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In this paper we demonstrate a framework for urban flood modeling with
community mapped data, particularly suited for flood risk management in data-scarce
environments. The framework comprises three principal stages: data acquisition with
survey design and quality assurance, model development and model implementation
for flood prediction. We demonstrate that data acquisition based on community
mapping can be affordable, comprehensible, quality assured and open source, making
it applicable in resource-strained contexts. The framework was demonstrated and
validated on a case study in Dar es Salaam, Tanzania. The results obtained show that
the community mapped data supports flood modeling on a level of detail that is currently
inaccessible in many data-scarce environments. The results obtained also show that the
community mapping approach is appropriate for datasets that do not require extensive
training, such as flood extent surveys where it is possible to cross-validate the quality of
reports given a suitable number and density of data points. More technically advanced
features such as dimensions of urban drainage system elements still require trained
mappers to create data of sufficient quality. This type of mapping can, however, now be
performed in new contexts thanks to the development of smartphones. Future research
is suggested to explore how community mapping can become an institutionalized
practice to fill in important gaps in data-scarce environments.

Keywords: community mapping, volunteered geographic information, flood resilience, citizen observations,
urban flood risk, drain blockage, asset management

INTRODUCTION

The global trend of expanding settlements in flood prone areas exposes an increasing share
of the world’s population to floods (United Nations, 2018; Winsemius et al., 2018). Many
regions are, however, still lacking the data needed for flood disaster preparedness, response, and
governance (Paul et al., 2018). This paper aims to investigate to what extent data collected through
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community mapping contributes to improved assessments of
urban flood risks in resource-strained environments, by filling
essential data gaps on drainage networks and urban topography
using a community mapping approach.

The conventional approach to urban flood modeling strongly
relies on availability of detailed geometric data on drainage
elements, such as pipe diameters, manhole connections, channel
cross-sections and weir levels (Butler et al., 2018) and terrain data
(Schumann and Bates, 2018; Winsemius et al., 2019). State-of-
the-art urban flood models combine detailed geometric data on
sewer pipes and drainage channels with digital terrain data to
model flood events, combining both overland flow and channel
flow through channels and pipes (Bach et al., 2014). These models
simulate the impact of storm events in urban environments,
which allow for flood risk assessments at a high level of detail.
The density and complexity of urban drainage networks makes
urban flood modeling a highly data-intensive endeavor.

In resource-strained environments, where detailed drainage
data tend not to be readily available, data acquisition is a critical
challenge that inhibits the development of detailed flood risk
assessments (Deletic et al., 2012). Furthermore, validation data
to evaluate the performance of flood models is often missing.
Previous research suggests that citizen observations offers an
alternative data source in data-scarce environments to estimate
water levels for model calibration (Etter et al., 2019; Strobl
et al., 2019). Hence, we propose a framework for acquisition
of drainage data and water levels required for flood model
development and validation through community mapping. The
approach proposed here is based on proactive engagement of the
local community that is trained to collect high quantities of flood-
related data which allows for extensive flood model development
and validation in an affordable way.

The framework has been applied, validated, and demonstrated
on a case study in Dar es Salaam, Tanzania. Our hypothesis
is that community mapped drainage data can improve urban
flood model performance and hence allow for detailed flood risk
assessments in contexts where drainage data is normally not
available. Specifically, we stipulate that the simulated flood depth
in a model that couples community mapped drainage data with
digital terrain data (coupled 1D–2D model) corresponds better
with citizen’s reports on flood depth for a certain storm event,
than the simulated flood depth in a model built with terrain
data only without community mapped drainage data (2D model).
The hypothesis was tested by developing a hydrodynamic model
including detailed schematization of a community mapped
drainage network and comparing the simulated flood depth with
citizen’s reports on flood depth for models run with and without
the community mapped drainage network.

If the hypothesis is confirmed, the proposed framework opens
the way for implementation of citizen observations to support
flood modeling on neighborhood scale, a level of detail that has
not been possible previously in many regions due to lack of data
on drainage system characteristics. Furthermore, it will show that
community mapping can be beneficial to fill data gaps for flood
resilience in these contexts. The usefulness of a model built this
way was demonstrated by using the model to investigate the
impact of drains blocked by solid waste on flooding.

The remainder of the paper is organized as follows. We first
identify the need for our method and gaps in research in a
literature review. Then, we present our methodology, including
the components of the framework, presentation of the case study,
data acquisition, model development and model implementation.
Subsequently, we present the results of data quality analysis,
model development and the model implementation. We finally
discuss limitations of our proposed method, relating to technical
and sustainability issues.

BACKGROUND

Community mapping is the action of producing a map of
a certain location together with or by the residents, often
featuring local knowledge and resources (Parker, 2006). It can
be considered as a form of Volunteered Geographic Information
(VGI) which arose in the early 2000’s through platforms such
as OpenStreetMap (OSM),1 an online world map which can be
edited by anyone (Goodchild, 2007; Zook et al., 2010; Ramm
et al., 2011). The internet has allowed for open source platforms
where geographical information can be produced and stored,
which has remarkably lowered the costs to collect the data
needed to build urban resilience. This has accommodated the
rise of community mapping projects to collect geographical
data for pre-disaster, in-disaster, and post-disaster management
(Paul et al., 2018).

The earliest examples of large-scale, digital VGI projects,
dating around 2010, made use of stand-alone GPS devices and
home computers (Zook et al., 2010; Soden and Palen, 2014).
Only ten years later, smartphones are now equipped with sensors
like GPS receivers, making them suitable for scientific data
collection (Haklay, 2013). VGI combined with smartphones has
put mapping, a task that for centuries has been reserved for
official agencies, in the hands of anyone who wants to contribute
to online maps (Flanagin and Metzger, 2008). Davids et al.
(2018) suggest that smartphone-based data collection activities
should be a part of science and engineering curricula, aiming for
standardized data collection methods and open access.

Research shows that the incentive to participate in VGI
projects depends on the volunteers’ knowledge and interest in
the topic being mapped and their available time and resources
(Brady et al., 1995; Coleman et al., 2009). A literature review on
motivation to participate in VGI projects is presented by Fritz
et al. (2017). VGI is produced by heterogeneous contributors
with different levels of detail and precision, which introduces
errors and variable quality of VGI data sets (Senaratne et al.,
2017). Goodchild and Li (2012) note that VGI data quality can
be assured through cross-validation, where the contribution of
an individual must be controlled by at least one other user before
submission. Quality assurance can also be obtained through
“gatekeepers,” individuals promoted with special privileges to edit
content based on their previous contributions, or data mining
such as outlier detection and cluster analysis (Flanagin and
Metzger, 2008; Senaratne et al., 2017).

1www.openstreetmap.org
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Many researchers have analyzed the quality of OSM data by
comparing it with spatial data from national mapping agencies
(Girres and Touya, 2010; Haklay, 2010; Neis et al., 2011;
Antoniou and Skopeliti, 2015). Very few studies on OSM data
quality have been conducted in Africa. One of few examples is
Iliffe (2017) that analyzed the OSM road data in Tandale ward
in Dar es Salaam, Tanzania, in terms of positional accuracy
and completeness. The results obtained showed that all roads
in the OSM dataset lied within a 10 m buffer of the road
data provided by the Dar es Salaam City Council (DCC).
Furthermore, the OSM data held a much more extensive road
network than the DCC dataset. Iliffe (2017) notes that this
results from the fact that the official map held by the ward
officer was outdated and did not contain all roads present
in Tandale ward.

The data abundant World Wide Web seems to add different
assets in different contexts, depending on the available geographic
information in these contexts. The added value of VGI in
planned, mapped, and industrially advanced areas lies in
endemic knowledge about the physical environment, and current
information about local conditions (Buytaert et al., 2014). But in
contexts where authoritative data sets are incomplete or absent,
VGI has the potential to, additionally, fill data gaps needed for
governance. This makes Iliffe (2017) draw the conclusion that a
different framework must be applied for community mapping in
industrially developing countries, which emphasizes the elements
of open source data and comprehensible data collection methods.

Iliffe developed his framework by studying Ramani Tandale,
a community mapping project carried out in 2011 in Tandale
ward in Dar es Salaam. The project started with a community
forum that identified what the community thought should
be put on the map; roads, pharmacies, schools, drainage,
and features relating to water access, sanitation, and flood
impact. The mapping was carried out during 4 weeks in
August 2011, resulting in a detailed map of Tandale that
later assisted local authorities during a cholera outbreak
(Iliffe, 2017). The positive outcome of Ramani Tandale made
the World Bank in Tanzania upscale the project and put
all flood prone wards in Dar es Salaam on the map
through the large-scale community mapping project Ramani
Huria. The flood model developed in this paper utilizes
drainage data that was recorded by Ramani Huria (see section
“Case Study”).

To the best of the authors’ knowledge, a flood model built with
community mapped drainage data has not been developed and
examined previously, and previous research has mainly focused
on the quality and accuracy of VGI in data abundant contexts.
The increasing flood risks caused by expanding settlements
in flood prone areas call for flood disaster preparedness and
response, but the necessary data to build flood resilience is
missing in many resource-strained environments (Paul et al.,
2018). Now that data for flood resilience has been collected
with a community mapping approach by Ramani Huria, it is of
interest to investigate if this data can improve flood models on
a neighborhood scale. It is also of interest to examine if models
built with community mapped drainage data can be used to
understand the causes of flooding.

METHODOLOGY

The methodology of this study consists of a framework for flood
modeling with community mapped data (section “Framework”)
that is applied on a case study, the Ramani Huria community
mapping project in Dar es Salaam. The case study is presented in
section “Case Study” and the framework analysis, following the
three principal stages of the framework, is presented in section
“Data Acquisition–Model Implementation.”

Framework
The proposed framework shown in Figure 1 combines the
learnings from the principles of community mapping proposed
by Iliffe (2017) for data acquisition with the conventional
approach to urban flood modeling that relies on the availability
of detailed geometric drainage data (Butler et al., 2018).

Flood model development with community mapped data
follows a similar approach compared to traditional model
building, i.e., (1) data acquisition, followed by (2) model
development and validation, and ending with (3) model
implementation. However, the manner through which data
is acquired is different from a data abundant context. The
framework relies on four conditions. Firstly, the data survey
should be affordable in the mapping context, using simple and
easily accessible local devices and tools for the ones collecting
the data. The benefits of VGI and ICT could be utilized by
engaging volunteers and students equipped with smartphones
and free smartphone applications. Secondly, the campaign should
be comprehensible for the mapping community but at the same
time allow for accurate records to be obtained with relatively little
training. Features must be clearly defined and not accidentally
overseen. Thirdly, the survey must be quality assured for
completeness of attributes and topological connectivity. Finally,
datasets must be made available freely and openly so that other
surveyors or users can benefit from the data (Iliffe, 2017).

In the data acquisition phase, a comprehensible survey is
designed to prepare detailed collection of data required to
develop a model. This data may include data on drainage
elements, their geographical attributes, as well as system states
that may cause flooding such as maintenance states and clogging
(ten Veldhuis et al., 2011). After the mapping campaign, a quality
assurance protocol is applied to ensure that the collected data is
of sufficient quality. If errors are encountered, the data must be
recorded again or the survey design may be modified, forming
an iterative relationship with the previous step of the process.
The quality assurance is followed by the model development phase
during which the acquired data is used to build and calibrate
a flood model using suitable hydrodynamic modeling software.
The final phase involves model implementation to e.g., investigate
the causes of flooding, use for operational applications, develop
early warning systems, or support long-term decision making and
risk assessments.

Case Study
The data applied in this study is collected by Ramani Huria
(“Open Map” in Swahili), a community mapping project initiated
by the World Bank in 2017. It aims to collect the data needed
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FIGURE 1 | A framework for flood modeling with community mapped data.

to understand flood risk and build flood resilience in Dar es
Salaam using a community mapping approach. Humanitarian
OpenStreetmap Team (HOT), a non-governmental organization
founded in the aftermath of the Haiti earthquake in 2010
(Bilham, 2010; Soden and Palen, 2014) is contracted to
organize and supervise the mapping. The largest river flowing
through Dar es Salaam is the Msimbazi river, of which both
the Msimbazi as well as smaller tributaries and streams are
known to cause flash floods. The rapid population growth
rate leaves the city highly unplanned and the city center is
characterized by a remarkably high building density on lands
susceptible to flood risks, mainly in the Msimbazi river basin
(UN-HABITAT, 2010).

Ramani Huria upscaled earlier mapping initiatives carried
out at smaller and less detailed scale to cover 44 wards in Dar
es Salaam between 2017 and 2019. Ramani Huria’s approach is
to train university students and community members to create
maps using open source applications. The training has mainly
been conducted in the Ramani Huria “summer schools,” where
university students in urban planning and geomatics participate
in a 2-month internship that is part of their program curriculum.
The students are divided into specialized teams, focusing on
drainage mapping, data processing in GIS, digitizing aerial
imagery and community outreach and are awarded with small
stipends to cover travel costs, internet bundles and lunches.
Collected data sets include, but are not limited to, buildings,
roads, sanitary facilities, waste disposals, urban drainage, and soil
types. A strong focus has been on accurately mapping small scale
drainage channels with locally available tools and open source
applications, making this a suitable community mapping project

for testing the hypothesis that community mapped drainage data
can improve the performance of flood models.

To this end, we focus on a subset of drainage data from
Ramani Huria, collected for five sub-wards of Kijitonyama ward
in Dar es Salaam, covering approximately 2.3 km2 (see Figure 2).
The drainage data is freely available.2 Being located on a hill
upstream of main water courses, Kijitonyama is mainly exposed
to pluvial flooding. This type of flooding is caused by rainfall that
exceeds the conveyance capacity of the drainage system and is
therefore independent of overflowing water bodies (Butler et al.,
2018), which is desirable to isolate the added value of Ramani
Huria’s highly localized drainage data on flood predictions. The
majority of the drainage network in Kijitonyama consists of open
drains that are connected through short culverts.

Data Acquisition
The acquisition of drainage data for developing the flood model
followed three stages: survey design, mapping campaign and
quality assurance. These stages are further explained below.
Subsequently, the acquisition of validation data and solid waste
blockages for the model implementation are outlined.

Survey Design for Drainage Data
The drainage data acquisition process started with the design of
a survey to collect drainage data using a community mapping
approach. This involved identifying which data to be collected,

2https://geonode.resilienceacademy.ac.tz/layers/geonode_data:geonode:
dar_es_salaam_drain_segments, accessed May 14, 2020.
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FIGURE 2 | Study area.

how this should be done, but also identifying the affordable tools
and open source platforms that could be used in the process.

A summary of schematization data collected, i.e., drainage
elements and attributes identified and collected during the
mapping process, is provided in Table 1. Defining the possible
conditional attributes in the survey required several iterations in
the field to find the predominant set of possible drainage elements
and their characteristics, including dimensions. The drainage
elements are divided into four classes: culverts, ditches, drains
and decommissioned drains, which in turn can be open or closed
and have different cross sections. Decommissioned drains are
poorly maintained, e.g., full of vegetation, building materials or
other blockages and have no attributes recorded. Elevation of the
segments was measured to calculate the vertical position of bed
levels in relation to a digital terrain model, as altitude cannot be
recorded by smartphones with sufficient accuracy.

The Open Data Kit Collect Android application (ODK) was
used for data collection, a free survey application for smartphones
that can add geopoints and geotraces to each data entry, making
it suitable for the record of drainage segments. OpenStreetMap
was used as a platform to store data, making it openly and
freely available.

Mapping Campaign for Drainage Data
To make the mapping comprehensive and complete, a special
drainage data collection team was formed by students that was

instructed how to measure the different attributes and in what
order to observe the drainage channel so that no drains would be
overseen. The overall survey was designed in a way that enabled
individual surveys, when combined, to lead to a topologically
correct and connected drainage dataset and a complete set of
attributes by following a well-defined conditional data model,
shared for upscaling elsewhere online.3

The team started by identifying the most downstream point
of an area, where the drainage system reached a water body,
recorded that geopoint and labeled it as outflow in the ODK
application. If the most downstream segment stopped without
reaching a water body, it was labeled as end. Then, the team
mapped the drainage system starting from the most downstream
point and walked upstream. The “geotrace” function of ODK
makes it possible to track the reach of a drainage segment
by walking along the drain while recording the walked path
by using the GPS sensor in the smartphone. This method is
well suited for open channel networks, which was observed to
be the dominant drain type in Dar es Salaam. Any diverging
drains were then mapped consecutively, and the most upstream
points of the drainage network were labeled as begin. Using
labeling of geopoints this way made it possible during quality
assurance to distinguish if a drain flows into a next drain or

3https://wiki.openstreetmap.org/wiki/Dar_es_Salaam/Ramani_Huria#Drainage,
accessed 23 January 2020.
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TABLE 1 | Collected drainage data.

Type Cross section Attributes

Dimensions Material Elevation

Culvert Round Diameter Concrete, steel, plastic, sand or other
material with free text entry

Vertical distance between the drain
bottom and the nearest road,
measured at the upstream end of each
segment. Used to derive bed level
altitude from terrain model.

Rectangular Width Depth

Ditch Rectangular Width Depth

Drain (open or closed) Trapezoidal Top width Bottom width Depth

Rectangular Width Depth

Elliptical Top width Depth

Decommissioned No attributes recorded

whether a connection is truly missing, which is not an exception
in Dar es Salaam. As local devices, cross sections of drainage
segments were measured with locally made measuring sticks and
tape rulers and the dimension values and material attributes
were recorded in the ODK. The mapping process is illustrated
in Figure 3.

Data Quality Assurance of Drainage Data
The next step was to undertake data cleaning and quality
assurance of the collected drainage data. Within Ramani Huria,
a team of data cleaners was appointed to quality check the
results before uploading the data to OSM. This involved aligning
inaccurate geotraces with drainage segments seen on satellite and
drone imagery in GIS, checking the completeness and validity
of the attributes and checking the topology and connectivity
of the network. Automated quality checks were used for both
attributes and topology. Codes for quality assurance are openly
shared.4 If errors or missing elements were encountered, the
mapping team was instructed to record these again in the field.
The data cleaning was taking place typically at the end of each
field campaign day.

Remaining quality issues were identified by the authors
during the model development phase, despite the data cleaning
efforts of Ramani Huria. Positional errors were found through
visual inspection, and when building the flood model, as
positional errors caused a disconnected network in the model
and hence introduced simulation errors. Data set completeness
was studied with filters in the attribute tables in QGIS.
The result of this analysis is presented in section “Drainage
Data Quality and Completeness” and proposed solutions to
overcome these remaining quality issues are addressed in the
discussion section.

Validation Data Collection
The data acquisition further included collection of flood depth
validation data, to be compared with simulated flood depth from
the flood model. Community observations of flood depth in
the study area were recorded in a “flood extent survey” by
members of the drainage mapping team a few hours after a
heavy rainfall event. Rainfall data from this rain event was used
in the model simulation, and the maximum simulated flood
depth was compared with community observations, see section

4https://github.com/openearth/hydro-osm

“Model Implementation.” The respondents were asked to provide
information about the depth of water on the street outside of
their house the same morning and referred this information
relative to a person’s height. Water depths were recorded as
geopoints in ODK and lumped into 3 classes, as summarized
in Table 2.

It was considered to be most valid to categorize the
responses into a few, wide validation classes because of the
likely uncertainty of the community-based flood depth estimates.

FIGURE 3 | Ramani Huria drainage mappers, recording drainage features
with a wooden ruler and smartphone. Written informed consent was obtained
from the participants for the publication of any potentially identifiable images
or data included in this article. Photo Chris Morgan/World Bank.
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TABLE 2 | Water depth classes used in the model validation.

Reported depth Water depth in cm

Only puddles and finger depth 0–5

Ankle depth 5–20

Mid-shin and knee depth >20

Previous research has demonstrated the value of using discrete
water level classes in community observations rather than
continuous scales in e.g., centimeters (Seibert et al., 2019).
It should be noted that the thresholds of the flood depth
classes are based on assumptions, and no research to date has
investigated appropriate numeric ranges of this reference system.
Nevertheless, the classes give an indication of the flood depth at
each observation point. In total, 44 observations were collected
this way and used for validation of the models used in the model
implementation phase, see section “Model Development.”

Community Survey of Blockages in Urban Drains
When performing the flood extent survey described above, the
mappers were also asked to record blocked drainage segments by
recording a geopoint in ODK at the location of each blockage
they found along their way. Apart from the position data, the
blockage records included extent (50, 75 or 100% blocked)
and type of blockage (e.g., solid waste, vegetation, building
materials). This information was used to identify an appropriate
location to investigate the impact of blocked drainage on urban
flooding in the model implementation phase, see section “Model
Implementation.”

Model Development
This stage of the framework developed the flood model using the
SOBEK5 modeling suite, version 2.16. SOBEK is a modeling suite
designed for modeling and analysis of water flows and processes
in a wide range of water systems. It computes discharge, velocity,
and water level in each computational node for each time step by
solving the Saint-Venant equations, stating the conservation of
mass and momentum in space and time.

SOBEK allows for 1D–2D modeling, in which a 1D and
2D flood model are coupled to exchange their computed water
flows (Butler et al., 2018). A 1D model simulates the storage
and conveyance through water networks like channels and
drainage systems by introducing the parameters of the network
in the model, whereas the 2D model only simulates runoff flows
according to overland flow paths generated by topography from a
2D Digital Terrain Model (DTM). A combined 1D–2D model is
an effective approach to capture both processes of drainage flow
and surface runoff, as the interaction between these processes is
simulated (Bach et al., 2014).

Rainfall data for the flood model was measured by Trans
African Hydrometeorological Observatory6 (TAHMO) with 5
minutes temporal resolution at the Ardhi University weather
station located about 2 km from the case study ward (see

5https://www.deltares.nl/en/software/sobek/
6https://tahmo.org/

Figure 2). The simulation was run with a storm event that
occurred in the early morning of 3 March 2019. This event
was selected as it was preceded by five dry weeks, which was
concluded by studying TAHMO rainfall time series. The dry
spell indicated that the drainage system was dry without standing
water levels at the beginning of the storm event, which was
confirmed during fieldwork around 12 h before the event. The
rainfall started at 00:10 in the morning, had two peaks at 01:00
and 06:00 and ended around 09:00. The peak intensity was
114 mm/h and the total rainfall amounted to 150 mm for the
whole event, which was expected to cause pluvial flooding in
Kijitonyama ward.

First, a 2D model was developed of Kijitonyama ward based
on an existing 5 × 5 m2 DTM that is freely available.7 The
Manning friction coefficient of the DTM was set to 0.2 s/m1/3

and was assumed to be uniform for all grid cells, in the absence of
differentiated land use data that could inform spatially distributed
surface roughness values. This value was selected as it represents
built-up land, which was assessed to be the most common land
use type in the study area (Chow et al., 1988). Ozdemir et al.
(2013) shows that 2D roughness values in urban flood modeling
generally have limited effect on maximum water levels and depths
but tend to have larger influence on flow velocities, which was not
simulated in this study. Hence, it is expected that the assumption
did not decrease validity of the simulated water depths, see
results in section “Model Results Without and With Community
Mapped Data.”

Infiltration was assumed to be negligible as the rainfall
intensity was much higher than expected infiltration rates
in urban environments (Butler et al., 2018). Relevant inflow
and outflow conditions at the boundaries of the ward were
included in the model as boundary conditions, i.e., inflowing
river discharges upstream and representative water levels of
downstream outflow locations. The discharge was measured by
TAHMO at 5 min resolution at the southern upstream boundary
condition in Figure 2, a flow station at the Ubungo bridge located
approximately 1 km upstream of the boundary of the study area.
The discharge at the northern upstream boundary condition was
estimated by the authors around noon 2 March 2019, before the
modeled event using a float and stopwatch and multiplying the
surface water velocity with the estimated cross section area of
the water course (Davids et al., 2018). The estimated discharge
was assigned as the initial value of the flow at the northern
upstream boundary condition, and then the discharge data from
the Ubungo flow station was re-scaled to this initial value. The
gap between the northern water course and the drainage system
in Figure 2 appears as the natural stream flows into a part of the
drainage system that is outside of the model domain.

A second model was created by extending the 2D overland
flow model to a coupled 1D–2D model by incorporating
the Ramani Huria drainage network data. As 2D boundary
conditions, the same setup was used as for the first model, and
for the 1D model the simulation was started without any initial
water level in the drainage segments, as had been observed during

7https://geonode.resilienceacademy.ac.tz/layers/geonode:cowi_dar_/metadata_
detail
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fieldwork. The 1D model roughness coefficients were assigned
from literature based on the drainage segment materials recorded
by Ramani Huria (see Table 3). The sensitivity of the model to 1D
roughness values was investigated by first running a simulation
where all drains were assumed to be of “normal concrete” as
shown in Table 3, and subsequently assigning 1D roughness
values to the segments according to their reported material
(results not shown). The maximum water depth for the two
schematizations was studied in 44 observation points inserted
at the same coordinates as the geopoints that were recorded in
the flood extent survey, which revealed that the maximum water
depth difference was less than 0.5 cm in all observation points
when implementing distributed 1D roughness values. This aligns
with the findings of Ozdemir et al. (2013) that surface roughness
mainly influences water velocities and not water depths.

Drainage bed levels were derived from the DTM by
subtracting the vertical distance between the bottom of the
drain segment and the nearest road (elevation, see Table 1). The
simulation was run with the same storm event, 2D roughness
and infiltration capacity as the 2D model, making the community
mapped drainage data the only difference between the two
schematizations. Hence, differences in modeled output between
the 2D and coupled 1D–2D model could be fully attributed to
the additional drainage data, that was included in the form of
one-dimensional drainage channels added to the 2D-model, see
results section “Model Results Without and With Community
Mapped Data.”

Model performance of the schematizations was validated
by inserting 44 observation points in the model at the same
coordinates as the geopoints that were recorded in the flood
extent survey. Then, the maximum computed water level in
each observation point was exported from SOBEK and compared
against the community mapped flood observations collected by
the drainage mappers a few hours after the storm event. In this
way, it was observed if the maximum simulated water depths of
the storm event fell below, within or above the reported flood
depth classes at 44 locations, see results in section “Model Results
Without and With Community Mapped Data.”

TABLE 3 | Assigned manning roughness coefficients to drainage segments in the
1D–2D model.

Reported material Assigned manning
friction value [s/m1/3]

Number of
segments

Normal concrete, in good repair 0.02 430 (77.4%)

Rough concrete, with noticeable holes or
cracks

0.025 79 (14%)

Very rough concrete, with loose material,
broken areas and/or large cracks

0.03 19 (3%)

Rock 0.04 38 (0.5%)

Decommissioned (see section “Data
Acquisition”)

0.1 4 (0.7%)

Sand 0.02 23 (4%)

Corrugated steel 0.02 1 (0.2%)

Plastic (assuming it is PVC) 0.01 1 (0.2%)

Values as suggested by Chow et al. (1988) based on drainage material recorded
by Ramani Huria drainage mappers.

Model Implementation
After validation, the coupled 1D–2D model was further applied
to investigate the impact of solid waste accumulations in the
drainage system, to exemplify how the model can be used to
simulate network configuration changes and maintenance-states.
This was simulated by removing an open drain segment from
the 1D model schematization, see location in Figure 2. This
simulated a similar effect as a fully blocked drain segment, as
the whole cross section and conveyance capacity disappears if a
drain is fully blocked. The interruption of the drainage channel
will result in rising water levels upstream of the blockage and
will eventually cause the water to overflow the drainage channel
onto the street, where it will generate additional street flooding.
From there, the water will flow further downstream based on the
2D topography and possibly flow back into the open drainage
network further downstream. A drain location was selected in
the Mpakani “A” sub-ward, as this location was reported to be
sensitive to blockage during the solid waste blockage survey.
Besides, this drain showed considerable drainage flow based on
the 1D–2D simulation results, and results from the flood extent
survey showed flooding upstream of this drain. Therefore, it
was of interest to analyze the potential blocking effect of this
drain. The model results were compared to the 1D–2D model
without blockage to investigate how the water levels in the
drainage system and the flood extent near the reported solid waste
blockage were affected.

RESULTS

In this section we first analyze the data quality and completeness
of the community mapped drainage data (section “Drainage
Data Quality and Completeness”). Then, we compare the results
of the flood model without any drainage considered (i.e., 2D-
model) against the model with local drainage data obtained via
community mapping (i.e., 1D–2D model, section “Model Results
Without and With Community Mapped Data”). This is done by
validating both models against the surveyed flood levels. Finally,
we describe the results of a model run with assumed drain
blocked by solid waste (section “Impact of Solid Waste Blockage
in Drain Channel”).

Drainage Data Quality and Completeness
Analysis of the accuracy of the relevant drainage data was
performed by the authors, in addition to the quality assurance
performed by Ramani Huria’s data cleaners. Positional errors
(see Table 4) were found through visual inspection, and when
building the flood model in SOBEK. These errors caused a
disconnected network in the model and hence introduced
simulation errors. The positional accuracy of the drainage data
was assessed to be high, as only 12 out of 532 segments (i.e.,
2.25%) had positional errors. The actions performed to correct
positional errors in the 1D model are shown in Table 4.

The connectivity of the network was analyzed in SOBEK,
which revealed that 36 out of 532 segments, i.e., 6.8%, were
disconnected from adjacent drainage segments. Upon further
inspection in QGIS, it was found that this problem was caused by
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so-called “T-junctions.” A T-junction occurs when a side-branch
connects to a main branch, while the main branch is recorded as
a continuous geotrace. A connection from the side-branch to the
main branch is not recognized automatically and the side-branch
remains unconnected in the modeling software. This problem
was solved manually by splitting the segments at T-junctions
in QGIS. When all T-junctions were connected, the number of
segments in the study area increased from 532 to 560 segments.

Data set completeness was studied with filters in the attribute
table in QGIS, in addition to the automated completeness
checks performed by Ramani Huria (see Table 5). There are
14 decommissioned drains in the study area, which have no
dimensions recorded. Fieldwork showed that these drainage
segments were ditches with considerable conveyance capacity
that could not be neglected in the 1D schematization. Hence,
the dimensions of these segments were measured in an extra
mapping survey in the field. Apart from the decommissioned
drains, only one segment in the study area was missing one
feature, which likely was accidentally deleted in Ramani Huria’s
data cleaning process. The decommissioned drains and most
of the ditches were missing material data, constituting 5.3% of
the total data set. The decommissioned drains were assigned a
high roughness coefficient because of their vegetation observed
during fieldwork. Three of the 17 ditches were reported as sand
by Ramani Huria, and hence it was assumed that the remaining
14 ditches were also made of sand.

When inspecting side views of the drainage segments in
SOBEK, it was noted that the bed levels in the network
were irregular with elevation gaps between each segment.
The upstream and downstream bed level of a segment is
calculated by subtracting the measured vertical distance between

the bottom and the nearest road from the DTM level. The
drainage mappers measure this distance at the upstream end
after they have recorded a geotrace, and the vertical distance is
assumed to be constant along the whole segment. Given that
bed level gaps were present at almost every connection in the
dataset, this assumption introduces a systematic error in the
bed level data. This was corrected by interpolating between
upstream bed levels of neighboring drain segments, ensuring
smooth bed level connections, representative of the real situation
observed in the field.

Summarizing, the positional accuracy and completeness of the
drainage data is very much in line with datasets collected with
professional surveys. The sole exception is the altitude of drains,
which are so far monitored with simple wooden poles, relative to
the nearest road. These would benefit observations with precise
absolute positioning referenced to a local geoid datum.

Model Results Without and With
Community Mapped Drainage Data
The two models were created following the procedure described
in section “Model Development.” Both models simulated the
same storm event for which flood depth data were collected in
a flood extent survey, as described in section “Data Acquisition.”

Figure 4 shows maximum water levels computed for the 2D
scenario (upper left), at observation points covered by the flood
extent survey, expressed in the same referencing system as used
in the survey. Water levels are between 0 and 10 cm in most
observation points (finger-ankle deep), up to a maximum of
30 cm (mid-shin deep). When the 1D drainage is introduced
(upper right), computed maximum water levels decrease for

TABLE 4 | Analysis of positional errors.

Positional error Description #faulty segments (out of
532)

Action to correct the error

Tracing error Drainage segment with an unrealistic shape 3 Parts of or the whole unrealistic reach is deleted,
depending on its shape

Disconnected end End of segment with a visible but very small (<30 cm)
gap to the adjacent segment

5 The gap between the segments is closed by extending
one of the segments manually

Double segment Two segments with the same or very similar reach and
exactly the same attributes

4 One of the segments is deleted

Total 12 (2.25%)

TABLE 5 | Analysis of attribute completeness.

Type # Cross section #segments missing
dimensions

#segments
missing material

Action to correct the error(s)

Culvert 199 Round None None

4 Rectangular None None

Ditch 17 Rectangular None 14 Assume material type (sand)

Drain 276 Trapezoidal 1, missing depth None Assume same depth as adjacent drain

11 Rectangular None None

11 Elliptical None None

Decommissioned 14 No attributes recorded 14 14 Record dimensions and material type
(vegetation) in the field

Total 532 15 (2.8%) 28 (5.3%)
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FIGURE 4 | Model results without (left) and with (right) community mapped data.

most locations, from a few centimeters up to 23 cm decrease
(not shown but investigated in the model results), especially in
Mpakani “A” and Kijitonyama.

The comparison of maximum computed water levels against
flood classes reported in the flood extent survey shows that for
the 2D schematization model, simulated water depths fall below
reported class at 12 locations, within correct reported class at
19 locations, and above reported class at 13 locations (Figure 4,
lower left). When introducing the 1D drainage network, i.e.,
using the 1D–2D model, simulated water depths fall in the correct
reported class for 30 out of a total of 44 locations (lower right).
Simulated water depths for the 1D–2D model are below reported
class at 10 locations and above reported class at 4 locations
(Figure 4 and Table 6). This is a considerable improvement.

Differences in computed water levels are most apparent
in Mpakani “A” and Kijitonyama, where the 2D-model tends
to overestimate water levels corresponding to ankle and mid-
shin deep flooding classes, where only puddles and finger-deep
flooding was reported in the survey. These smaller water depths
are better captured by the 1D–2D model (compare Figure 4,
lower left and right figures). In Kijitonyama, water flows naturally
toward a depression at the north boundary of the ward. However,
since terrain gradients are very small, overland flows remain low
and relatively high water depths are computed by the 2D model
(see Figure 4, upper left). Introduction of the drainage channels
in the 1D–2D model substantially improves performance in this
ward. In Mpakani “A,” a natural streambed cuts through the
northern part of the area, collecting a lot of flood water in both
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TABLE 6 | Summary of model development results.

2D model 1D–2D model with
community mapped 1D data

Below reported class 12 (27%) 10 (23%)

In reported class 19 (43%) 30 (68%)

Above reported class 13 (30%) 4 (9%)

Number of observation points below/in/above reported water depth class (and
percentage).

the 2D and 1D–2D models. In the southern part, away from the
streambed, drainage channels convey the flow toward adjacent
surface waters, as is correctly represented in the 1D–2D model.

Furthermore, in Alimaua, a central drainage channel collects
most of the flood water and along this channel minor flooding
is reported. This is generally well captured by both models, as
the channel follows a natural depression that is represented in
the 2D model. The 1D–2D model more correctly represents the
dimensions of the channel, which resolves underestimated water
levels at a couple of locations in the 2D model in Alimaua (see
Figure 4, lower left and right).

These results demonstrate that using the 1D network,
at this scale, is essential for accurate simulation of flood
hazard. More importantly, the results obtained clearly show
that the community flood survey is highly valuable when
validating model results.

Impact of Solid Waste Blockage in Drain
Channel
The simulation with the blocked drain segment due to solid waste
accumulation clearly shows a different behavior of water levels
in the drainage channel. Figure 5 shows the resulting differences
in maximum flow and maximum water depth between the
simulation with and without the blocked drain. As can be
expected, when the flow through the drain is blocked, this is
leading to a backwater effect in the drainage channel upstream of
the blockage, which can be seen clearly on the right-hand side of
Figure 5. This is further visualized in Figure 6 with a side view,
comparing the maximum water levels of the two simulations in
the drain upstream of the blocked drain. Due to the blockage, the
drainage water overflows the drain segment, causing additional
flooding on the streets. Figure 7 shows this additional flood
extent caused by the blocked drain. The flood extent in this map
is only shown where the flood depth is larger than 4 cm.

These results demonstrate that drain blockages can be
effectively simulated in the 1D–2D model. They also illustrate
that differences introduced by the blockage are relatively small for
this blockage scenario, which is explained by the looped nature
of the drainage network. As Figure 2 shows, the main drains in
the northern half of the drainage network connect outflow points
to rivers and streams both on the northern as well as on the
southern ends of the network. This implies that when a drain
is blocked, especially in the center of the network, flows can be
diverted through other parts of the network, making the system
less sensitive to local drain blockage. This type of insight can only

be obtained because of detailed information on the 1D drainage
network obtained by the community mapping.

DISCUSSION

This paper has proposed and applied a framework for flood
modeling with community mapped data. A flood model has been
developed and validated utilizing community mapped data as 1D
schematization and validation.

The dataset of community mapped drainage achieved a
high degree of completeness, with only 2.8 and 5.3% of all
segments missing dimensions or information about the material,
respectively. Positional errors, amounting to 2.25% of all drainage
segments, were easily corrected in the model by connecting loose
ends to the nearest node or deleting faulty segments. Connectivity
errors amounted to 6.8% of relevant locations and were corrected
manually. These errors occurred mainly when side-drains were
connecting to a main drain and could be easily avoided in the
future by introducing a step in the mapping procedure where
ongoing main drains are split into suitable separate segments, to
ensure full connectivity to the side branches when implementing
the data in a modeling software.

The results of the model development show that community
mapped data can indeed improve pluvial flood predictions at
neighborhood scale. Using community mapped drainage data
to build a detailed schematization of the 1D drainage network
increases the model prediction accuracy, from 43 to 68%,
measured as percentage of simulated flood depth points that
match the reported validation class. Highest benefits are obtained
in areas where conveyance capacity and direction of the drainage
networks differ substantially from the natural flow paths created
by elevation differences of the natural terrain. This applies in
particular in areas with small natural terrain gradients, where 1D
channel networks induce faster and more concentrated drainage
flows, and in areas where street pattern layout differs substantially
from natural terrain gradients, as with the rectangular street
lay-out in some of the sub-wards in the study area.

Furthermore, the community mapped drainage data makes
the model much more versatile in its possible applications. This
is because of the 1D schematization which enables simulations
where network configuration changes or channel capacities are
impacted by maintenance-state. An example of such a model
application has been presented here, investigating the impact
of solid waste blockages on network flow and flooding. These
results demonstrate that community mapping has moved from
a disaster response practice (Zook et al., 2010) to serve as reliable
and affordable way to support proactivity and planning in data-
scarce environments.

The developed model is subject to uncertainties associated
with the positional accuracy of the drainage segments, as it has
been recorded with GPS units (smartphones) with an accuracy of
around 5 meters. These errors have, however, been accounted for
to some extent in Ramani Huria’s data cleaning process where
the drainage geotraces were compared with aerial imagery. The
highest uncertainties in the community mapped drainage dataset
were found for drain level measurements. Bed levels of drains
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FIGURE 5 | Flow difference and depth difference in drainage channels when blocking a drainage segment.

FIGURE 6 | Side view in SOBEK of drainage segment blocked by solid waste (blockage at 225 m). The y-axis shows elevation above DTM datum, and the x-axis
shows horizontal distance from the start of the selected side view.

were measured using simple wooden poles, and altitude was
estimated relative to the nearest road. This introduced substantial
uncertainties in the data. Bed and bank level measurements of
drains would benefit from observations with precise (absolute)
positioning referenced to a local geoid datum. There is a need
to continue investigating low-cost alternatives that allow for
accurate elevation measurements. The advent of new low-cost
chipsets for multi-frequency Global Navigation Satellite System’s
positioning, and the first endeavors of smartphone producers
to embed these in smartphone models, may also address this
soon. These chipsets are currently under investigation for use in
community mapping contexts (van Dongen, 2019).

Validation data, obtained in a flood extent survey involving
44 community member’s reporting on flood depths a few hours

after the simulated rainfall event, proved to be valuable to
validate flood modeling results. Earlier studies have shown
that community observations provide a valuable source of
information for flood risk analysis (Paul et al., 2018; Etter et al.,
2019; Strobl et al., 2019). Even if the amount of data collected
through flood surveys is small and the uncertainty of the flood
depth classes cannot be quantified, the data still provides an
effective form of validation. The reporting classes used give
an indication of the flood depth at each observation point
in the absence of any other validation data set for the study
area. Reporting flood depth in terms of flood depth categories
associated with a “person’s height reference system,” i.e., referring
to the estimated flood depth as e.g., ankle deep or knee deep,
provided a workable trade-off between reliability in terms of what
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FIGURE 7 | Additional surface flooding caused by blocked drainage channel.

citizen observations can distinguish and accuracy needed for
model validation. Further investigation to optimize the selected
thresholds for validation classes is recommended, to identify
how accurately observations according to this reference system
can represent reality. If implemented systematically, community-
based flood extent surveys can allow for model validation at low
costs and build trust in the model predictions. As more web-
and mobile-based flood reporting systems are being developed,
community-based flood observations will become more and
more easy to implement (Seibert et al., 2019).

The case study shows a discrepancy between our hypothesized
framework and Ramani Huria. Our proposed framework
relies on the principles of community mapping in industrially
developing countries found in literature (Iliffe, 2017). These
principles assume that the mapping process is firmly anchored
with the leaders and residents of a certain location, and that the
same people are participating in all parts of the mapping process
(Parker, 2006). However, Ramani Huria has trained teams since
2017 to conduct specialized types of mapping independent of
where the mappers live. The results of the mapping campaign
are not shared with the same people that initiated it, as the
mapping is carried out over a long period of time, during
which the politically elected ward- and subward officers often
have been replaced. This indicates that there are challenges
with keeping large-scale mapping projects anchored in the

community that is being mapped. However, the authors do not
see a contradiction between the proposed framework and the
utilization of trained mapping teams.

Literature suggests that the authority of community mapped
data springs from the fact that it is collected by the community for
the community (Flanagin and Metzger, 2008; Iliffe, 2017), which
makes it important to start and end the mapping process with
community forums. All data sets identified by the community
do not, however, need to be collected by the community itself.
The case study shows that the data acquisition of community
mapping projects differs depending on the characteristics of the
data set that is being mapped. Data sets that are relatively easy
to collect and require a high number of records to ensure data
quality, like flood extent surveys, can be collected by community
members, whereas more technically advanced features like
drainage dimensions should be mapped by trained teams. It
should be noted, however, that trained mappers increase the costs
of the mapping process. Still, they are using inexpensive tools that
are far less costly than traditional data acquisition technologies.

The urban landscape is changing rapidly across the world,
which implies that urban spatial data needs to be updated with
high frequency. VGI and community mapping could serve as
an affordable way to overcome this, but an incentive must be
developed to keep open source spatial data sets up to date.
This requires, on the one hand, clear end users, who see value
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in updated, open source data and simulation models derived
from this data. On the other hand, it requires an entity such
as a company who has a proposition to fulfill that service. As
shown, there is a voluntary component in community mapping
projects to successfully support flood modeling, as it allows for
collection of validation data sets that require a high number
and density of data points to be reliable. However, it is shown
that volunteers alone do not guarantee the required data quality
of technical features like drainage segments. Instead, the main
added value of VGI to urban flood risk management in data-
scarce environments is the open source tools that are now
available to collect technical features with high accuracy in an
affordable, comprehensible, and quality-assured way.

CONCLUSION

This paper presented a new framework for developing flood
models by using community mapped data. The framework was
demonstrated and validated on a case study of the Ramani Huria
community mapping project in Dar es Salaam.

The results obtained show that:

1. The proposed framework for flood modeling with
community mapped data allows for comprehensive
modeling in a data-scare context. The framework
comprised three principal phases; data acquisition, model
development and model implementation, where the data
acquisition should be affordable, comprehensible, quality
assured and open source to be applicable in resource-
strained environments. This framework is generic and
flexible in nature, as it allows for different types of
community mapped data to be collected and applied.
Consequently, it is suggested for future research to apply
this framework to other case studies to investigate its
validity and robustness.

2. Community mapped data can improve flood modeling on
a level of detail that is currently inaccessible in many data-
scarce environments. The outputs of the developed model
correspond better with validation data when introducing
drainage data from a community mapping project as 1D
schematization, compared to a scenario run with only
terrain data. Moreover, using community mapped data
results in a more versatile model being developed.

3. Highest benefits of community-mapped data of the 1D-
network are obtained in areas where conveyance capacity
and direction of the drainage networks differ substantially
from the natural flow paths created by elevation differences
of the natural terrain. This applies in particular in areas
with small natural terrain gradients, where 1D channel
networks induce faster and more concentrated drainage
flows and storage, and in areas where street pattern lay-out
differs substantially from natural terrain gradients, as with
the rectangular street lay-out in some of the sub-wards in
the study area. Additionally, 1D-network data is essential

in areas where blockage of drainage channels is an issue and
need investigation for flood risk management.

4. The community mapping approach is especially
appropriate for datasets that do not require extensive
training, such as flood extent surveys where it is possible to
cross-validate the quality of reports given the high number
and density of data points. More technically advanced
features, such as collecting dimensions of urban drainage
systems (e.g., bed levels), require trained mappers to create
data of sufficient quality. Our analysis shows that it is
possible to achieve this quality through smartphones with
accurate GPS receivers, open source servers, training of
students and clever survey designs. These components
form a promising framework for reliable flood modeling
with community mapped data.

Future research is suggested to explore how community mapping
can become an institutionalized practice to fill gaps in data-
scarce environments by addressing incentives for participation
and sustainability to keep community mapped data up to date.
Furthermore, the authors invite a discussion on liability issues of
open source data sets, which is expected to arise when open data
is increasingly applied in governance.
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