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The Discrete Boltzmann Equation (DBE) is a versatile simulation method, consisting of

linear advection equations, which can be applied to the Shallow Water Equations (SWE).

The aim of this study is to assess the accuracy of the DBE to simulate dam-break

of shallow water flows in presence of obstacles. Dam-break flows in the presence of

obstacles can be regarded as simplified models for floods in urban areas. In this study,

three cases of dam-break flows in the presence of obstacles are considered: two with an

isolated obstacle and the third in presence of an idealized city. A comparison between

DBE and benchmark results shows a fair agreement, confirming the validity of the DBE

as simulation method for the SWE.

Keywords: Shallow Water Equations (SWE), discrete Boltzmann method, dam-break flow, urban flooding,

experimental dam break

1. INTRODUCTION

Flooding is considered one of the most significant hazards society is facing. Huge losses in terms
of human lives, damages to buildings, houses, and civil infrastructures are caused every year by
hurricanes and flooding. Moreover, the impact of flooding in the future is expected to become
increasingly important due to deforestation and depopulation of rural zones (Sanders and Schubert,
2019).

Urban flooding are particularly fearsome events, considering that more than half of the world’s
population lives in urban areas and that the urban population is continuously increasing (Song
et al., 2019). The prediction of expected consequences of urban flooding as well as the design
and the adoption of mitigation measures is a crucial issue that nowadays takes advantages of
numerical simulations.

The main mathematical model for flood simulation is based on the two-dimensional Shallow
Water Equations (SWE), which is obtained by averaging mass and momentum balance equations
along the vertical direction under the classical assumption of hydrostatic pressure distribution
(Valiani and Begnudelli, 2006). In the last decades, great attention has been paid to the development
of numerical solvers for the SWE (Toro and Garcia-Navarro, 2007; Toro, 2009). The latter tackle
directly the SWE by means of the finite volumes discretization and have reached a sufficient level of
complexity so that they are able to account for crucial issues such as to cite just a few, the treatment
of topography source terms (Duran and Marche, 2014; Hou et al., 2018), the use of unstructured
grids (Zhao et al., 2019), and the evolution of wet-dry fronts (Ferrari et al., 2019).

An alternative option is represented by the Smoothed Particle Hydrodynamics (SPH)
formulation of the SWE (Chang et al., 2018). The latter give rise to strongly non-linear equations
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whose numerical treatment needs particular care. Moreover, the
numerical algorithms of SPH-based methods are intrinsically
non-local, thus implying typically a high computational burden.

Solution methods for the SWE have also been developed in
the Lattice Boltzmann Equation (LBE) framework (Zhou, 2004);
these methods take advantage of the simplicity and versatility
of the stream and collide LBE algorithm (Succi, 2001). The LBE
proposes a mesoscopic representation of the flows based on the
concept of the probability density function associated to a fluid
particle traveling along a given direction with a given particle
velocity (Succi, 2001). The finite set of particle velocities is defined
in such a way that a symmetric regular spatial lattice is generated
(Succi, 2001). Macroscopic quantities, such as vertically averaged
velocity and water depth in shallow water flows, are calculated
as statistical moments of the probability density functions (Zhou,
2004). However, no matter how appealing the application of the
LBE to shallow water flows may be, the LBE is limited to the
simulation of subcritical flows unless an ad hoc-defined lattice
is adopted instead of the usual one, as in Hedjripour et al.
(2016), where only one-dimensional transcritical shallow water
flows have been considered. This is an unacceptable limitation,
as the simulation of flooding problems cannot rule out the
occurrence of transcritical flows. This fact addressed the research
toward the use of multispeed particle velocity sets together with
a finite difference discretization of the Boltzmann equation. The

FIGURE 1 | Test case I. Experimental and numerical free surface profiles at t = 0.4s and t = 0.56. Right: numerical free surface profiles. Top right panel shows

gauges positioning along the centreline. Vertical dashed lines: positions of the height probes H1,H2,H3, and H4; dot on the obstacle: position of the P3 pressure

probe. Left: experimental profiles of Kleefsman et al. (2005).

resulting model, the multispeed Discrete Boltzmann Equation
(DBE), is able to deal with transcritical flows, both 1D and
2D, preserving the linearity of the LBE numerical algorithm
(La Rocca et al., 2015). The DBE has been also successfully
applied to the investigation of the dynamics of two-phase
(La Rocca et al., 2018) and polydisperse (La Rocca et al., 2019)
shallow granular flows.

The aim of this paper is to assess the ability of the DBE
in simulating dam-break flows impacting on obstacles as a
preliminary step for the simulation of urban flooding events on
real topography. Indeed dam-break flows impacting on obstacles
can be considered as simplified models of urban flooding, and
the scientific literature abounds with experiments and numerical
simulations of dam-break flows impacting on obstacles. In this
paper, the experimental and numerical dam-break flows of
Kleefsman et al. (2005), Soares-Frazão and Zech (2007), and
Soares-Frazão and Zech (2008) are considered as benchmarks.
In Kleefsman et al. (2005) and Soares-Frazão and Zech (2007),
the dam-break flow interacts with an isolated obstacle, while in
Soares-Frazão and Zech (2008) the dam-break flow interacts with
an idealized city, which realized by means of a regular array
of parallelepipeds.

In these works, water depth and velocity are measured at given
measurement points and/or are numerically calculated by means
of previously validated finite volume-based numerical solvers
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either applied to the SWE (Soares-Frazão and Zech, 2007, 2008),
or to the Navier-Stokes equations (Kleefsman et al., 2005). A
comparison between numerical results obtained solving the SWE
by means of the DBE and reference results is encouraging and
proves the ability of the DBE as a simulation tool of dam break
flows interacting with obstacles.

The structure of the paper is as follows: first, the mathematical
model is briefly presented; second, the considered benchmarks
are described; third, results are reported and commented on; and
fourth, conclusions are drawn.

2. THE MATHEMATICAL MODEL

The SWE, obtained by averaging mass and momentum balance
equations along the vertical direction under the classical
assumption of hydrostatic pressure distribution (Valiani and
Begnudelli, 2006), assume the following form:
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where h is the water depth and U,V the vertically averaged
velocity components along the horizontal directions x, y
respectively. nm is the Manning friction coefficient.

The first term at right hand side of the second and third
Equation (1) accounts for the bottom slope and is calculated as
in Valiani and Begnudelli (2006), i.e., taking as a constant the
free surface elevation η, defined as the following: η = zf + h,
being zf the bottom elevation. This formulation of the bottom
slope term ensures the correct balance between flux gradients and
source terms (Valiani and Begnudelli, 2006). The free surface η is
considered instantaneously and locally constant: i.e., it is constant
within the computational cell during the time step.

The DBE is given by (La Rocca et al., 2015):
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where fk is the probability density function relative to the
kth particle velocity, whose cartesian components along x, y
are respectively cxk, cyk. The particle velocity set as the kth

equilibrium probability density function f
eq

k
is defined in

La Rocca et al. (2015) and reported concisely in theAppendix for
the reader’s convenience. τ ∗ is the dimensional relaxation time,

FIGURE 2 | Test case I. Time history of the water height at probes

H1,H2,H3, and H4. Solid lines: DBE numerical results. Dots: Experimental

results.

Fex, F
e
y are the cartesian components of the external forces acting

on the flow. In this case, they are defined by the following:
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The DBE (2) is equivalent to the SWE (1) in the sense that the
water depth h and the unit dischargesUh,Vh, obtained as the zero
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FIGURE 3 | Test case I. Time history of the pressure at probe P3. Solid line:

DBE numerical results. Dots: Experimental results.

and first order moments of fk
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(4)

coincide with the water depth h and the unit discharges Uh,Vh
that are obtained by solving the SWE (1) provided that the ratio
Fr/Re of the Froude and the Reynolds number of the flow is small
(La Rocca et al., 2015).

It is worth observing that the DBE (2) that consists of a set of
uncoupled, linear advection equations with constant advection
velocity; this is the most appealing aspect of the DBE, when
compared with the highly non-linear SWE, and it is an advantage
per se. Indeed, the numerical solution of the DBE can be tackled
by means of computational methods that are rather simple
in comparison with those needed to treat the complex non-
linearities of the SWE. Such an advantage may involve a gain
of efficiency, whose quantification is, however, very difficult, as
it depends on a variety of factors, such as e.g., the level of
coding optimization and parallelization, the performance of the
processors, etc., and this is beyond the scope of this work.

3. EXPERIMENTAL DAM BREAK FLOWS

3.1. Computational Details
The DBE (2) is discretized by means of an explicit first order
approximation of the time derivative and a first order upwind
approximation of the space derivative (La Rocca et al., 2015).
Details of the numerical discretization, which is rather standard,
can be found in Fletcher (2012) and are not reported here for
the sake of concision. Boundary conditions are imposed on
the macroscopic variables (water depth and vertically averaged
velocity); then, the probability density functions at equilibrium
are calculated and the values assigned as boundary values to
the probability density functions (Ubertini et al., 2003). Stability
is ensured by setting the order of magnitude of the Courant
number C (C = Umax × 1t/1s) to O(10−1), Umax,1t, and 1s

FIGURE 4 | Test case II. Experimental and numerical free surface time

histories. Solid line: experimental measurements from Soares-Frazão and Zech

(2007). Dotted line: DBE numerical results obtained with the coarse grid.

Dashed line: DBE numerical results obtained with the fine grid.

being the highest celerity of flow perturbations, the time step,
and the space step, respectively. The adopted numerical method
introduces numerical viscosity proportional to 1s, whose effect
decreases by increasing the number of computational grid points.
Finally, the value of the dimensionless relaxation time τ , defined
as τ = τ ∗/1t has been chosen in the range 0.5 < τ < 0.6.

3.2. Dam-Break Flow Impacting on an
Isolated Obstacle-I
This case has been considered in Kleefsman et al. (2005) and
many subsequent works, as it is widely used as benchmark to
validate free-surface software (Kees et al., 2011). The reader
can refer to Kees et al. (2011) for a detailed description of the
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FIGURE 5 | Test case II. Free surface at t = 1s, t = 3s, t = 10s. Left: DBE results; right: numerical results from Soares-Frazão and Zech (2007) ; top-left panel

shows gauges positioning.

experimental setup. The experimental configuration, realized at
the Maritime Research Institute Netherlands (MARIN) in a tank
(3.22 × 1.00 × 1.00 m), consists of a column of water at rest
(height 0.55 m, length 0.58 m, and width 1 m) separated by a
sliding gate from the rest of the tank where the water level is zero.
By lifting the gate, the water column collapses under the action of
gravity and impinges on a fixed parallelepiped (0.40 × 0.16 ×

0.16 m) placed at 2.40 m from the right end of the tank, giving
rise to a complex dam-break flow traveling back and forth within
the tank. The Manning coefficient is estimated to the following:
nm ≈ 0.01 s/m1/3. The experimental setup is equipped with four
heights (H1,H2,H3, and H4) and four pressure probes (P1 − P4)
(Kees et al., 2011).

In Figure 1, the plots of the DBE numerical profiles of the
free surface at t = 0.4s and t = 0.56 are compared to the
corresponding experimental profiles of Kleefsman et al. (2005).
At t = 0.4s the flow has almost reached the obstacle, while
at t = 0.56 the impact has occurred, and the formation of a
water splash with a height of around 0.4 m is evident both in
the experiment and in the numerical simulation. The position of
the height (H1,H2,H3, and H4) and pressure (P3) probes is also
reported in Figure 1.

In Figure 2, the time history of the water height at probes
H1,H2,H3, and H4 is plotted. Dots represent the experimental
results obtained at MARIN, while the solid line represents the

DBE numerical results. The latter are those obtained with the
finest grid (800× 280). The space step 1s is equal to 4× 10−3m,
while the order of magnitude of the time step 1t is O(10−4)s.
The general agreement is fairly good. The main discrepancy
between experimental and numerical results is evident for the
probe H2, where the DBE results overestimate the peak of water
height due to the impact of the flow on the obstacle, and this
is attributed to the fact that the shallow water model does not
describe correctly the strong vertical dynamics involved during
impact; the duration is, however, very short in comparison
to the duration of the considered experiment. However, it is
interesting to observe that the instant of impact of the flow
on the obstacle (t ≈ 0.5s) is correctly predicted by the
DBE numerical results. The experimental and numerical time
history of the pressure measured by the probe P3 is shown in
Figure 3. In the framework of the shallow water equations, the
numerical pressure is calculated assuming a hydrostatic pressure
distribution: p = ρg(h − z), z being the elevation of the
pressure gauge from the bottom of the tank. The experimental
pressure shows an isolated peak, due to the sudden impact
of the water against the obstacle, which is a typical dynamic
feature and of course cannot be reproduced by the numerical
hydrostatic pressure distribution. However, as time goes by,
dynamic effect loose importance and the hydrostatic pressure
distribution becomes a fair representation of the pressure field.
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FIGURE 6 | Test case III. Experimental dam break flow through an idealized

city of Soares-Frazão and Zech (2008). Free surface profile at 4, 5, and 6s

along the third longitudinal street, as indicated by the sketch. Solid line: DBE

numerical results. Dashed line: Soares-Frazão and Zech (2008) numerical

results. Dots: Soares-Frazão and Zech (2008) experimental values. Dotted

box: area occupied by the buildings.

3.3. Dam-Break Flow Impacting on an
Isolated Obstacle-II
This case has been considered in Soares-Frazão and Zech
(2007), where the reader can find a detailed description of the
experimental setup. The experiments have been realized in a tank
36 m long, 3.6 m wide, with a trapezoidal cross section. A gate
(width 1m), placed 7.70m from the left end of the tank, separates
the reservoir from the part of the tank representing a valley with
an isolated building. The latter is a parallelepipedal obstacle, with
a 0.8× 0.4m base area. The 0.8m long side is inclined at an angle
of 64◦ with respect to the y axis (Soares-Frazão and Zech, 2007).
The water level is set to 0.4m and 0.02mwithin the reservoir and
the rest of the tank, respectively.

Finally, the Manning coefficient is set to nm ≈ 0.01 s/m1/3

as in Soares-Frazão and Zech (2007). Water height and velocity
measurements have been performed at several points (Soares-
Frazão and Zech, 2007). Velocity values are measured at 0.036m
from the bottom and cannot be compared with the DBE
numerical vertically averaged velocity, as the flow presents
intense re-circulation zones with high values of the vertical
velocity component.

FIGURE 7 | Test case III. Experimental dam break flow through an idealized

city of Soares-Frazão and Zech (2008). Bottom: Froude number profile at 4s

along the third longitudinal street, as indicated by the sketch. Solid line: DBE

numerical results. Dotted box: area occupied by the buildings. Top: u velocity

profile at 4s along the third longitudinal street, as indicated by the sketch. Solid

line: DBE numerical results. Dashed line: shallow water numerical results of

Soares-Frazão and Zech (2008). Dots: experimental results of Soares-Frazão

and Zech (2008).

In Figure 4 are plotted the time histories of the free surface
at measurement points G1,G3,G4, and G6. Solid lines represent
experimental values, while dotted and dashed lines represent the
DBE numerical values obtained with a coarse (600 × 67) and
a fine (1500 × 165) grid, respectively. The difference between
the DBE numerical results obtained with the two grids is not
meaningful, mainly at measurement point G6. The differences
with the experimental results observed at measurement points
G1,G3,G4, and G6 are ascribed to the fact that there the vertical
motions are not negligible and that the shallow water model
loses consistency. Nevertheless, the DBE numerical results grab
the main features of the flow, and the general agreement with
experiments can be considered fairly good. The DBE numerical
results are in satisfying agreement with the numerical results of
Noël et al. (2003), reported in Soares-Frazão and Zech (2007) and
obtained by directly integrating the SWE. This fact is depicted in
Figure 5 where the snapshots of the free surface at t = 1s, t =

3s, and t = 10s reproduce the same flow features observed in the
numerical calculation of Noël et al. (2003).

3.4. Dam-Break Flow Impacting on an
Idealized City
This case is reported in Soares-Frazão and Zech (2008), where the
experimental setup is described with great detail, and has been
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FIGURE 8 | Test case III. Computed water depth map. Darker color for larger

depth values. Top panels (A,B): t = 5s; bottom panels (C,D): t = 10s. Panels

(A,C): DBE numerical results. Panels (B,D) are numerical values from

Soares-Frazão and Zech (2008).

performed with the same experimental setup tank used in Soares-
Frazão and Zech (2007). The idealized city has been realized by
means of 25 impervious wooden blocks of 0.30 m × 0.30 m,
representing buildings, separated by streets 0.10 m wide and
arranged in a regular array of 5 × 5. According to Soares-Frazão
and Zech (2008), the ratio of the street to building width is
realistic despite the strong simplification of the representation of
the city.

A gate (width 1 m), placed 7.70 m from the left end of
the tank, separates the reservoir from the part of the tank
containing the idealized city. The water level is set to 0.4 m and
0.011mwithin the reservoir and the rest of the tank, respectively.
Finally, the Manning coefficient is set to nm ≈ 0.01 s/m1/3

as in Soares-Frazão and Zech (2008). Water height has been
measured by means of several resistive level gauges, placed along
straight lines along the streets of the city, while velocity has
been measured both on the free surface, by means of a digital-
imaging technique, and close to the bottom by means of an
acoustic doppler velocimeter (ADV) (Soares-Frazão and Zech,
2008).

In Figure 6, the DBE numerical results and the experimental
and numerical results of Soares-Frazão and Zech (2008) relative
to the free surface profile at 4s, 5s, and 6s are shown. The free

surface profile is plotted along the third longitudinal street.
The agreement is satisfying. Minor discrepancies at t = 5s
can be attributed to numerical oscillations in the central part
of the obstacles’ array. In Figure 7, the DBE numerical Froude
number profile at t = 4s along the third longitudinal street,
as indicated by the sketch, is shown. The high values attained
by the Froude number allow to state that the DBE is a robust
tool to investigate super- and transcritical flows. It is worth
observing the fairly good agreement among the DBE numerical
and experimental velocity values and that the position of the
main hydraulic jump (x ∼ 4.3 ÷ 4.4 m), shown in Figure 6,
matches with the sudden change from Fr > 1 to Fr < 1 of
the Froude number shown in Figure 7. Finally, in Figure 8 the
computed water depth in the neighborhood of the city area is
shown at t = 5s, t = 10s, respectively. The complex features
of the flow comply with those shown in Soares-Frazão and Zech
(2008).

In particular, at t = 5s (Figures 8A,B), the flow between the
gate and the city is mainly supercritical; it forms a sort of hat-like
shaped subcritical zone downstream of a hydraulic jump which
front is placed at xH = 3.95 m along the centerline of the tank.
From the edges of the subcritical zone, at xE = 4 m, yEN =

0.7 m, and xE = 4 m, yES = −0.7 m, two symmetrical oblique
waves detach and end at the wall of the tank (Figures 8A,B).
Points xH , xE, yEN , and yES coincide in Figures 8A,B. Within the
longitudinal street of the city the flow is mainly supercritical,
as in Soares-Frazão and Zech (2008). Finally, the wake zone
immediately downstream of the city, where a triangular wave
is observable, is qualitatively similar to that observed in Soares-
Frazão and Zech (2008).

At t = 10s (Figures 8C,D), the structure of the flow is
similar to that observed at t = 5s. The subrictical zone is
almost rectangular, the front being located at xH = 3.4 m along
the centerline of the tank. The two symmetrical oblique waves
detach from the points xE = 3.3 m, yEN = 1.0 m and xE =

3.3 m, yES = −1.0 m. Points xH , xE, yEN , and yES coincide in
Figures 8C,D.Within the longitudinal street of the city the flow is
mainly subcritical, as in Soares-Frazão and Zech (2008), while it
becomes supercritical in the wake zone immediately downstream
of the city.

4. CONCLUDING REMARKS

The multispeed Discrete Boltzmann Equation (DBE) is a method
recently developed to simulate transcritical shallow water flows,
and the main advantage is the simplicity of the mathematical
model: a set of linear, uncoupled, purely advective equations.
In this paper, the DBE has been assessed as solution method
for the Shallow Water Equation (SWE) when dam-break flows
impacting on obstacles are considered. These flows are strongly
unsteady and present frequent sub-supercritical and super-
subcritical (hydraulic jumps) transitions.

The consideration of dam-break flows impacting on obstacles
is important as they represent simplified models of urban
flooding, thus constituting a benchmark for numerical methods,
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thanks to the wide variety of reference numerical and
experimental data published in literature.

In this paper, three dam-break flows impacting obstacles have
been considered: two on an isolated obstacle and one on an
idealized city that has realized by means of a regular array
of parallelepipeds.

The experimental configurations were realized within tanks
with a smooth, though sloping, bottom. The latter has been
treated in order to account for the correct balance between flux
gradients and source terms.

The comparison between DBE and reference results (both
numerical and experimental) shows that the DBE can be
considered as a reliable solution method for dam break flows
impacting on obstacles, even in the presence of complex
flow configurations, such as e.g., the case of the idealized
city. Discrepancies between DBE and reference results can be
attributed both to the use of coarse grids and to the accuracy of
the numerical method and to the occurrence of violent vertical
motions, which undermine the consistency of the shallow water
model. It is worth observing that, for what regards the specific
performance of the proposed models in urban areas, there are
no restrictions for the DBE on the attainable grid resolutions.
Any grid convergence rate can be achieved by just adopting a
higher order numerical scheme. Future works will be addressed
to the consideration of realistic topography as well as to the
implementation of more efficient numerical methods, such as
e.g., the finite volume method with unstructured, adaptive grids.
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APPENDIX

Definition of the Velocity Set
The kth particle velocity vector is defined as:

ck = cxki+ cykj (A1)

being cxk, cyk the cartesian components of the vector ck along
x, y, respectively, and i, j the basis unit vectors of the frame of
reference.
The cartesian components of the vector ck are in turn defined:

cxk = 0, k = 0

cyk = 0, k = 0

cxk = ac0 cos
4πk

NT
, 1 ≤ k ≤

NT

2

cyk = ac0 sin
4πk

NT
, 1 ≤ k ≤

NT

2

cxk = bc0 cos
4πk

NT
,
NT

2
< k ≤ NT

cyk = bc0 sin
4πk

NT
,
NT

2
< k ≤ NT

(A2)

The particle velocity vectors can be grouped into two subsets,
hereinafter referred to as shells, based on their magnitude
ac0, bc0, a, b being the dimensionless velocity magnitudes of the
two shells and c0 a velocity scale representative of the surface
waves celerity. a, b, c0 have been set to 1, 2,

√

gH0, respectively,
H0 being the initial water height. The total number of velocity
vectors NT + 1 must be higher than the minimum value
13, corresponding to NT = 12, below which the simulation
becomes unstable.

Definition of the Equilibrium Probability
Density Function
A polynomial form is assumed for the equilibrium probability
density function f

eq

k
:

f
eq

k
= h

(

Ak + Bk
u · ck

gh
+ Ck

u · u

gh
+ Dk

(

u · ck

gh

)3

+

Fk
(u · u)(u · ck)

(gh)2
+ Gk

(

u · ck

gh

)2

+Hk
(u · u)(u · ck)

2

(gh)3

+ Ik

(

u · ck

gh

)4)

(A3)

where the u = Ui + Vj is the vertically averaged flow
velocity vector. The coefficients Ak, ..., Ik have to be determined
by matching the discrete hydrodynamic moments with those
obtained from the shallow water Maxwellian equilibrium

distribution function f (h, u, c) = 1
πg e

−
(c−u)·(c−u)

gh :

NT
∑

k=0

cmxkc
n
ykf

eq

k
=

1

πg

∫

∞

−∞

∫

∞

−∞

cmxkc
n
ykf (h, u, c)dcxdcy (A4)

The following expressions are obtained: for k = 0:

A0 = 1−
a2 + b2 − 2

φ2

(φab)2

B0 =

4
φ2 − a2 − b2

(ab)2

C0 =
1

(ab)2

(A5)

for 1 ≤ k ≤ NT
2 :

Ak = 2β
2− φ2b2

a2φ4

Bk = 4β
2− φ2b2

a2φ2

Ck = −2β
2− φ2b2

a2φ2

Dk = 8β
3− b2φ2

a4φ2

Ek = 16
β

3a4

Fk = 0

Gk = −
β

a2

Hk = 0

Ik = β
8

a6

(A6)

for NT
2 < k ≤ NT :

Ak = 2β φ2a2−2
b2φ4

Bk = 4β φ2a2−2
b2φ2

Ck = −2β φ2a2−2
b2φ2

Dk = 8β a2φ2
−3

b4φ2

Ek = 16β 2a2−3b2

3b6
(A7)

Fk = −8β a2−b2

b4

Gk = β 3a2−2b2

b4

Hk = −24β a2−b2

b6

Ik = 8β 3a2−4b2

b8

φ,β being defined by:

φ0 =
c0

√

(gH0)

β =
1

NT(a2 − b2)

(A8)
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