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Forest cover dynamics are an important indicator for climate change as well as for land
conversion studies. Based on an analysis of 30 years of Landsat data a forest cover
time series was generated and analyzed for the Dhofar mountains in Oman. The Dhofar
mountains in Southern Oman with its semi-arid cloud forest is an important asset for
livestock, water resources, and tourism. In this study we investigated whether forest
cover trends are distinguishable and what impact forest cover changes have on water
availability. To cope with gaps in the Landsat dataset the Dhofar mountains were divided
into regions of interest (ROIs) that were based on hydrologic catchment boundaries. The
results show, that, despite increasing pressure from tourism and increasing livestock
numbers, the forest cover shows slight but not significant increases in most ROIs and
significant forest cover increases in three ROIs. Overall, forest cover during the past
30 years is at least stable and most probably slightly increasing. With regard to water
resources results show that, the impact of cloud forest interception amounts to an
additional subcanopy water input of about 15–150% of annual rainfall. This additional
water is only available below tree cover. Part of that water is, of course used by plant
transpiration, however, the stemflow portion which is exceptionally high in this region
infiltrates directly into deeper soil layers and eventually leads to groundwater recharge.

Keywords: ecohydrology, forest cover dynamics, water resources, cloud water interception, remote sensing

INTRODUCTION

Forest cover dynamics are an important indicator for climate change (Lenoir et al., 2008; Füssel
et al., 2017) and can have a substantial impact on local water resources (Sahin and Hall,
1996). In addition, forest cover can be used to estimate the CO2 storage effect provided by
forests (Foley et al., 2005; Hansen et al., 2013; Martone et al., 2018). With regard to hydrology,
in most regions of the world forest increase is associated with less available water resources
downstream (Schmeller et al., 2018), as forest canopies intercept precipitation leading to a reduction
of water that reaches the ground. Cloud forests, however, harvest water from mist and fog
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(Bruijnzeel et al., 2011) thereby gaining additional
precipitation which in some cases can even exceed rainfall
(Giambelluca and Gerold, 2011).

The Dhofar cloud forest is an almost unique forest area, as,
together with the Jabal Bura valley forest in western Yemen,
it is one of only two closed forests in Arabia (Hall et al.,
2008) and is thus extremely rare. Given its rarity there is global
importance of the Dhofar cloud forest in terms of biodiversity.
Locally, the forested area plays a major role in water resources
(Hildebrandt and Eltahir, 2006; Friesen et al., 2018), agriculture
(mostly animal husbandry), and to a large extent in terms of
tourism. Besides the traditional benefits for livestock, tourism
is an increasing economic benefit from both the monsoon
climate and the resulting vegetation. The annual monsoon season
(Khareef), attracts more than half a million tourists annually –
compared to about 250,000 inhabitants of the region – that visit
the Salalah coastal plain and the Dhofar mountains. Especially
tourism as well as agriculture have an impact on the natural forest
vegetation as infrastructure in terms of roads or recreational
areas are constantly being built up in the mountains and as
increasing livestock numbers forage on the vegetation. Although
these threats to the natural forest vegetation are reported, only
few studies exist (e.g., Schlecht et al., 2014; Galletti et al., 2016)
and no consistent, long-term analysis of forest cover, that would
allow for a multi-annual trend analysis throughout the Dhofar
mountains is available.

The Landsat satellites provide long-term remote sensing data
that allow for the derivation of vegetation indices, such as the
Normalized Difference Vegetation Index (NDVI). The NDVI is
one of the most applied indices in phenological studies, mainly
due to data availability and robustness against noise and varying
illumination geometries (Lange et al., 2017). Other indices,
such as EVI or PPI, exist (Jin and Eklundh, 2014) that show
improvements in terms of signal saturation, however, in terms of
forest cover mapping and subsequent trend analyses, saturation
issues do not play a major role. Using 30 years of Landsat
data during the post-monsoon period, a classification into forest
and non-forest pixels was accomplished. The classification was
done through a threshold-based classification during the post-
monsoon period. In the semi-arid setting, the pre-monsoon
period is dry, so that no clear distinction can be made. The 3-
month monsoon is characterized by heavy and continuous fog,
during which cloud-free satellite data is almost non-existent.
For the post-monsoon period, a distinction between forest and
grassland can be detected, as grassland die-off is considerably
faster than tree canopy senescence. Based on the generated
dataset a time-series analysis including long term forest cover
percentages as well as a trend analysis could be conducted.

The specific monsoon climate (Abdul-Wahab, 2003) yields
additional fog water input under forest canopies in addition
to rainfall (Hildebrandt and Eltahir, 2006; Bawain, 2012;
Friesen et al., 2018). This interaction between forest and
clouds has been extensively studied for tropical montane cloud
forests (Hildebrandt and Eltahir, 2006; Holwerda et al., 2006;
Bruijnzeel et al., 2011) and concise overviews on the underlying
processes are provided by several studies (Bruijnzeel et al.,
2011; Giambelluca and Gerold, 2011). In general, in cloud

forests, trees act as fog catchers that intercept cloud water in
addition to rainfall. The water arriving below the canopy is
known as net precipitation and is composed of throughfall,
water dripping off the canopy, and stemflow, water flowing
down the tree branches and trunk. For the Dhofar cloud forest
studies have shown consistent relationships between rainfall, net
precipitation, stemflow, and throughfall (Hildebrandt et al., 2007;
Bawain, 2012). The dense fog in combination with the cloud
forest results in fog harvesting by trees that generates more
than twice the amount of water collected below the canopy
in comparison to rainfall. This additional water is of great
importance to the Salalah coastal plain to the South of the
Dhofar mountains. In combination with a multi-annual gridded
rainfall dataset (Friesen et al., 2018) the effect of changing
forest cover on available water resources was estimated for the
Dhofar cloud forest.

The results of this study show that, using regional aggregation,
long and consistent satellite-based land cover analyses are
possible. For the study region we show, that, although land
cover threats are eminent through the development of touristic
infrastructure and livestock pressure, forest cover is stable
and even slightly increasing in some parts of the Dhofar
mountains. For water resources we further quantified the
effect of forest cover dynamics on available water resources.
The additional water, collected through trees, is only available
under forest cover. Partially, this additional water is, of course,
used by plant transpiration, however, the stemflow portion
which is exceptionally high in this region (about 30% of net
precipitation, Hildebrandt et al., 2007; Levia and Germer, 2015)
infiltrates directly into deeper soil layers and eventually leads to
groundwater recharge. The importance of stemflow is further
supported by recent work regarding the specific influence area
of stemflow, which is limited to a small area around the stem and
therefore results in high infiltration rates (Carlyle-Moses et al.,
2018; van Stan and Gordon, 2018).

The main objectives of this paper focus on (i) the trend
analysis of a 30-year forest cover time-series throughout the
Dhofar mountains, and (ii) the estimation of water input
dependent on forest cover.

MATERIALS AND METHODS

Study Region
The Dhofar mountain range is located in Southern Oman,
extending into Yemen. The mountain range separates the desert
region to the North, Nejd, from the Salalah coastal plain to the
South (Figure 1). The mountain range is the recharge zone for
the upper groundwater aquifers in the coastal plain, that provide
Salalah, Oman’s second largest city, with water for agriculture,
industry, and municipal water use. The precipitation can be
divided into two main types, the monsoon season, called Khareef,
and irregular cyclone events. The monsoon season occurs from
mid-June to mid-September and is characterized by low intensity
rainfall and drizzle as well as by dense fog with visibilities down
to 5 m. During the monsoon season an inversion layer develops
that results in dense fog engulfing the southward slopes of the
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FIGURE 1 | Study region. The red outline depicts the extent of the Dhofar mountain study region, inset (a) shows its location on the Arabian Peninsula, inset (b)
depicts a dry season, and inset (c) depicts post-monsoon vegetation.

FIGURE 2 | Landsat 5, 7, and 8 data availability for the Dhofar mountain range from 1987 to 2017 for the selected NDVI threshold periods DOY1–DOY4 (cf “Forest
classification”).

mountains and that extends into the coastal plain (Abdul-Wahab,
2003; Hildebrandt and Eltahir, 2006). In contrast, cyclonic events
occur infrequently every 2–6 years (Friesen et al., 2018) that
result in torrential rainstorms with up to 400 mm in a couple
of days (Kwarteng et al., 2009). Similar to the clear precipitation
seasonality, the vegetation changes from a desert-like dry stage
prior to the monsoon season (Figure 1b) to a lush forest and
grassland vegetation (Figure 1c) during and about 2–3 months
after the monsoon season.

Data
For the analysis high-resolution Google Earth satellite images
(DigitalGlobe) were used for the identification of ground
control points in the Dhofar cloud forest. The time-series
analysis was conducted using satellite data from Landsat 5,
7, and 8 with a spatial resolution of 30 m. In total, 102
satellite images were processed. The Landsat data were obtained
from the Google Earth Engine data repository (using products
LANDSAT/LT05/C01/T1_SR, LANDSAT/LE07/C01/T1_SR, and
LANDSAT/LC08/C01/T1_SR). Specifically, the Landsat surface
reflectance products included atmospheric correction using

LEDAPS, and cloud masking using CFMASK (“USGS Landsat
5 Surface Reflectance Tier 1,” n.d.). The data availability for the
different years and periods is shown in Figure 2.

Digital elevation data to delineate watershed boundaries were
taken from the SRTM dataset (SRTM, 2018). Gridded rainfall
data with a 1×1 km resolution, based on interpolated station data
were taken from Friesen et al. (2018).

Forest Classification
Common forest cover mapping approaches, such as supervised
and unsupervised classifications, mainly use spectral (Hansen
et al., 2003) and temporal (Jia et al., 2014) signatures to
distinguish forest from non-forest land cover types. Here,
particular characteristics of the observation region allowed for
the application of a simplified approach using an index threshold.
The Dhofar mountains have a well-defined monsoon period
during which trees and grasses grow abundantly. The monsoon
period ranges, on average, from DOY 174 to 256 (Friesen
et al., 2018). Following the monsoon period senescence starts,
however, grassland has a much faster die-off than the forest
canopy senescence, which is clearly detectable in NDVI values.
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Toward the end of the year both tree canopy and grassland NDVI
values converge again. To determine the most suitable NDVI
threshold, post-monsoon NDVI values of selected cloud forest
and grassland pixels were compared and two periods with high
differences between forest and grassland could be identified. For
the threshold determination 99 forest and 91 grassland reference
pixels were selected using Google Earth. Google Earth Engine was
then used to extract all available Landsat 5, 7, and 8 data (1987–
2017) for the selected reference pixels from DOY 270 to DOY 366.
For the reference pixels only cloud free pixels were used.

Different threshold periods were taken to maximize the
amount of available satellite data. Four DOY periods with the
highest difference between forest and grassland were determined
using 75% of the reference pixels. To determine the threshold
periods first a 10-day centered moving average, based on the
average of the 10th percentile of forest NDVI and the 90th
percentile of grassland NDVI. Using the moving average periods
with a minimum length of 3 days where selected for which the
centered moving average lies between the 10th percentile of forest
NDVI and the 90th percentile of grassland NDVI. For each of the
four DOY periods the NDVI threshold was calculated according
to Equation (1).

NDVIperiod,threshold

= 0.5 ·
(

min
period

(NDVIp10,forest)+ max
period

(NDVIp90,grassland)
)

(1)

Where NDVIp10,forest are the 10th percentile NDVI values
for forested ground control points per DOY for the selected
threshold period, NDVIp90,grassland are the 90th percentile NDVI
values for grassland ground control points per DOY for the
selected threshold period.

Following the determination of threshold periods and values,
annual forest cover maps of the Dhofar mountains were
generated using the Google Earth Engine. All Landsat 5, 7, and 8
scenes available during the threshold periods were used. Clouds,
shadows, and snow (based on CFMASK values, cf. 2.1. Data) were
defined as missing values. Landsat 7 scenes are striped due to
a sensor failure; stripes were also defined as missing values. In
case of multiple and overlapping Landsat scenes during 1 year
the NDVI maxima were taken.

For validation 25 percent of the reference pixels were taken.
The reference pixels were determined using Google Earth,
which means that not all reference pixels have the same image
acquisition time. For the classification accuracy (Equation 2)
calculation therefore the average of the recent years (2014–
2017) were taken.

ρ=
( n

N

)
· 100 (2)

Where n is the number of correctly classified validation pixels
and N is the number is the number of validation pixels.

For validation 25 percent of the reference pixels were taken.
The reference pixels were determined using Google Earth,
which means that not all reference pixels have the same image
acquisition time. For the classification accuracy (Equation 2)

calculation therefore the average of the recent years (2014–
2017) were taken.

Region of Interest (ROI) Aggregation
Landsat data for the Dhofar mountains were not continuously
available throughout the post-monsoon period and throughout
the region. Reasons for this were satellite overpass availability
during the NDVI threshold periods as well as missing values (cf.
“Forest Classification”). To overcome this and utilize all available
data for a consistent time-series analysis, the forest cover data
were aggregated for regions of interest (ROI). The basis for
the ROI delineation were catchments that were calculated from
digital elevation data covering the whole mountain range from
crest to foothills. Due to the small size of many catchments,
smaller catchments were joint to larger units, resulting in a total
of 14 ROIs. All catchments were cut off at the foothills at 150 m
a.m.s.l. to avoid confusion with irrigated agriculture in the coastal
plain. As they are not fully corresponding to individual catchment
boundaries following the modifications, the areas are called ROIs
in the following (Figure 3). For each ROI the percentage of forest
cover using the ROI area excluding missing pixels was calculated.
This aggregation allows for a consistent time-series analysis for
all ROIs. ROIs 1 and 5 (not shown in Figure 3) correspond
to the western (ROIs 2–4) and eastern (ROIs 6–14) mountain
ranges, respectively.

Statistical Analysis
Following the ROI aggregation statistical metrics, such as
averaged forest cover and standard deviation were calculated for
each ROI. An outlier analysis was done in 5-year steps using
the extreme studentized deviate test. Trends were calculated
based on the Mann-Kendall test and the slope was calculated
based on Sen’s slope.

Net Precipitation Calculation
The Dhofar cloud forest has the ability to harvest fog water in
addition to rainfall. Fog harvesting for the Dhofar cloud forest
has been shown in previous studies to have a substantial effect on
net precipitation (Hildebrandt et al., 2007; Friesen et al., 2018).
The predominant tree species Anogeissus dhofarica was estimated
to produce a net precipitation 2.5 times higher than rainfall
(Friesen et al., 2018).

To calculate annual net precipitation for each ROI, annual
rainfall was extracted from the gridded rainfall dataset (1992–
2014) using Equation (3).

PROI=
∑

Ppixel · w (3)

Where Ppixel is rainfall, converted from mm year−1 to m3,
within one pixel of the gridded rainfall dataset, and w is the
weighting of the pixel within the ROI as several pixels were
located on the ROI boundary.

Using forest cover percentage per ROI and year was taken
to calculate net precipitation per ROI and year. After adding
rainfall (non-forested ROI percentage) and net precipitation, the
proportion of net precipitation to rainfall was calculated for each
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FIGURE 3 | ROI boundaries for the Dhofar cloud forest. The numbers depict the ROI ID and numbers marked with an asterisk depict ROIs based on several small
catchment boundaries.

FIGURE 4 | Boxplots of NDVI values for calibration pixels for forest (black) and grassland (gray). The boxplots are based on NDVI data from Landsat 5, 7, and 8 for
years 1987–2017. The red lines depict the NDVI threshold values for four periods.

ROI and year. This percentage then allowed to estimate the
fraction of precipitation due to forest cover (Equations 4 and 5).

Pnet=PROI ·
c

100
· 2.5 (4)

Pfrac=
Pnet

PROI
· 100 (5)

Where c is the forest cover per ROI in percent.
The effect of changing forest cover on water availability

(fraction of net precipitation) was calculated annually for ROIs
that corresponded with the gridded rainfall dataset, namely ROIs
7–14, for all years where both rainfall data and forest cover

data were available. A detailed overview of the methodology and
the ecohydrology regarding the incorporation of cloud water
interception can be found in Friesen et al. (2018).

RESULTS

Forest Cover Classification
Using reference pixels defined in Google Earth for forest and for
grassland pixels, NDVI values from Landsat 5, 7, and 8 from
1987 to 2016 were extracted. Boxplots for the two land cover
classes per DOY are shown in Figure 4. The highest differences
between the two land cover classes could be detected from DOY

Frontiers in Earth Science | www.frontiersin.org 5 July 2020 | Volume 8 | Article 299

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00299 July 16, 2020 Time: 19:30 # 6

Arnold et al. Forest Cover Change and Water Resources

TABLE 1 | NDVI thresholds for the four periods based on a reference pixel
analysis of Landsat 5, 7, and 8.

Period [DOY] Threshold [-]

285–291 0.37

295–298 0.34

303–307 0.31

309–314 0.31

282 to 315 after which the two land cover classes gradually
converge with NDVI.

It can clearly be seen that grassland quickly drops to
NDVI values below 0.3, whereas forest canopy is still active
due to water availability in greater soil depths not accessible
to grassland. After DOY 320, however, some forest reference
pixels decline to NDVI values around 0.3 which makes it
difficult to clearly distinguish between the two land cover
types. Based on the reference pixel analysis results NDVI
thresholds between forest and grassland were set that are shown
in Table 1.

The classification accuracy was derived using 25% of the
ground control point data, not used in calibration. For forested

ground control points the accuracy is 96% and for grassland
ground control points the accuracy is 92%.

Forest Cover
Using the NDVI thresholds forest maps were made for each year.
Figure 5 shows the maximum forest cover for the whole study
period. Due to lack of overpass data and sensor failure full satellite
data coverage was not available for all years. The maximum forest
cover extent from 1987 to 2017 for the study area (cf. Figure 1,
red outline) corresponds to 43% or about 1,000 km2.

The averaged 30-year forest cover per ROI ranges from 5 to
56% (see Figure 6). The large range of forest cover per ROI is
partially caused by choosing ROIs on the basis of catchments.
ROIs 6 and 13, for example, are ROIs with relatively large
unforested regions (cf. Figure 3).

Trend Analysis
The results of the trend and slope analyses indicate that all ROIs
show increasing forest cover during the 30-year study period
(Figure 7). However, only two ROIs: 5 (complete eastern forest
region, ROIs 6–14) and 10, show a significant trend (< 0.05)
according to the Mann-Kendall test. The two ROIs have an
average forest cover of about 30% but show a low variance

FIGURE 5 | Maximum forest cover from 1987 to 2017 based on Landsat 5, 7, and 8 data.

FIGURE 6 | Boxplots of forest cover in all ROIs 1987–2017. ROIs 1 & 5 are the western and eastern forest regions (cf. Figure 1).
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FIGURE 7 | Trends of forest cover dynamics per ROI based on 30 years of Landsat NDVI data. The numbers depict the ROI ID; IDs marked with a plus show ROIs
with a significant forest cover trend.

FIGURE 8 | Boxplot of the proportion of net precipitation from rainfall in percent. The boxplots show the variability over time (1992–2014). Only ROIs (7–14) for which
gridded rainfall was available are displayed.

in forest cover (cf. Figure 6). The two significantly increasing
ROIs, 5 and 10, have slope values of 0.55 and 0.62, respectively.
Supplementary Figure S1 showing forest cover time series for
each ROIs and a Supplementary Table S1 of the Sen’s slope values
and additional statistics is available as Supplementary Material.

Impact on Water Resources
In the Dhofar cloud forest the trees have a very strong interaction
with precipitation. The trees ability to harvest fog water adds
substantial water arriving below the canopy, net precipitation.
The effect of changing forest cover on available water resources
is shown in Figure 8. In order to de-couple interannual
rainfall variability, the boxplot shows the net precipitation
proportion of rainfall, so the additional precipitation through fog
harvesting that is directly linked to forest availability. Highest net
precipitation fractions are, of course, associated to the ROIs with
the highest forest cover, 7, 8, and 9 (cf. Figure 6).

Based on the precipitation scenario including cloud forest fog
harvesting (PCF) high, medium, and low annual rainfall has been
calculated. Figure 9 shows an overview of the results for ROIs 7–
14. Next to the monsoon precipitation in m3 and mm, the long-
term average forest cover is shown for each ROI.

DISCUSSION

The study provides a forest classification based on threshold
values and the distinct regional seasonality of forest and
grassland. The threshold values were determined from a 30-year
time-series of reference pixels from forest and grassland. The
threshold approach is widely applied (Hayes and Sader, 2001;
Pravalie et al., 2014) and further allowed for a consistent time-
series analysis. Landsat satellites provide a long data availability
at high resolution (30 m), however, are not continuously available
and at relatively low temporal resolution. Data gaps are associated
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FIGURE 9 | Precipitation scenario including cloud forest fog harvesting for representative years (low, medium, and high). The background color depicts annual
monsoon precipitation (PCF) for a medium year in [mm] and the bar graphs show annual monsoon precipitation (PCF) in [m3] for low, medium and high monsoon
years. The pie charts show forest and non-forest land cover per ROI. All data are based on the period from 1992 to 2017.

FIGURE 10 | Comparison of forest cover for Sentinel-2a, Landsat 7, and Global Forest Change data [(“Global Forest Change” n.d.; Hansen et al., 2013) for 2016.

with cloud cover, missing satellite scenes, and sensor failures
(SLC-Off Products: Background, 2018). Yet, due to the high
spatial resolution, Landsat satellites were still preferred to NOAA
AVHRR at 1 km and MODIS at 250 m resolutions, although
both provide much higher temporal resolutions. In order to cope
with the data gaps several steps were taken. Based on reference
pixels, four threshold periods during the post-monsoon period
were chosen to use as many Landsat data as possible. Further,
to deal with data gaps, the annual forest cover maps were then
aggregated into ROIs based on modified watershed boundaries.
This allowed for an almost continuous 30-year forest cover

dataset per ROI as due to missing values, pixel-based analyses
could not be realized.

For future studies, the Sentinel satellites pose a valuable
addition, as Sentinel-2 combines a high spatial resolution, 10
m, with a high temporal resolution of at least 5 days (ESA,
2018). However, Sentinel-2 data are only available since 2016,
and therefore cannot yet be utilized for multi annual time-
series analyses. As an outlook we provided a comparison of
Landsat 7 to Sentinel-2a and to the Global Forest Change data
(Hansen et al., 2013; Global Forest Change, 2018; Figure 10). The
Global Forest Change data is a widely applied dataset that shows
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considerably less forest cover. Reasons for this are probably the
strong seasonality that is not taken into account in the global
dataset as well as the low tree height, as Hansen et al. (“Global
Forest Change” n.d.) only define vegetation above 5 m as trees.

Using the generated forest cover dataset for ROI regions
covering the whole Dhofar mountain range, a trend analysis
was conducted. Results show that forest cover is, in general,
stable and in some regions even significant forest cover increase
could be detected. Galletti et al. (2016) provided a change
analysis based on 2 years only and also reported single forest
increase in some regions. However, in our study a much more
robust trend analysis was conducted to the generated forest
cover dataset. Reasons for the forest cover stability and slight
increase are still unknown, as two of the major forest threats,
increasing tourism and the connected infrastructure build-up,
as well as increasing livestock numbers are reported (personal
communication, Ministry of Regional Municipalities and Water
Resources, Oman). Spatially explicit data for infrastructure build
up and livestock numbers, however, were not available to us
but may be considered as future research directions. In the
Mediterranean, forest increase due to land abandonment has
been extensively studied (Poyatos et al., 2003) which could
cause this increase. Galletti et al. (2016) further provides an
overview of national policy decisions that the study links to
deforestation, however, these policy decisions are difficult to
assess spatially, especially since the analysis does not show
overall forest cover.

The Dhofar cloud forest also has a substantial effect on water
resources. In addition to rainfall, the trees act as fog catchers and
can thereby collect cloud water in addition to the rainfall. For
the predominant tree species Anogeissus Dhofarica this results
in net precipitation (water arriving below the canopy) that is
about 250% of rainfall (Hildebrandt and Eltahir, 2006; Bawain,
2012; Friesen et al., 2018). This, in turn, shows that forest cover
has a substantial effect on local water resources and combined
with a gridded rainfall dataset, the effect of forest cover on water
resources could be estimated. Hydrologically, a forest increase
in the Dhofar mountains, therefore has a positive effect on
water resources.

CONCLUSION

This study provides an unprecedented 30-year dataset of
forest cover for the Dhofar mountains, aggregated to ROIs
based on modified catchment boundaries. This aggregation
approach made it possible to deal with missing values
due to sensory failures, cloud cover, or missing satellite

scenes, yet providing a dataset that can be used for
spatio-temporal analyses.

A trend analysis, based on the different ROIs was applied
that, in general, shows a slight increase in forest cover. As the
interannual variability was relatively high, however, only two
regions showed a significant trend on increasing forest cover.
Despite the high variability, all regions show increasing forest
cover. In conclusion it can therefore be said that forest cover
during the past 30 years is at least stable and most probably
slightly increasing.

To estimate the effect of forest cover change on water
availability, reported cloud water interception estimates in
combination with a multi-annual gridded rainfall dataset have
been used. Results show that the proportion of net precipitation,
which is related to the fog harvesting ability of trees, toward
rainfall ranges from around 15 to 150% per ROI.
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