stations’ inhomogeneous
distribution and notorious inadequate coverage in mountainous
areas, the spatial distribution of the local stations chosen tried to
maximize homogeneous coverage of each regional domain.

Calibration of the dynamic topo-climatic model includes
application of an ANOVA test, and the goodness-of-fit
parameters R2 (Eq. 4) and R2

j (Eq. 5) with the respective

residual analysis. For the validation stage, the following statistics
are used: standardized standard deviation (σe, Eq. 6), standardized
mean square error (nrmse,Eq. 7), correlation coefficient (ρxy ,Eq. 8),
percentage of the standardized systematic error (pbias, Eq. 9),
Nash–Sutcliffe coefficient (nse, Eq. 10), and the modified
Willmott coefficient (d, Eq. 11). We also analyze results using
Taylor’s diagrams (Taylor, 2001), to visualize results model
behavior relative to observations in terms of the spatial structure
generated by the Pearson correlation coefficient (ρxy), standardized
mean square error (nrmse), and absolute standardized standard
deviation (|σe|). Also, we used boxplot diagrams to visualize
standard deviation scores (σe), the mean systematic error
percentage (pbias), coefficient of Nash–Sutcliffe (nse), and
modified Willmott coefficient (d). This calibration and validation
processes are performed monthly, thus generating every month a
different topo-climate model. Calibration and validation results
presented here correspond to the average of all these months.
Also, given that the whole domain includes a climatic transition
zone, the results of the eight basins are summarized in three
subdivisions: northern, central, and southern areas (Figure 1B).

The statistics used are defined in the following equations:

R2 � ∑n
i�1(Yi − X)2∑n
i�1(Xi − X)2, (4)

R2
j � 1 − (n − 1)∑n

n�1(Xi − Yi)2
(n − k − 1)∑n

n�1(Xi − X)2, (5)

σe � 1 −

�����������∑n
i�1(Yi − Y)2∑n
i�1(Xi − X)2

√√
, (6)

nrmse �

��������∑n

i�1(Xi−Yi)2
n

√
σ

, (7)

ρxy �
∑n

i�1(Xi − X)(Yi − Y)�����������∑n
i�1(Xi − X)2√ �����������∑n

i�1(Yi − Y)2√ , (8)

pbias � ∑n
i�1(Xi − Yi)∑n

i�1Xi
× 100, (9)

nse � 1 −
∑n
i�1

(Xi − Yi)2∑n
i�1(Xi − X)2 , (10)

d � 1 − ∑n
i�1|Yi − Xi|∑n

i�1(∣∣∣∣Yi − X
∣∣∣∣ + ∣∣∣∣Xi − X

∣∣∣∣) , (11)

where X and Y are observed and simulated precipitation,
respectively.

4. RESULTS

In Sections 4.1 and 4.2, the average precipitation behavior of the
adjusted atmospheric model (see Section 3.2) and the selected
global gridded products (see Section 3.3) is presented over three
zones (north, center, and south), covering eight basins
(Figure 1B). All local stations (196) are used, and these are
presented using Taylor and boxplot diagrams (see Section 3.5).
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FIGURE 6 | Taylor’s diagrams corresponding to weather research and forecasting model performance (Table 1) once fitted (Eq. 1) in basins: (A) Rapel, (B)
Mataquito, (C) Maule, (D) Itata, (E) Biobío, (F) Imperial, (G) Toltén, and (H) Valdivia.
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Section 4.3 presents the best results associated with the
calibration process of the dynamic topographic-climatic model
within each regional domain (Section 4.3.1) using 132
precipitation stations (Section 3.1). The model validation stage
of the chosen model using 60 stations in Section 4.3.2 is
presented for the eight basins (Figure 1B). This part of the
article ends by showing the annual accumulation of the
constructed monthly climatology.

4.1. Atmospheric Model
In the northern zone (Figures 6A-C), ρxy shows an average of
0.85, but we can appreciate atypical cases with values below 0.65.
Meanwhile, nmrse shows agreements close to 0.65, although all
basins present cases above 0.5. For σe (Figure 7A), the average
agreement is close to 0.1, with Rapel showing some cases above
0.3. Finally, pbias (Figure 7B) gives an average agreement of 14%,
with Mataquito presenting the lowest values since 75% of the
analyzed stations there are close to 10%.

Results for the central zone (6D,E) indicate an average for ρxy
of 0.83 and 0.55 for nrmse, although with several cases well above
0.65. For σe (Figure 7A), average is 0.14, with the Biobío basin
showing values above 0.25. For pbias (Figure 7B), the 17%
average is punctuated by certain basins exceeding 25%.

Good estimation for ρxy characterizes the southern region
(Figures 6F-G), averaging a value of 0.87. Within this region,
Valdivia shows cases close to 0.6. nrsme exhibits an average of
0.56, although all basins have cases above 0.7. In turn, σe
(Figure 7A) shows an average of 0.15, with Imperial and
Toltén above 0.3. Finally, pbias (Figure 7B) shows an

average of 9%. Toltén gives the lowest average estimate
with 7%.

We show the nse and Willmott coefficient (d) results in all
regions (and basins) in Figure 7D. In all basins, the average
value for nse is greater than 0.7; only Rapel and Maule show
values smaller than 0.6. The Willmott coefficient (d) shows
values close to 0.8 in the north zone (Rapel, Mataquito, and
Maule) and a value of 0.75 for the central zone (Itata and
Biobío), whereas for the southern zone (Imperial, Toltén, and
Valdivia) 25% of stations show values below 0.75 with a large
spread.

4.2. Global Precipitation Datasets
In the northern zone (Figures 8A-C), ρxy presents an average
value of 0.74. However, CMORPH and SM2RAIN show ρxy
values under 0.6 in all zones. Variations in nrmse show an
average of 0.4, with Mataquito and Maule displaying 0.5 for
the PERSIAN dataset. For σe, the average is 0.27, while for
CMORPH and SM2RAIN the values are higher than 0.6 for
the whole zone (Figure 9A). pbias (Figure 9B) shows an average
of 20%, with anomalous estimates (over 30%) in Mataquito and
Maule.

Over the central zone (Figures 8D,E), ρxy presents an average
of 0.74. Again, CMORPH and SM2RAIN show the worst results
for ρxy, with scores under 0.6. Meanwhile, nrsme gives an average
of 0.44, although the entire area shows values above 0.3.
Continuing with σe (Figure 9A), the average is 0.34. As above,
CMORPH and SM2RAIN give estimates fairly different relative
to the average, higher than 0.5. Here, pbias (Figure 9B) shows an

FIGURE 7 | Box diagrams corresponding to the fit of the weather research and forecasting model, once adjusted (Eq. 1) on the river basins of the area under study
(Figure 1B). (A) Standardized standard deviation (σe), (B) percentage of the systematic error (pbias), (C) Nash–Sutcliffe coefficient (nse), and (D) Willmott
coefficient (d).
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FIGURE 8 | Taylor’s diagrams corresponding to the gridded set performance (Table 2), once fitted (Eq. 2) on the river basins of (A) Rapel, (B)Maule, (C) Itata, (D)
Biobío, (E) Imperial, (F) Toltén, (G) Mataquito, and (H) Valdivia.
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average error of 20%, while the highest estimates are below 30% in
the Itata and Biobío basins.

For the southern zone (Figures 8F-H), ρxy shows an average of
0.73. Similar to that described in the previous paragraph,
CMORPH and SM2RAIN show the worst results with
estimates for ρxy under 0.6. A high nrmse in all basins delivers
an average of 0.48. MSWEP and PERSIAN show the highest
nrmse with values above 0.6. The average σe is 0.34, with
CMORPH and SM2RAIN above 0.6 (Figure 9A). Meanwhile,
pbias (Figure 9B), exhibits an average of 20%. In this case, it is
important to highlight that in all basins, the different datasets
present errors more significant than 30%.

The Nash–Sutcliffe (nse) and Willmott (d) coefficients are
displayed for all basins (Figures 9C,D). Here, nse shows a mean
adjustment of about 0.6 from the Rapel to the Imperial basin.
There is a larger spread for Toltén and Valdivia, with the minima
below 0.55. The Willmott coefficient (d) exhibits a similar
distribution from Rapel to Imperial, with almost 90% of the
datasets above 0.7. We again see more heterogeneity in the Toltén
and Valdivia basins with values below 0.5. SM2RAIN shows the
weakest performance for all basins.

4.3. Dynamic Topo-Climatic Precipitation
4.3.1. Regional Domain Analysis
The average fit of the dynamic topo-climatic model for each
regional domain is shown in Figure 10. The coefficient of
determination (R2) (Figure 10A) shows an excellent model
performance in O’Higgins and Biobío regions with values
above 0.8 and in Araucanía and Los Ríos regions with values

below 0.77. The adjusted coefficient of determination (R2
j )

(Figure 10B) also shows skilled fitting (over 0.8) from
O’Higgins to Biobío regions, although the Maule basin shows
the lowest estimate for R2

j . The same occurs in Araucanía and Los
Ríos regions. The Fvalue from the ANOVA shows an excellent fit of
the model with a Pvalue less than 0.05 (Figure 10C). In turn, the
average model performance for ρxy is higher than 0.9 in all
domains (Figure 10H). We also find an average pbias below
22%, with O’Higgins and Biobío below 15% (Figure 10F). The
outliers identified for σe (Figure 10G) exhibit an error below 0.22,
supporting that the model is skilled. nrmse (Figure 10E) shows
average model values below 0.4, while values above 0.48 are shown
in Araucanía and Los Ríos. In these regions, a high error confirms
the model is more uncertain in estimating extreme precipitation
events. Table 3 shows the results for the calibrated model
configuration (R2, R2

j , Fvalue, and Pvalue) and error estimate (σe,
nrmse, pbias, and ρxy) for each regional domain.

4.3.2. Zonal and Basin Analysis
The northern zone (Figures 11A-C) shows an average ρxy of 0.88,
although some stations in Rapel get values close to 0.6. Meanwhile,
the nrmse exhibits an average of 0.46, although in Rapel and Maule
some cases are above 0.55. Interestingly, σe (Figure 12A) shows an
average fit of 0.07, with that inMaule below−0.4. pbias (Figure 12B)
shows an average adjustment of 18%, but Rapel andMaule show the
most considerable difference with an estimate over 50%.

The central zone (Figures 11D,E), ρxy shows an average of
0.89 and Biobío exhibits values below 0.8. The nrmse displays an
average of 0.52, while Biobío shows an irregular value greater than

FIGURE 9 | Box diagrams corresponding to the gridded set performance (Table 2), once adjusted (Eq. 2) on the river basins of the area under study (Figure 1B).
(A) Standardized standard deviation (σe), (B) percentage of the systematic error (pbias), (C) Nash–Sutcliffe coefficient (nse), and (D) Willmott coefficient (d).
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1. The average for σe is 0.1 (Figure 12A) with only Biobío being
below −0.5. For pbias (Figure 12B) there is a 24% average error
with Biobío showing an estimate below 100%.

The southern zone (Figures 11F-H) exhibits an average ρxy
over 0.9, while the lowest estimates are above 0.85. nrsme shows
an average of 0.52, with all basins having some values above 0.66.

On the other hand, while σe (Figure 12A) shows an average of
0.1, only the Imperial basin exhibits a low estimate of −0.2. pbias
(Figure 12B) shows an average of 24%. nse shows an average
above 0.7 in all basins (Figure 12C); only two atypical cases are
detected in Maule and Biobío with values of 0.5 and −1,
respectively. On the other hand, d (Figure 12D) shows an

FIGURE 10 | Box diagrams corresponding to the adjustment of the topo-climatic model on the domains in execution. (A)Multiple determination coefficient (R2),
(B) adjusted multiple determination coefficient R2

j , (C) value F, (D) value P, (E) standardized mean square error (nrmse), (F) percentage of systematic error (pbias), (G)
standardized standard deviation (σe), (H) Pearson correlation coefficient (ρxy ).
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average fitting of 0.75. Only Biobío exhibits an outlier in the
Liucura station with a value below 0.5.

On each regional domain, a different monthly model is
adjusted to the calibration data and checked using validation
points. This allows us to construct a monthly solution for each
regional domain, delivering a dataset of monthly fields covering
the period 2000–2011 that subsequently are used to produce
monthly climatologies from January to December. Figure 13
shows the observed accumulated annual rainfall and the one
obtained by the topo-climatic dynamic model over the study area
(34+S–41+S). Figure 13B indicates an adequate distribution of
precipitation from north to south and from the ocean to the
Andes. There is a progressive increase from north to south and
drastic increases in mountain areas, particularly along the Andes
and the coastal cordillera. Thus, in sectors close to the coast (from
38+S), an abundant annual precipitation is identified, sometimes
reaching over 2,000 mm. Throughout the Andean areas, the
accumulated annual rainfall can reach and exceed
3,000 mm per year. Finally, between the coast and the Andes
below 36+S, it is possible to identify a decrease in annual
precipitation.

5. DISCUSSION AND CONCLUSION

High-resolution precipitation spatial variability is significant in
different fields such as hydrology, environment, forestry, and
agriculture. In Chile, several authors worked on gridded
precipitation datasets built only with the information available
from local stations in some areas of the country (Román and
Andrés, 2010; Jacquin and Soto-Sandoval, 2013; Reyes, 2013;
Castro et al., 2014; Sijinaldo, 2015). Also, in some cases, datasets
were generated from observed data and low-resolution gridded
data higher than 0.25+ (Morales-Salinas et al., 2012) or even
poorer quality datasets. Thus, these high-resolution datasets are
inadequate to study large areas and/or the whole country.
Moreover, the insufficient spatial distribution of the
pluviometric network (Muñoz et al., 2018) precludes real
hydro-climatic impact under current environmental conditions.

Therefore, we assert that the dataset will be useful for different
communities in Chile. It will be useful for agricultural, forestry,
and livestock planning, for example, and for national institutions
such as the Dirección General de Aguas (DGA), the Instituto de
Investigaciones Agropecuarias (INIA), and the Instituto Forestal
de Chile (INFOR), among others. This product can serve as a

basis of comparison for studies aimed at investigating future
climate or agricultural changes (Orrego et al., 2016), allowing
investigation of the role of and Antartic Oscillation and many
climatic phenomena on some local precipitation-related aspects
(Fustos et al., 2020b), which is beyond the scope of this study.

To get an improved dataset and to quantify precipitation, we
built a high-resolution dynamic statistical gridded precipitation
product at ∼ 800m. Its development involved time series of local
precipitation and different global precipitation grid sets (as shown
in Table 2). To detect spatial-temporal variability of precipitation,
we performed numerical modeling of the atmosphere over the
study area at 4 km spatial resolution for the period 2000–2011.
These outputs are a powerful tool for statistical scale reduction
(Widmann et al., 2003; Schmidli et al., 2006; González-Rojí et al.,
2019). Also, within each region, according to Eqs. 1 and 2
requirements, we performed a month-by-month data selection.
We also evaluated precipitation time series belonging to eight
basins to estimate the responses of the best products that entered
our dynamic topo-climatic model (Figure 11).

We evaluated some precipitation grids and the results are
presented in Table 2. To classify the optimal precipitation
estimates and reduce uncertainty, we used a selection criterion
(Eq. 2). As shown by Zambrano F. et al. (2017) and ZambranoM.
et al. (2017), the performance of many is unsatisfactory. The
products CHIRPS, MSWEP, and PGFv3 show the most accurate
estimations (ρxy > 0.8). Meanwhile, CMORPH and SM2RAIN
provide the worst performance over the whole study area (< 0.6),
and the average of σe displays a similar distribution in all basins.
However, the CMORPH set exhibits the highest mismatches, with
estimates close to 1 in Biobío and Imperial. pbias shows a similar
distribution along all basins between 10 and 30%. The
Nash–Sutcliffe coefficient (nse) shows a decreasing yield from
Rapel to Itata (> 0.7) along with an increasing dispersion. For
example, at Biobío and Imperial, the adjustment is centered on
0.7 with low dispersion. Also, Toltén and Valdivia have an
average of 0.7, but with high dispersion. On the other hand,
Willmott (d) does not show an improvement in the performance
of the datasets, although it shows a similar pattern as nse (> 0.7).
For all basins, we notice that SM2RAIN shows low values.
However, model fitting results for some datasets should be
seen with caution, since we eliminated any value above or
below 5% of the respective maximal or minimal observed
precipitation. Therefore, cleaned data improve the estimates of
these sets.

Atmospheric dynamic models, likeWRF, simulate precipitation
based on convective and large-scale processes (such as
precipitation from cumulonimbus fronts or clouds), generating
an improved distribution of precipitation as well as other fields
such as temperature (Pope and Stratton, 2002; Jung et al., 2006;
Gent et al., 2010). However, there are still errors attributed to
feedback processes, which are not necessarily reduced by increasing
the model spatial resolution. As these errors are pronounced on
rough terrain, and even more so in mountainous areas, to take that
possibility into account, it was necessary to add a 5% correction.
Despite this, the limited density of observation along the Andes
incorporates a high degree of uncertainty, preventing
homogeneous fit, thus making the construction of a correct

TABLE 3 | Statistical summary of the type of topo-climatic model chosen by the
political domain of each region. (wslp), (wcost), (all), (wcon).

Region Model R2 R2
j Fvalue Pvalue σe nrmse pbias ρxy

O’Higgins wslp 0.860 0.855 298.77 1.1 × 10−29 5 0.35 11.99 0.94
Maule wcon 0.829 0.823 221.00 1.4 × 10−31 6 0.38 20.90 0.94
Biobío wcon 0.848 0.843 218.93 1.3 × 10−22 10 0.39 13.96 0.93
Araucanía all 0.747 0.736 121.35 6.3 × 10−26 9 0.48 19.84 0.92
Ríos wcon 0.757 0.748 155.13 4.1 × 10−24 19 0.50 18.81 0.95

O’Higgins is built with a model without a slope (wslp), Maule and Biobío (old) with a
model without continentality (wcon), Araucanía by means of a model with all the
descriptive variables (all), and Los Ríos by a model with continentality (wcon).
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FIGURE 11 | Taylor diagrams corresponding to the performance of the topo-climatic model on the river basins (Figure 1B): (A)Rapel, (B)Mataquito, (C)Maule, (D)
Itata, (E) Biobío, (F) Imperial, (G) Toltén, and (H) Valdivia.
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model at high altitude difficult. Taylor and boxplot diagrams show
that the model presents a remarkable performance in the northern
zone (Figures 6, 7). As far as the central zone is concerned,
adequate fitting is again obtained for ρxy, nse, and d.

To construct our dynamic geostatistical model, we used
global precipitation grids and a local atmospheric model
(Table 2) in addition to regional domains (Figure 1B). This
is a nontrivial process, particularly in regions with a great variety
of space–time patterns (Zhang et al., 2016). During the
precipitation reconstruction phase, we verified the elevation
coefficients relative to each regional domain with available
local information. For the mountains, the little local

information available prevents adequate correction and
adjustment of the WRF model or the gridded data.
Consequently, in the heights, the precipitations should
generally be overestimated. Each month, the adjustment
provides different elevation coefficients for each regional
domain. However, for the entire domain, the solution that
imposed a single elevation coefficient, considering all the
information from north to south, turned out to be the best.

The results of the model chosen for each region (Table 3) show
reasonable skill in the assessed basins (Figures 11, 12). However,
the model is unable to satisfactorily represent extreme precipitation
events, which gradually increase from north to south. It is essential

FIGURE 12 |Box diagrams corresponding to the adjustment of the topo-climatic model on the domains in execution. (A) Standardized standard deviation (σe), (B)
percentage of the systematic error (pbias), (C) Nash–Sutcliffe coefficient (nse), and (D) Willmott coefficient (d).

FIGURE 13 | Annual cumulative rainfall. (A) Rainfall observed and (B) dynamic topo-climatic model.
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to note that the choice of the regression model is conditioned by the
input data selection and the domain used. Only numericalmodeling
and satellite information are the ones that provide adequate spatial
coverage and persistence. In turn, statistical downscaling can
improve the accuracy of discrete meteorological measurements
(Diez et al., 2005; Fernández-Ferrero et al., 2009; Le Roux et al.,
2018; González-Rojí et al., 2019). To our knowledge, this kind of
study is scarce in Chile, not only in the construction of grilled
climatic data but also in the analysis and comparison of different
methodologies for an optimal statistical scale reduction model or
the domain type needed to carry this out.

The database presented in this study results from atmospheric
modeling, corrected, adjusted, and ported to higher resolution by
a dynamic topo-climatic method using data from local
meteorological stations and satellite fields. Note that to
improve the accuracy of database selection by different
statistical methodologies, we visually inspected each dataset in
detail and month by month. However, we still depend on the
quality of the atmospheric modeling, which is not reality, and that
of the satellite fields and local data. Therefore, we would like to
point out that although we are confident that the method used
and the resolution will allow a better understanding of local
hydrological variability, this database does not replace reality.
That is why, contrary to several global gridded databases, which
do not stipulate it, we recommend within each basin to check
against local data and correct any existing bias.

Of course, there are stillmany improvements to bemade.Note that
we will always be dependent on the distribution of the local weather
network, which is the only one that allows the calibration and
validation process. It is fundamental to improve the quality in
many places, notably in the slopes of the Coastal and Andean
mountain ranges, where weather coverage is almost nonexistent. A
nonhomogeneous distribution of altitude data, used to build a solution
over the mountains, may not represent the different mechanisms in
both cordilleras, sometimes separated by less than 100 km. Thus,
specific measurement campaigns are needed to support, for example,
model calibration during brief periods and on a local scale. However,
many phenomena throughout Chile develop at high frequencies,
where the monthly value does not allow for a correct description
(Fustos et al., 2020a). Thus, while it is necessary to expand time–space

coverage, north–south and up to 2020, in addition to build other high-
resolution grids of essential hydro-climatic parameters (such as
temperature), it is also imperative to focus on daily grid products.
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