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Supra-glacial debris cover is key to glacier ablation through increasing (thin debris layer)
or decreasing (thick debris layer) melt rates, thereby regulating the mass balance of
a glacier and its meltwater runoff. The thickening or lateral expansion of supra-glacial
debris cover correlates with a reduction of glacier ablation and, consequently, runoff
generation, which is also considered to be an influential factor on the rheology and
dynamics of a glacierized system. Studies on supra-glacial debris cover have recently
attracted wide attention especially for glaciers in the Himalayas and Karakoram, where
the glaciers have heterogeneously responded to climate change. In this study, we
used 32 images from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus,
and Operational Land Imager archive, going back to 1990, which are available on the
Google Earth Engine cloud-computing platform, to map the supra-glacial debris cover
in the Hunza Valley, Karakoram, Pakistan, based on a band ratio segmentation method
(normalized difference snow index [NDSI] < 0.4), Otsu thresholding, and machine
learning algorithms. Compared with manual digitization, the random forest (RF) model
was found to have the greatest accuracy in identifying supra-glacial debris, with a Kappa
coefficient of 0.94 ± 0.01 and an overall accuracy of 95.5 ± 0.9%. Overall, the supra-
glacial debris cover in the study area showed an increasing trend, and the total area
expanded by 8.1–21.3% for various glaciers from 1990 to 2019. The other two methods
(Otsu thresholding and NDSI < 0.4) generally overestimated the supra-glacial debris
covered area, by 36.3 and 18.8%, respectively, compared to that of the RF model. The
supra-glacial debris cover has migrated upward on the glaciers, with intensive variation
near the equilibrium-line altitude zone (4,500–5,500 m a.s.l.). The increase in ice or
snow avalanche activity at high altitudes may be responsible for this upward expansion
of supra-glacial debris cover in the Hunza Valley, which is attributed to the combined
effect of temperature decrease and precipitation increase in the study area.
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INTRODUCTION

Glaciers are not only a diminishing natural freshwater resource
but also a sensitive indicator of global climate change (Yang, 1995;
Kaab et al., 2012; Kraaijenbrink et al., 2017; Zemp et al., 2019).
However, due to global warming, global glaciers are showing a
trend of retreat and thinning. Recent studies on mass balance
(Rowan et al., 2015; Lynch et al., 2016; Dehecq et al., 2018; Wu
et al., 2018; Wang et al., 2019a; Wouters et al., 2019; Zemp et al.,
2019), glacial area change (Paul et al., 2013; Patel et al., 2019;
Reinthaler et al., 2019), surface velocity (Wang et al., 2018; Altena
et al., 2019; Garg et al., 2019), glacio-hydrological modeling
(Shrestha et al., 2015), and glaciers’ response to climate change
(Scherler et al., 2011; Rowan et al., 2015) have revealed that
changes in glaciers are exerting an impact on socioeconomic
development in their downstream areas through changes in
glacial water resources in High Mountain Asia (Immerzeel
et al., 2010). Climate change may force geomorphological
processes on high mountain slopes (Tipper et al., 2012; Cook
et al., 2020) by accelerating the disintegration of rocks and
increasing the accumulation of debris on glaciers and mountain
slopes. As a result, the alpine glaciers widely distributed in the
Pamir, Karakorum, Kunlun, Nyainqentangula, and Himalaya
Mountains (Scherler et al., 2011; Khan et al., 2015; Zhang et al.,
2016; Shukla and Garg, 2019) have widespread supra-glacial
debris cover. Some studies have referred to glacier areas with
sporadic debris cover as “dirty ice” (Robson et al., 2015; Fyffe
et al., 2019a,b). The debris cover on glaciers affects the energy
exchange at the ice surface and therefore has an impact on
the surface mass balance of glaciers. It is therefore possible for
glaciers to gain more heat from the environment, increasing the
melt rate and causing the mass loss of glaciers.

Compared with clean ice or snow, the debris layer has a
unique thermal process due to differences in physical properties
such as reflectance, particle size, and color, which results in
different ablation processes in the underlying ice (Østrem, 1959;
Nicholson and Benn, 2006). Also, the differential ablation caused
by an uneven distribution of debris thickness makes it easy for
glaciers to form cliffs (Kindermann et al., 2008; Herreid and
Pellicciotti, 2018) and ponds (Miles et al., 2016; Chand and
Watanabe, 2019) in the ablation zone. Notably, these cliffs and
ponds are not only factors that affect the hydrological process but
also home to numerous glacial lakes, which can pose a serious
threat to downstream communities and lead to catastrophic
socioeconomic disasters in cases of glacial lake outburst flood
(Benn et al., 2012; Dubey and Goyal, 2020). Therefore, obtaining
information about the spatial distribution and temporal variation
of supra-glacial debris cover would enhance the understanding of
debris-covered glaciers and the glacial hydrological model. Some
studies have shown that the area of debris cover is increasing as,
overall, glaciers shrink and lose mass. For example, the supra-
glacial debris cover in the Greater Caucasus increased from
48.3 ± 3.1 km2 in 1986 to 79.0 ± 4.9 km2 in 2014, based on
Landsat and images from the years 1986, 2000, and 2014 (Tielidze
et al., 2020). Furthermore, the glaciers in Pamir, Karakoram,
and West Kunlun have moved forward or backward, either
in equilibrium or showing an increase in mass (“Karakoram

anomaly”) in recent years (Salerno et al., 2017; Farinotti et al.,
2020; Gao et al., 2020), and it is of great interest to know whether
this debris cover increase phenomenon exists for glaciers in
anomaly areas, such as the Hunza Valley. Although some studies
have mapped the spatial distribution of supra-glacial debris cover
in this area (Khan et al., 2015, 2020; Mölg et al., 2018; Gao et al.,
2020), they were limited to the extraction of spatial distribution
information and lack any analysis on the temporal dynamic
changes of supra-glacial debris.

Since the reflectance of supra-glacial debris is similar to
that of non-glaciated slopes (Paul et al., 2004) and there
is a lack of continuous, large-scale, high-quality cloud and
shadow-free optical images, obtaining the long-term supra-
glacial debris variations based on remote imagery is challenging.
Previous studies have attempted to distinguish clean ice from
debris-covered ice by using individual parameters such as the
normalized difference vegetation index (NDVI), normalized
difference snow index (NDSI), normalized difference water index
(NDWI), and spectral band ratio thresholds [e.g., near-infrared
(NIR)/short-wave infrared (SWIR)] or their combination from
optical remote sensing images (Bolch et al., 2010; Alifu et al.,
2015, 2016; Mölg et al., 2018). These methods can robustly
delineate clean ice or snow, but they cannot accurately and
automatically classify debris-covered ice as distinct from clean
ice and the surrounding land surface (Robson et al., 2015). This
has stimulated studies on the use of other parameters, such as
geomorphic parameters derived from digital elevation models
(DEMs) (Paul et al., 2004; Frey and Paul, 2012; Patel et al., 2019)
and thermal characteristics from the infrared band (Singh and
Goyal, 2018), as well as utilizing the coherence change between
two successive synthetic aperture radar (SAR) images (Janke
et al., 2015; Robson et al., 2015; Yang et al., 2016; Lippl et al.,
2018), and the recognition accuracy was improved. However,
complex preprocessing and severe terrain noise from SAR data
make large-scale applications difficult. In conclusion, especially
for the long-time series involved in debris monitoring, optical
images, with decades of continuous observations, such as the
Landsat archive, are more practical.

In recent years, machine-learning-based classification
methods have been applied to mapping glacier facies
(Racoviteanu and Williams, 2012; Shukla and Yousuf, 2016;
Zhang et al., 2019; Yousuf et al., 2020). Studies have shown
that machine learning has advantages in extracting land-surface
information from remote sensing images, which can effectively
improve the accuracy of object recognition (Lary et al., 2017;
Maxwell et al., 2018). However, mining large-scale and time
series land information from high spatiotemporal resolution
remote sensing data was found to be a computationally intensive
task, requiring powerful computing platforms for analysis.
Fortunately, some geospatial cloud-computing platforms are
emerging that meet this demand, such as Google Earth Engine
GEE, Amazon Web Services, Earth Server, and the Earth
Observation Data Centre (Guo et al., 2020). Among these,
GEE has advantages because it is an open-source, cloud-based
platform for planetary-scale geospatial analysis that integrates
mainstream free satellite data, such as the Landsat archive,
Sentinel series imagery, and other terrain products and climate
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data (Gorelick et al., 2017). It can remove the parts of cloud,
cloud shadow, and terrain shadow that affect each scene at
the pixel scale, compared with the local image processing and
analysis software, which takes the scene as a processing unit.
The GEE platform has been widely used for various high-impact
societal issues such as forest resources (Hazel et al., 2016), water
resources (Pekel et al., 2016; Wang et al., 2019b), and land-use
classification (Dong et al., 2016; Midekisa et al., 2017; Hao et al.,
2019_ENREF_18) and has achieved remarkable results.

The aim of this study was to develop an automatic algorithm
to identify debris-covered ice and map its spatiotemporal
distribution in order to explore the dynamic process of supra-
glacial debris cover by combining glacier inventory data and
remotely sensed images on the GEE geospatial analysis platform.
The study focused on glaciers in the Hunza Valley in the
Karakorum Mountains of Pakistan. Otsu’s method was utilized
to optimize thresholds of NDSI, and three machine learning
algorithms [random forest (RF), support vector machine (SVM),
and classification and regression tree (CART)] were used to
classify supra-glacial features, including debris-covered ice, at the
pixel level. Raw spectral information, band ratios, and color-to-
grayscale conversion from Landsat 5/8 optical satellite imagery
and the topographical components derived from DEM products
were extracted as feature variables in the machine learning
models. The same scheme was used to generate a time series of the
debris-covered and clean ice areas in the study area. Finally, the
results were comprehensively analyzed and discussed together
with other data derived at the same time.

STUDY AREA

The Hunza Valley is an area measuring ∼11,000 km2,
located in the western Karakoram, northern Pakistan
(36◦00′15′′ ∼ 37◦05′23′′ N, 74◦02′57′′ ∼ 75◦46′48′′ E) (Figure 1).
The topography across the Hunza Valley is characterized by
large altitudinal variations, from 1,341 to 7,831 m above sea
level (a.s.l.). The valley is home to glaciers with a total area of
∼3,600 km2 (1,878 glaciers, with ∼12% of them being larger
than 0.5 km2) that accounts for ∼33% of the basin area based
on the Randolph Glacier Inventory (RGI) 6.0 dataset (RGI
Consortium, 2017). Most of the glaciers (e.g., Hispar, Batura,
and Barpu) are debris-covered and in a state of surging and
advancing (Bhambri et al., 2017). Debris-covered glaciers are
potential factors driving glacial lake outburst floods (Bhambri
et al., 2019), which represent a major threat to local people,
their property, and infrastructure such as the Karakoram
Highway in the Hunza Valley. Climatologically, the study area
is arid to semi-arid, situated in the subtropical climate zone
and experiences significant variations in precipitation and
temperature (Immerzeel et al., 2012). Based on the Moderate
Resolution Imaging Spectroradiometer (MODIS) 1-km land-
surface temperature daily products, the mean land-surface
temperature for the entire region is −12.9◦C in January
and 20.1◦C in July. Precipitation is mainly controlled by
Indian monsoons and the westerlies, and the average annual
precipitation is between 180 and 690 mm (Qureshi et al., 2017).

Snow cover occupies approximately 80% of the basin’s land
surface in the winter, decreasing to 30% in the summer (Tahir
et al., 2011). The types of land cover in the basin include forest
(0.4%), shrubland (16.1%), farmland (0.7%), and barren land
(82.8%). The main soil types include Leptosols (type LP), rock
outcrop soil (type RK), and glaciated soil (type GG). The primary
soil component in the region is highly active clay, followed by
rock outcrops and glacial soil (Garee et al., 2017; Ali et al., 2018).

DATA AND METHODS

Landsat Imagery and Preprocessing
The Hunza Valley is covered by three WRS2 path/rows (149/034,
149/035, and 150/034) of Landsat images. We collected all
the available standard level 1 terrain-corrected products of
the Landsat raw scenes that were consistent in geometry
and radiometry on the GEE platform, representing the years
1990–2019, including 10 Landsat TM images, four Landsat
Enhanced Thematic Mapper Plus (ETM+) images, and 18
Landsat Operational Land Imager (OLI) images (see Table 1).
The selection of images was constrained by the acquisition time
during the ablation season (e.g., during July, or 200–270 days)
when the images showed minimum snow cover, with little or
no cloud cover. Mosaics of three path-row images within the
same year in the research domain has been processed ready for
debris extraction except for 2010 which were the mosaic from
TM images acquired in 2008 (149/034), 2009 (149/035), and
2011 (150/034), respectively, due to wide snow cover of images
in 2010. The Landsat 7 ETM+ data from 2000 only were used
because of data gaps caused by scan line corrector failure since
June 2003. Spectral bands with 30-m resolution were used in
this study. All the data were publicly available, for free, on the
United States Geological Survey (USGS) website.1 We applied a
standard top-of-atmosphere calibration, which is available on the
GEE platform, to all the USGS Landsat Raw Scenes, converting
the pixel digital number values to top-of-atmosphere reflectance
(Chandera et al., 2009). Then, we assigned a cloud score to
each pixel, using the Landsat simple cloud score algorithm,2

which computes a simple cloud-likelihood score from 0 (not
cloudy) to 100 (most cloudy), using a combination of brightness,
temperature, and NDSI. We used a <10 threshold on the cloud
score to mask cloudy pixels and took the per-band median
values from the accepted pixels. Whole-image data preprocessing
and the subsequent classification process were implemented by
coding on the GEE platform.

Supra-Glacial Debris Extraction
Debris-Covered Ice Extraction
In this work, we used three algorithms to map the debris-covered
outlines of glaciers. A detailed framework for debris-covered
ice extraction is presented in Figure 2. The first algorithm was
a machine-learning algorithm including SVM (Suykens and
Vandewalle, 1999), RF (Liaw and Wiener, 2002), and CART

1https://www.usgs.gov/land-resources/nli/landsat
2https://developers.google.com/earth-engine/landsat
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FIGURE 1 | (a) Location of the Hunza Valley (blue area) in the Karakoram. (b) Major cities, rivers, and road (Karakoram Highway) in the Hunza Valley, RGI 6.0
glaciers, and region-of-interest sample sites for various land types used in the machine-learning classification model (2019).

(Breiman et al., 1984). Default parameters were used, but 500
trees were set for the RF classification model, and the kernel
type of radial basis function that is suitable for the case of linear
inseparability was applied in the SVM model. It is obvious that a
single spectrum cannot fully solve the problem of the similarity of
ice covered with debris to the surrounding terrain. We generated
14 feature variables: original spectrum (Band 1 ∼ 7); band
ratios (NIR/SWIR1); NDVI ([NIR − Red]/[NIR + Red]);
NDSI ([Green − SWIR1]/[Green + SWIR1]); NDWI
([Green − NIR]/[Green + NIR]); and luminance
(0.3∗Red + 0.59∗Green + 0.11∗Blue); and geomorphic
parameters (slope and aspect). The training data were visually
sampled, based on Landsat images at coincident times, combined
with high-resolution images from Sentinel-2 and Google Maps.
Samples in the regions of interest were divided into clean ice
or snow, debris-covered ice (or supra-glacial debris), bare land,
and other (e.g., vegetation, villages, rivers, lakes, and shadows),
according to the land cover types pertaining to the Hunza Valley
(Ali et al., 2018). For example, for 2019, 1,024 samples (shown
in Figure 1) were selected, including 373 debris, 356 ice/snow,
270 bare land, and 205 other. The second method was a band
ratio segmentation method (NDSI < 0.4) (Dozier, 1989) for
eliminating the clean ice/snow part, under the restrictions of the
RGI 6.0 outlines. However, a fixed NDSI threshold of 0.4 may
not have been applicable to all periods. Therefore, we developed
an optimization method based on Otsu algorithms to optimize
the NDSI threshold to better distinguish between clean ice/snow
and debris-covered ice in different periods. The Otsu algorithm
is an automatic non-parametric and unsupervised method
for thresholding that is used to automatically detect targets in
computer vision and image-processing fields (Ng, 2006). It is a

global threshold method, and its principles are the following:
assume that the gray value of an image is 1 ∼ N, divide it into
two groups at value k, G0 = [1 ∼ k], and G1 = [k+ 1 ∼ N],
and calculate the probability of the two groups, ω0 and ω1, the
average values for each group (µ0 and µ1), and the entire image
(µ). Then, the variance of the two groups can be calculated by
the following equation:

σ2 (
k
)
= ω0(µ0 − µ)2

+ ω1(µ1 − µ)2

where σ2 (
k
)

is a threshold selection function. By changing the
k-value in 1 ∼ N, the k-value at which σ2 (

k
)

is maximized is the
required threshold.

Slope Delimitation and “Salt and Pepper Effect”
Removal
Topographic parameters are a key factor in delineating glacier
areas with debris cover. The spatial distribution of supra-
glacial debris depends on the geomorphology and elevation
gradient (Paul et al., 2004). Thus, parameters such as slope,
aspect, and plan curvature derived from DEM were applied
to improve the accuracy of classification of the debris cover
and clean ice on the glacier surfaces. Some previous studies
proposed various thresholds for the slope; for example, a
slope < 24◦ (Paul et al., 2004) or smaller values [<12◦ (Alifu
et al., 2015) or <14 ∼ 16◦ (Robson et al., 2015)] were used
to distinguish debris-covered glaciers from the surrounding
terrain. We hypothesized that the slope threshold would
show spatial heterogeneity for various glacierized mountains.
We used the slope gradient derived from the Shuttle Radar
Topography Mission DEM void-filled version, known as
“SRTM Plus,” at a resolution of 1 arc-second (approximately
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TABLE 1 | List of Landsat scenes used to map the dynamics of supra-glacial debris.

Time stage WRS2 path-row Date LANDSAT_SCENE_ID Sensor Cloud cover (%)

1990s 150–034 July 05, 1993 LT51500341993186ISP00 TM 5

149–034 August 07, 1990 LT51490341990219ISP00 TM 1

149–035 August 07, 1990 LT51490351990219ISP00 TM 1

1998s 149–035 August 13, 1998 LT51490351998225XXX01 TM 4

149–034 August 29, 1998 LT51490341998241BIK03 TM 4

150–034 August 20, 1998 LT51500341998232BIK00 TM 3

149–035 August 16, 1999 LT51490351999228AAA02 TM 8

2000s 149–035 September 11, 2000 LE71490352000255SGS00 ETM+ 5

149–034 September 11, 2000 LE71490342000255SGS00 ETM+ 3

150–035 September 16, 1999 LE71500351999259SGS00 ETM+ 1

149–034 September 02, 2000 LE71500342000246SGS01 ETM+ 4

2010s 149–034 September 25, 2008 LT51490342008269KHC01 TM 2

150–034 August 24, 2011 LT51500342011236KHC00 TM 1

149–035 August 27, 2009 LT51490352009239KHC00 TM 3

2013s 149–035 September 07, 2013 LC81490352013250LGN01 OLI 2

149–034 September 07, 2013 LC81490342013250LGN01 OLI 4

150–034 July 28, 2013 LC81500342013209LGN02 OLI 3

2014s 150–034 September 17, 2014 LC81500342014260LGN01 OLI 2

149–035 July 24, 2014 LC81490352014205LGN01 OLI 3

149–034 September 26, 2014 LC81490342014269LGN01 OLI 2

2015s 150–034 August 19, 2015 LC81500342015231LGN01 OLI 2

149–034 September 13, 2015 LC81490342015256LGN01 OLI 2.5

149–035 September 13, 2015 LC81490352015256LGN01 OLI 12.5

2017s 150–034 September 09, 2017 LC81500342017252LGN00 OLI 1.6

149–034 August 01, 2017 LC81490342017213LGN00 OLI 4.7

149–035 August 01, 2017 LC81490352017213LGN00 OLI 3.6

2018s 150–034 September 12, 2018 LC81500342018255LGN00 OLI 1.7

149–035 August 04, 2018 LC81490352018216LGN00 OLI 2.6

149–034 August 04, 2018 LC81490342018216LGN00 OLI 10

2019s 149–034 September 24, 2019 LC81490342019267LGN00 OLI 0.5

149–035 September 24, 2019 LC81490352019267LGN00 OLI 1.1

150–034 September 12, 2018 LC81500342018255LGN00 OLI 1.7

30 m), which was available from the National Aeronautics
Space Administration Jet Propulsion Laboratory. To obtain a
typical slope threshold for this region, we evenly selected 713
slope samples from the glacier areas covered by debris in
the Hunza Valley using visual interpretation. Our statistical
results indicated that slopes of <25◦ dominated 99% of
the debris-covered glacier areas with an average slope of
6.7◦ (Figures 3A,B). Therefore, a slope threshold of 25◦,
which is consistent with suggestions in Paul et al. (2004),
was used to distinguish the glacier debris areas from the
surrounding debris areas.

The “salt-and-pepper” effect is a common noise problem
in pixel-based remotely sensed imagery classification, occurring
when the same features (adjacent pixels) on the image
are divided into different categories. Usually, median or
morphological filtering is considered as a method for noise
reduction (Serra and Vincent, 1992; Jassim, 2013). To remove
this noise (also known as island pixels), we applied a
morphological reducer filter to classified images using a custom
kernel. We found that a 5 × 5 square kernel, with 50

connected pixels, was the best format for removing this effect,
after a comparison of different kernel sizes (kernel radii of
3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13,
15 × 15, and 25 × 25) (Figure 3C) and types (square, circle,
octagon, diamond, cross, and plus) and maximum number
of connected pixels (5, 10, 20, 30, 40, 50, 100, 200, 300,
400, 500, and 1000).

Definition of Glacier Outlines
At present, there are several datasets defining glacier outlines
of the world including Global Land Ice Measurements from
Space (GLIMS) (Raup et al., 2007), RGI (Pfeffer et al., 2014),
Glacier Area Mapping for Discharge from the Asian Mountains
(GAMDAM) (Nuimura et al., 2015), and the Second Glacier
Inventory of China (Liu et al., 2015). In our study, the
glacier outlines consisted of clean ice and supra-glacial debris
outlines. We automatically extracted the clean ice outlines
robustly using the classification algorithm, while relying on
the existing RGI 6.0 outlines for the supra-glacial debris
outlines, as in previous studies (Mölg et al., 2018; Scherler
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FIGURE 2 | Framework used for mapping debris cover on the GEE platform.

et al., 2018; Tielidze et al., 2020). For terminus-advancing
or retreating glaciers, however, it is not reasonable to use
a fixed glacier outline in time series of supra-glacial debris
mapping. Therefore, we manually improved the RGI 6.0 outlines
by visually interpreting glacier boundaries based on historical
images of Landsat, Sentinel-2, and Google Maps, especially
for the surging glaciers proposed by Bhambri et al. (2017)
(Figure 1) and debris-covered glaciers. A total of six glacial
outlines were modified based on the historical images of
1990, 1998, 2014, 2018, and 2019. We found that although
the Karakoram contains a large number of surge-type glaciers
(Quincey et al., 2011; Bhambri et al., 2017), there were no

significant terminus-advancing or retreating glaciers in our
study area. Thus, we assumed that the limiting effect of RGI
outlines did not affect the dynamic analysis of supra-glacial
debris. Nevertheless, there were voids or missing data in the
glacier outlines mapped by RF modeling, possibly due to some
darker pixels on the glaciers being misclassified, with so much
attention being paid to these in the process during “salt and
pepper effect” removal. Also, we found that the clean ice/snow
automatically mapped by NDSI < 0.4 and Otsu thresholding
contained some water pixels located outside the glacier area,
so the results were masked using a 500-m buffer of the
RGI 6.0 outlines.
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FIGURE 3 | (A) 3D distribution of slopes in the debris-covered areas of the glaciers. (B) Histogram of slope statistics. (C) Comparison of removal effects (e.g., red
rectangles) under different kernel radius and square kernel types. A 5 × 5 square type and 50 connected pixels were selected for this study.

TABLE 2 | Comparison of debris cover area values (2019) derived from automatic extraction algorithms and manual digitization.

Glacier Multiple digitizations (km2) RF NDSI < 0.4 Otsu thresholding

1 2 3 4 5 Std. Mean

Kukki Jerab 15.7 16.1 15.0 15.1 14.0 0.8 15.2 12.8 14.3 14.6

Virjerab 21.7 21.9 21.5 21.0 21.6 0.4 21.5 20.1 25.9 27.1

Yashkuk Yaz 25.9 27.3 26.2 30.2 24.3 2.2 26.8 25.2 27.5 28.5

Evaluation of Classification Accuracy
We used two methods to assess the accuracy of the classification
results. For machine learning, a cross-validation method was
used, where the total sample was divided into two parts, and
70% of the sample points from each class were randomly
selected to train the model while 30% were withheld to form
a validation dataset. Using the validation dataset, a confusion
matrix was generated to assess the accuracy of the predictions
across the classes, and the overall accuracy through the Kappa
coefficient. The confusion matrix prediction versus the validation
data based on the RF model and 2019 Landsat 8 OLI image
are shown in Table 2. The prediction accuracy of the RF

model for different land types exceeded 89%, especially for
clean ice/snow with user and producer accuracy of 100%.
Therefore, for this study, we used the RF model because
it had the greatest accuracy compared with the SVM and
CART models. Another evaluation tool is the “round robin”
method proposed by Paul et al. (2017), which is based on
multiple manual digitizations. Based on high-resolution Sentinel-
2 and Google Earth images, we selected three glaciers (Kukki
Jerab, Virjerab, and Yashkuk Yaz) and performed manual
digitization five times, using the average value for evaluating
the automatically derived extent and standard deviation for
digitization accuracy. Table 3 shows the debris-covered area
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on three debris-covered glaciers derived by machine learning
algorithms and by manual digitization.

RESULTS

Changes in Supra-Glacial Debris Cover
From 1990 to 2019
Overall, the supra-glacial debris-covered area in the Hunza Valley
showed a trend of slowly increasing from 1990 to 2019. This
increasing trend has been seen in other major glaciers during the
same period, as indicated in Figure 4. Considering the accuracy
of the RF model for satellite data acquired at different times,
the Kappa coefficient of the RF model was within a range of
0.92–0.96 (0.94 ± 0.01), the overall accuracy was 95.5 ± 0.9,
and the estimated debris coverage was 410.9 ± 25.9 km2. The
debris cover estimated by the Otsu thresholding method was
559.1 ± 23.4 km2, with an optimized threshold of 0.53 ± 0.04.
The NDSI < 0.4 method gives a value of 487.1 ± 16.9 km2.
The detailed estimates of supra-glacial debris cover are shown
in Table 4 and Figure 5. The total area of supra-glacial debris
cover in the Hunza Valley has expanded by about 8.1–21.3% from
1990 to 2019. In comparing the estimated values from the three
methods, we found that those based on Otsu thresholding were
the largest, followed by the NDSI < 0.4 method and the RF model,
while the estimated standard deviation based on the RF model
was the largest, with a value of 25.9 km2. The results indicated that
the supra-glacial debris cover in this region has been expanding
slowly since the 1990s, due to an increasing number of clean ice
areas being covered by impurities, such as rock and dust, which
reduce the albedo, resulting in a debris-covered ice classification.

In order to further explore the variations in supra-glacial
debris cover, we drew the spatial distribution of supra-glacial
debris in the Hunza Valley from 1990 to 2019 using spatial overlay
analysis, as shown in Figure 6A. The supra-glacial debris has
migrated up-glacier, and the main area of change is located in the
middle and upper regions of the glacier, close to the altitude of the
equilibrium line (4,500–5,500 m a.s.l.). The variation in debris on
the slopes showed a normally skewed distribution, with ∼60%
of the variation in coverage being located in the area below a
slope of 10◦ (Figure 6B). The maximum variation in supra-glacial
debris was at an altitude of 5,000 m a.s.l. (Figure 6C) and with
a northeast aspect. Also, We mapped the distribution of supra-
glacial debris and clean ice/snow cover in the Hunza Valley at
elevation gradient and aspect based on the estimation results by

TABLE 3 | Confusion matrix for random forest model classification in 2019 [model
prediction (top) and validation data (left)].

Debris Ice/snow Bare Other Total Producer accuracy

Debris 101 0 5 0 106 95.3%

Ice/snow 0 104 0 0 104 100%

Bare 2 0 65 1 68 95.6%

Other 3 0 3 66 72 91.7%

Total 106 104 73 67 350 Overall accuracy: 96.0%

User accuracy 95.3% 100% 89.0% 98.5% – Kappa: 0.95

RF model on images acquired in 2019. More than 78% of the clean
ice/snow area lies higher than 5,500 m a.s.l., while about 80% of
the debris-covered ice was distributed between 4,000 and 5,000 m
a.s.l. The median elevations were approximately 5,365 m for clean
ice/snow and 4,075 m for debris-covered ice (Figure 7A). The
median elevation of glaciers is 5,230 m a.s.l., which is sometimes
referred to as the equilibrium line altitude of glaciers in the Hunza
basin (Qureshi et al., 2017). This means that supra-glacial debris
is extensively distributed in the lower part of the ablation area
of glaciers. Most glaciers have a north (N) and northeast (NE)
aspect, accounting for 38.7% of the glaciers’ area, with only a few
glaciers having a west-facing aspect (Figure 7B).

Status of Glaciers in the Hunza Valley
Over the past 30 years, the glacier area in the Hunza
Valley has shown a downward trend. The glacier area
estimated by the NDSI < 0.4, Otsu thresholding, and the RF
model is 4,355.5 ± 210.2 km2, 4,104.8 ± 167.6 km2, and
3,810.8± 321.7 km2, respectively. The clean ice/snow and supra-
glacial debris areas of the Hunza Valley for the years 1990, 1998,
2000, 2010, 2013, 2014, 2015, 2017, 2018, and 2019 are included in
Table 4 and Figure 5. The results presented in this study indicate
a 9.311.6% decrease in clean ice/snow area in this region between
1990 and 2019. This decrease may be due to the retreat of glaciers
and the overall expansion of debris-covered areas on glaciers
(8.1–21.3%). According to the estimates from the RF model, the
total glacier area of the Hunza Valley was 3,497.1 km2 in 1990 and
3,286.6 km2 in 2019. Overall, there was a 6.0% decrease in glacier
area from 1990 to 2019.

DISCUSSION

Uncertainty Analysis
Uncertainty, including that stemming from measurement errors,
models, and scale effects, is an important step in validating
the mapping results of supra-glacial debris. In this study, the
quality of the satellite imagery was the most important factor,
as this directly determined the classification results, especially
in the high mountain areas with clouds and steep terrain. To
exclude the impact of fresh snow, images from previous and
subsequent years were used for some periods when there were
few cloud-free images, such as in 2010, and this may inevitably
have added to the uncertainty. Besides, the uncertainty mainly
stemmed from the ground observational data (such as the counts
and spatial distribution of the samples for the machine learning
model), the classification methods, including the model types, the
selected feature variables, model parameters or thresholds, and
the postprocessing process. We analyzed this uncertainty from
the following two aspects.

Uncertainties in Mapping Glacier Outlines
Uncertainty of supra-glacial debris extraction is a major source
of uncertainty in mapping glacier outlines compared with the
uncertainty from the extraction of the clean ice/snow part.
The mapping uncertainty for the clean-ice areas was mainly
affected by the seasonal snow cover. Seasonal snow cover has
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FIGURE 4 | RF-classifier-based supra-glacial debris mapping of five typical debris-covered glaciers. Column 1 (left) illustrates the variation curves for the
supra-glacial debris area, indicating the expansion of supra-glacial debris cover from 1990 to 2019. The next columns show examples of supra-glacial debris
extraction for each glacier, including the Landsat 8 OLI image from 2019 (Column 2), the RF classified results (Column 3), and the debris extent passed through
post-classification processing (Column 4).

a greater impact on small glaciers, and the uncertainty may
exceed 50% or even more (Mölg et al., 2018). From 2010 to
2014, the clean ice/snow area estimated by the three methods
was on the high side, which may be caused by seasonal snow
cover. In addition, we compared the glacier area estimated by
Mölg et al. (2018), hereafter called the Mölg dataset, with our

inventory to determine the main differences between them. The
RF-based classification accuracy for clean ice/snow was 100%
with an estimated glacier area of 3,810.8 ± 321.7 km2, which
is ∼6% larger than the Mölg dataset (3,617.1 km2). The glacier
area estimated by NDSI < 0.4 and Otsu thresholding tended
to be overestimated, being 738.4 km2 and 487.8 km2 higher
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TABLE 4 | Debris cover area change in Hunza valley between 1990 and 2019.

Time stage NDSI < 0.4 Otsu thresholding RF model

Clean ice/snow
(km2)

Supra-glacial
debris (km2)

Thresholds Clean ice/snow
(km2)

Supra-glacial
debris (km2)

Kappa Overall
accuracy (%)

Clean ice/snow
(km2)

Supra-glacial
debris (km2)

1990 3951.7 ± 220.7 483.9 ± 16.9 0.52 3629.0 ± 179.5 542.0 ± 23.4 0.93 95.2 3118.0 ± 330.0 379.2 ± 25.9

1998 3694.0 ± 220.7 486.9 ± 16.9 0.49 3442.3 ± 179.5 540.7 ± 23.4 0.94 95.6 3175.0 ± 330.0 439.1 ± 25.9

2000 3722.7 ± 220.7 487.9 ± 16.9 0.49 3502.8 ± 179.5 534.1 ± 23.4 0.94 95.8 3344.3 ± 330.0 390.0 ± 25.9

2010 3992.9 ± 220.7 481.9 ± 16.9 0.49 3744.2 ± 179.5 529.6 ± 23.4 0.93 94.9 3738.7 ± 330.0 405.4 ± 25.9

2013 4086.0 ± 220.7 483.2 ± 16.9 0.57 3717.2 ± 179.5 548.4 ± 23.4 0.93 94.9 3704.8 ± 330.0 434.4 ± 25.9

2014 4267.0 ± 220.7 484.7 ± 16.9 0.60 3822.9 ± 179.5 559.8 ± 23.4 0.96 96.7 3853.2 ± 330.0 397.6 ± 25.9

2015 3788.0 ± 220.7 515.3 ± 16.9 0.51 3447.0 ± 179.5 582.7 ± 23.4 0.95 96.3 3675.2 ± 330.0 394.7 ± 25.9

2017 3804.0 ± 220.7 518.9 ± 16.9 0.55 3457.6 ± 179.5 593.0 ± 23.4 0.92 93.8 3307.7 ± 330.0 416.1 ± 25.9

2018 3782.2 ± 220.7 503.6 ± 16.9 0.55 3466.7 ± 179.5 574.7 ± 23.4 0.95 96.1 3255.8 ± 330.0 392.1 ± 25.9

2019 3493.0 ± 220.7 524.8 ± 16.9 0.53 3227.8 ± 179.5 586.0 ± 23.4 0.95 96.0 2826.7 ± 330.0 459.9 ± 25.9

Average 3858.4 ± 220.7 487.1 ± 16.9 0.53 ± 0.04 3545.7 ± 179.5 559.1 ± 23.4 0.94 ± 0.01 95.5 ± 0.9 3399.9 ± 330.0 410.9 ± 25.9

FIGURE 5 | Time-varying trend of the clean ice/snow and supra-glacial debris area estimated by the random forest model.

than the Mölg dataset, respectively. Unfortunately, there were
still voids or missing data in the glacier outlines mapped by
the RF model, which also lead to the underestimation of glacier
area in some years.

Uncertainties in Mapping Supra-Glacial Debris
Figure 8A shows that the results from the machine learning
algorithms generally had high accuracy, with Kappa coefficients
ranging from 0.82 to 0.95. In comparison, the classification
accuracy for the SVM model was slightly lower than for the
RF model, where the Kappa coefficient was 0.9 and the overall
accuracy was 96.0%. The manual digitization for each glacier by
five professionals showed decreasing standard deviations from
the largest to the smallest glaciers, specifically Yashkuk Yaz
(26.8 ± 2.2 km2), Kukki Jerab (15.2 ± 0.8 km2), and Virjerab
(21.6 ± 0.4 km2) glaciers. The linear fit between the mean of
the digitizations and the automatic estimates indicated that all
the machine learning algorithms could produce results close to

reality but that the RF model was better than the other two, in
terms of the determination of an R2 coefficient of 0.99 for the
RF model, 0.87 for the NDSI <0.4 method and 0.86 for the Otsu
thresholding algorithm (Figure 8B).

As shown in the results, there were differences in the supra-
glacial debris cover area estimated by the three methods, with the
Otsu thresholding tending to overestimate the debris coverage,
while the RF model gave the smallest estimated value. To verify
the reliability of these estimates, we compared the results with
those from other works. For example, the supra-glacial debris
area extracted from the 2007 and 2009 ALOS-1 PALSAR-1
coherence images in the Mölg dataset was 583.6 km2, which was
larger than the debris area estimated by our study for 2010–
481.9 km2 (NDSI < 0.4), 529.6 km2 (Otsu thresholding) and
405.4 km2 (RF model). Another comparative dataset is one
obtained by extracting regions with NDSI < 0.4 and clipping
them with RGI 6.0 outlines (Scherler et al., 2018), the same
as method 2 of this study. In this work, the automatically
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FIGURE 6 | (A) Spatial distribution of supra-glacial debris cover variance from 1990 to 2019. (B,C) Variations in supra-glacial debris cover area (%) at different slopes
and for different elevations, respectively.

extracted areas, using Landsat 8 composite images from 2013
to 2017 and Sentinel-2 composite images from 2015 to 2017,
were 465.1 and 453.3 km2, respectively. For the same period,
the estimated results from the RF model in this study were
comparable (408.9 ± 22.2 and 405.4 ± 13.2 km2, respectively).
However, the supra-glacial debris results for the NDSI < 0.4
and Otsu thresholding were higher than those of Scherler et al.
(2018). It is difficult to evaluate the estimated results from
this study in terms of previous results because they derive
from different remote sensing data, and the methods used for
data processing and classification are different; however, the
supra-glacial debris-covered area falls within a reasonable range,
in terms of magnitude.

Uncertainty from complex surfaces debris-covered glaciers,
such as stagnant ice in glacier tongue areas, cliffs, and ponds on
the surfaces of debris-covered areas, and boulders and dirty ice,
have extensive effects on pixel-based classification. The supra-
glacial ponds or lakes widely distributed on glaciers such as
Batura, Hispar, Yashkuk Yaz, and Kukki Jerab frequently emerge
or disappear, demonstrating obvious supra-glacial characteristics

with time. We used salt-and-pepper-effect removal, as described
above, to compare these effects. By comparison, we found that
convolution kernel and maximum-connected pixel counts have
to be properly decided in order to avoid the removal of correctly
classified patches, or vice versa. In this study, a 5 × 5 kernel with
50 connected pixels was used, but this may not have been optimal.
The problem of the salt-and-pepper effect is unavoidable in pixel-
based classification. Although some studies have pointed out that
the object-based classification method can effectively solve this
problem and improve the accuracy (Rastner et al., 2014; Robson
et al., 2015; Kraaijenbrink et al., 2016; Sahu and Gupta, 2018),
its universality and operability on a large scale need to be
further considered. Also, the stagnant ice at glacier tongues,
such as the Batura and Hispar Glaciers, tend to have thick
overlying debris layers with signs of vegetation (shrub) growth on
their surfaces. Parts of these regions are classified as non-debris
cover regions, which increases the uncertainty of estimating
supra-glacial debris coverage, especially for RF models. Vezzola
et al. (2016) showed that the number of debris-covered glaciers
featuring supra-glacial trees is increasing globally as a response
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FIGURE 7 | (A) Distribution of supra-glacial debris and clean ice/snow areas by altitude, based on the 2019 random forest model classified result. The light blue area
represents the equilibrium-line altitude of glaciers in the Hunza Valley (4,500–5,500 m a.s.l.). (B) Percentage of supra-glacial debris and clean ice/snow distribution by
aspect.

FIGURE 8 | (A) Model accuracy of three machine-learning algorithms (the bar plot shows the overall accuracy; the lines link the Kappa coefficients). (B) Linear fit of
estimated values to manually digitized values. The black dashed line represents the 1:1 line.

of the alpine environment to climate warming. They found
supra-glacial trees present on the Miage Glacier when a debris
thickness threshold (≥19 cm) was exceeded, and where there
was a gentle slope (≤10◦) and a low glacier surface velocity
(≤7.0 m yr−1) and where the vertical changes due to glacier
dynamics were positive.

Additionally, although the image acquisition time was limited
to 200–270 days, there may still be snow cover at high altitude,
which is one of the significant uncertainties in mapping debris-
covered ice. Due to the annual difference in temperature and
precipitation, the melting limits of seasonal snow on the upper
part of glaciers in summer are different each year, which may
lead to an underestimation of the supra-glacial debris area.
Similarly, the effects of shadows and cloud coverage inevitably
pose challenges to the mapping of supra-glacial debris.

Characteristics and Possible Causes for
Supra-Glacial Debris Cover Changes
Overall, the supra-glacial debris cover migrated up-glacier.
Similar patterns of up-glacier migration have also been described
for the Zmutt Glacier, Swiss Alps (Mölg et al., 2019) and the
Greater Caucasus (Tielidze et al., 2020). Variations in supra-
glacial debris cover were mainly observed in the middle and
upper parts of the glacier, while the distribution of supra-glacial
debris from the lower part to the glacier tongue remained stable.
In the middle of the glacier, the area showing the most intensive
variation was at the junction between the clean ice and the
debris-covered ice. We found that the expansion of debris-cover
over clean ice was slow. Due to the characteristics of glacier
movements, the spatial distribution of supra-glacial debris cover
in the downstream part of the glacier changes with time, while the
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FIGURE 9 | (a) Location of the landslide area (green rectangle), shown on Google Earth images. (b) Emergence of landslide sediments and its position changes on
the glacier from 1999 to 2019. The base image is from the Landsat TM, ETM+ and OLI sensors.

area changes slightly. This redistribution of the surface moraine
is a key factor in the diversification of glacier surface types, and it
also changes the debris coverage. Recycled material from lateral
moraines may be the source of this debris. As the glacier lowers
and the permafrost melts, the lateral moraines become unstable,
causing moraine material to fall onto the glacier (Nakawo et al.,
1986). Debris eroded from the glacier bed may also be entangled
in the ice. The degree of under-ice entrainment mainly depends
on the thermal conditions at the base of the glacier and the
substrate erodibility.

Previous studies have indicated that the main sources of debris
are mass movements such as rockfalls, rock avalanches, debris-
laden ice, and snow avalanches from the surrounding slopes
(Hambrey et al., 2008). These sudden and sometimes massive
debris migration/relocation events are common in alpine areas.
For example, between September 1999 and June 2000, a landslide
occurred in the upper region of the Batura Glacier, possibly as a
result of slope failure. The accumulated rock fragments covered
the glacier surface and moved downstream with the glacier ice,
following a dynamic change in their shapes and sizes (Figure 9).
Such phenomena play a key role in the increase and fluctuation
of supra-glacial debris-covered areas.

Figure 10 shows the hypsometry of the supra-glacial debris
coverage, and the five representative debris-covered glaciers, in
1990, 1998, 2010, 2014, and 2019. The zone at 4,500 ∼ 5,500 m
a.s.l. displayed the greatest variation in supra-glacial debris
(Figure 10A) and is within the altitude equilibrium line zone of
glaciers in the Hunza Valley (Scherler et al., 2011; Kaab et al.,
2012; Gardelle et al., 2013). These areas have steep topography
and are prone to rockfalls and rock avalanches, in which there
is an abundant release of supra-glacial debris. The amount of
debris reaching a given glacier depends on the characteristics and
extent of the catchment area, and especially its weathering and
erosion rates (Haeberli et al., 2006). These are also affected by
the lithology of the bedrock (Singh et al., 2011). Not all glaciers
have experienced an increase in supra-glacial debris cover, with
minor changes in supra-glacial debris having been recorded

for the Batura, Parpik, and Gharesa glaciers (Figures 10B,C,E),
which differ significantly from the obvious increases reported
for the Kukki Jerab and Yashkuk Yaz glaciers (Figures 10D,F),
especially between 1990 and 1998. In addition to subjective
factors, the apparent increase in supra-glacial debris cover on
Kukki Jerab and Yashkuk Yaz glaciers is mainly attributed to the
evolution of ice ponds and cliffs and the upward expansion of
surface moraines.

Impact of Climate Change
Thinning of glaciers and a warming atmosphere can lead to
permafrost melting and slope instability at higher altitudes
(Deline et al., 2015). Glacier changes in the Karakoram
Mountains have been attributed to the dynamics of the
Indian monsoon and the westerlies (Qureshi et al., 2017).
To demonstrate the relationship between supra-glacial debris
and climate change, we analyzed temperature, albedo, and
precipitation datasets taken from MODIS products and Terra
Climate Monthly3 and Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) products.4 The
temporal changes in temperature, albedo, and precipitation
derived from this data are shown in Figure 11. It is clear
that warming and wetting have been a dominant phenomenon
in the Hunza Valley in recent decades (Figures 11A,C,D).
Temperature had a downward trend in 1990–1998; however,
since 2000, the temperature derived from both MODIS and
the Terra Climate products have shown a slight increase.
Albedo on the ice surface is decreasing (Figure 11B)—-a
sign of supra-glacial debris increase. The amount of absorbed
solar radiation on a glacier’s surface increases where the ice
is covered by supra-glacial debris or discontinuous debris
(dirty ice); such debris causes an increase in glacier surface
temperature and a decrease in albedo (Singh et al., 2011). As
shown in Figures 11E,F, we also analyzed the relationships

3http://www.climatologylab.org
4https://chc.ucsb.edu/data/chirps
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FIGURE 10 | Hypsometry of the supra-glacial debris cover in the studied regions, alongside data from five typical debris-covered glaciers in 1990, 1998, 2010,
2014, and 2019. (A) Study area. (B) Batura Glacier. (C) Gharesa Glacier. (D) Kukki Jerab Glacier. (E) Parpik Glacier. (F) Yashkuk Yaz Glacier. The locations of the five
glaciers are indicated in Figure 6A.

between temperature or precipitation and supra-glacial debris
cover. Decreasing temperature and increasing precipitation have
a positive relation with supra-glacial debris increase. This is
particularly evident in the period 1990–1998. Global warming

has accelerated the melting of glaciers resulting in changes
in ice surface morphology and the redistribution of surface
moraine material. A positive mass balance under decreasing
temperatures and increasing precipitation may be caused by an
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FIGURE 11 | Average land-surface temperatures (A) and albedo (B) for 200 ∼ 270 days per year, derived from MODIS products (MOD11A2006 and MCD43A3006,
respectively) in the glacier areas from 2000 to 2019 [k-value refers to the slope of the trend line (red dashed line), the same below]. (C) Precipitation for
200–270 days per year in the glacier area, generated from CHIRPS Pentad product data. (D) Trend map of average annual maximum temperatures in the Hunza
River Basin, derived from the TerraClimate dataset, with a monthly temporal resolution and ∼4-km (1/24th of a degree) spatial resolution. Correlation of the
supra-glacial debris area estimated by the RF model with temperature (E) and precipitation (F) [for a description of the data used, see (C,D)] in the Hunza Valley.

increase in the production of material triggered by snow/ice
avalanches or rockfalls.

CONCLUSION

The expansion of supra-glacial debris and decrease of glacier
surface albedo have been reported widely in several parts of
the word (Ming et al., 2012; Jiang et al., 2018; Fugazza et al.,
2019; Tielidze et al., 2020). In this study, we mapped the
dynamics of supra-glacial debris cover in the Hunza Valley,
using 34 Landsat images (10 TM, four ETM+, and 18 OLI)
acquired from 1990 to 2019. Firstly, an image composite
method was applied, and sequential Landsat images with
less cloud and snow cover at the pixel level were used to
generate annual images of supra-glacial debris on glaciers. Then,
the Otsu algorithm was utilized to optimize thresholds of
NDSI segmentation, and the supra-glacial features (e.g., clean
ice/snow and debris-covered ice) were classified on the state-
of-the-art GEE cloud computing platform together with three
machine learning algorithms (RF, SVM, and CART). All the
training and validation datasets were derived from the visual
inspection of freely available, high-spatial-resolution satellite

imagery (Landsat, Sentinel-2, and Google Earth). Among these,
the RF model produced the best classification accuracy, with
a Kappa coefficient of 0.94 ± 0.01 and an overall accuracy
of 95.6 ± 0.9%. Based on these estimates, we found that
significant increases in areal supra-glacial debris cover had
occurred during the last 30 years. The total area of supra-
glacial debris cover in the Hunza Valley has expanded by about
8.1–21.3% from 1990 to 2019. It has migrated up-glacier, and
the main area of change is located in the middle and upper
regions of the glacier, close to the altitude of the equilibrium
line (4,500–5,500 m a.s.l.). We also found that the interannual
temperature decrease and precipitation increase had positive
relations with the supra-glacial debris increase. This supra-
glacial debris areal change information can also be used in mass
balance, glacier hydrology, glacier hazard, and glacier response to
climate change models.

The identification of debris is a fundamental, and yet still
challenging field in studying glacier change and water resources.
With the effects of global warming, clean glaciers in the high
mountains of Asia are increasingly changing into debris-covered
glaciers, which leads to changed discharge in rivers mainly
supplied by glacial meltwater, resulting in the water resources
in basins, and their future trends, likely to be greatly affected.
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To explore the response of debris-covered glaciers
to climate change, and their effect on hydrology
and water resources, future work should focus on
extracting information about debris thickness and other
surface features (e.g., glacial ponds and cliffs) using
high-resolution aerial or satellite imagery and deep-
learning techniques.
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