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Magnetotellurics (MT) is a geophysical method that investigates the relationships among

the different components of the natural electromagnetic field related to the geoelectric

structure of the subsurface. Data can be contaminated by anthropic noise sources and

suffer from transient noise to signal variations. Since the 80s, robust processing methods

have been introduced to minimize the impact of noise on sounding quality. This paper

presents Razorback, an open source Python library, implemented to handle, manipulate,

and combine time series of synchronous data. This modular library allows users to plug

in data prefilters and includes both M-estimator and bounded influence techniques, as

well as a two-stage multiple remote reference. Validation of this library is performed on

a real data set by comparing the results with those of an existing code. In contrast to

standalone codes, the developed library allows for the design of complex and specific

processing procedures. As examples, Razorback is used to perform (i) continuous time

lapse processing and (ii) processing of one site in a peri-urban context. In the latter

case, we have tested all possible combinations of remote reference stations in an MT

array. Our phase tensor analysis shows that the bounded influence outperforms the M-

estimator in reducing the impacts of man-made electromagnetic noise onmagnetotelluric

soundings. The Razorback library is available at https://github.com/BRGM/razorback.

Jupyter notebooks for data handling and MT robust processing are available at https://

github.com/BRGM/razorback/blob/doc/docs/source/tutorials/.

Keywords: magnetotellurics, time-series analysis, Fourier analysis, robust methods, Python, M-estimator,

bounded influence, remote reference

1. INTRODUCTION

The magnetotelluric (MT) method studies the relationships in the frequency domain among
components of the natural electromagnetic (EM) field (Vozoff, 1972). MT fields are generated
(i) by external geomagnetic sources (ionospheric currents) at frequencies under 1 Hz and (ii) by
atmospheric lightnings propagating through the earth-ionosphere waveguide at frequencies above
1 Hz. Recorded at the ground surface, MT fields are supposed to be plane waves. As stated byWard
(1967), noise in EM fields can be either instrumental noise, “geological” noise or disturbance field
EM noise. The latter is caused by fluctuations of the natural sources (mainly related to solar activity
above 1 Hz) and artificial/man-made sources. In urban and industrialized areas, man-made EM
sources contaminate MT fields and cause divergence from the plane wave model.
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The first step in MT analysis is estimating transfer functions
(TFs) between horizontal components of the electric and
magnetic fields (i.e., the MT impedance tensor) and between
the vertical and horizontal components of the magnetic field
(the so-called tipper) (Sims et al., 1971; Vozoff, 1972). Such
TF estimates were originally performed using the classical least-
squares approach (Sims et al., 1971) but generally provide biased
results (Goubau et al., 1978). To reduce the impact of noise on
MT TFs, Gamble et al. (1979) introduced the remote reference
method, where synchronous measurements of MT fields are
performed at a second site to remove bias from the local TF
estimates. This method still produces biased TFs if correlated
noise contaminates both local and remote sites.

In the 80s, robust estimation techniques were introduced
(Egbert and Booker, 1986; Chave et al., 1987) to handle a
reasonable proportion of outliers in MT data sets. M-estimator
(Chave and Thomson, 1989) and later bounded influence
estimator (Chave and Thomson, 2004) are considered to be the
most effective techniques for TF estimation and yield unbiased
MT estimates if at least one of the remote sites is uncontaminated
by correlated noise. Note that robust estimation techniques
are also now used in controlled-source EM data processing to
estimate TFs between transmitter and receiver data (Streich et al.,
2013). An alternative procedure, the robust multivariate errors-
in-variables (RMEV) approach, was proposed by Egbert (1997).
This procedure aims to identify by principal component analysis
the different sources present in the acquired data and separate
correlated noise from plane wave MT data. However, despite
successful examples of coherent noise removal (Di Giuseppe
et al., 2018), no automatic RMEV approach is currently available
(Chave and Jones, 2012).

When considering “the future of magnetotellurics,” Chave
and Jones (2012) noted the significant improvement resulting
from robust estimation techniques but also stressed that a major
challenge remains, namely, data contamination by man-made
correlated noise sources, which can be permanent or intermittent
(Szarka, 1988; Junge, 1996). Wavelet transform of MT fields
can be used to select geomagnetic events in the time-frequency
plane (Zhang and Paulson, 1997) and to identify intermittent
or permanent correlated noise sources in the data (Trad and
Travassos, 2000; Escalas et al., 2013; Carbonari et al., 2017). Once
data filtering is performed, classical weighted least squares or a
robust TF estimator are still used on a reduced filtered subset of
the Fourier or wavelet transforms (Larnier et al., 2016).

Existing standalone robust codes have specific input formats
(time series of electric and magnetic fields, for example) that
may be incompatible with Fourier data pre-filtering and that
are controlled at a higher level by parameter files. Once the
code is launched, tracking the influence of processing parameters
in the framework of the code can be difficult. At present,
MT processing faces the need for integration and requires an
approach to conveniently combine the available techniques as the
steps of a full process.We suggest that an easy-to-use open source
library would greatly help integrate and experiment with the
well-established, the new and the forthcoming techniques. Thus,
we implemented the library in Python, a modern programming
language that allows modular codes and that is being increasingly

adopted in scientific computing. A similar approach has already
be taken by the MTPY library (Krieger and Peacock, 2014;
Kirkby et al., 2019) that assists with MT data processing,
analysis, modeling, visualization and interpretation while the
focus of the present library is the actual processing of MT
data. The Razorback library is constructed over elementary
components that, when combined, allows for a simple modular
implementation of classical weighted least squares and robust
TF techniques, such as the M-estimator and bounded influence
estimator for MT. The library aims to allow the user to
be in control of data transformation at each step of the
processing. In MT robust processing, it implies accessing
robust Fourier transforms of electric and magnetic fields in
the time-frequency representation (i.e., view of electric and
magnetic signals, initially taken to be a functions of time
represented over both time and frequency) to track which ones
are rejected/down-weighted during pre-filtering and during the
robust TF estimation procedure.

In this paper, we first recall the basics of MT TF theory.
Next, we define the features, functions and objects provided
by the Razorback library. Then, MT data processing examples
are shown for validation. Finally, we show two uses of the
standard package with higher level functions: (a) performing
processing with all possible combinations of synchronous remote
reference stations, and (b) performing time lapse processing
by subdividing continuous data in consecutive and overlapping
window portions. The Razorback library is licensed under GPL
v3.0 and is available at https://github.com/BRGM/razorback.
Jupyter notebooks for data handling and MT robust processing
are available at https://github.com/BRGM/razorback/blob/doc/
docs/source/tutorials/.

2. MT TRANSFER FUNCTIONS

MT is a natural source geophysical method introduced by
Tikhonov (1950) and Cagniard (1953), linking surface electric
and magnetic field measurements to subsurface electrical
properties. In MT theory, surface EM fields are assumed to be
plane waves.

The common practice is to perform a Fourier transform of the
MT time series, leading to a set ofN complex coefficients for each
MT field channel and for each frequency. For a fixed frequency,
one horizontal component of the electric field ei ∈ C

N , indexed
by i ∈ {x, y}, is linked to the horizontal magnetic field b ∈ C

N×2

through the relation

ei = bzi + ǫ (1)

where zi ∈ C
2 denotes the MT impedance associated with

direction i of the electric field, expressed in millivolts per km
per nanotesla [mV/(km× nT)], and ǫ ∈ C

N is the error. The
impedance z can be regarded as a TF to be estimated. Hereafter,
O denotes an operator yielding such estimations, namely, zi ≃
ẑi = O(ei, b). Residual ri ∈ C

N is classically computed from

ri = ei − b O(ei, b) (2)
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Similarly, the vertical magnetic field bz ∈ R
N is related to the

horizontal components of the magnetic field:

bz = bt + ǫ (3)

where t ∈ C
2 is the dimensionless tipper representing the tipping

of the magnetic field out of the horizontal plane (Vozoff, 1972).
The same approach can be used to estimate the tipper t with
t ≃ t̂ = O(bz , b).

In the presence of noisy data, the definition of the operator
O is not unique. The following sections present several ways to
define and compute this operator.

2.1. Single Site Least-Squares Estimate
Under the Gauss–Markov conditions on the noise (zero mean,
homoscedasticity, i.e., all the data don’t have the same finite
variance, and no correlation), the ordinary least squares (OLS)
operator OOLS can be applied to impedance estimation for a
single site (SS) dataset:

ẑi =
(
bHb

)−1 (
bHei

)
. (4)

The accuracy of the OLS estimates can be compromised because
(i) data rarely satisfy the homoscedastic assumption due to
transient noise sources and (ii) the electromagnetic field data
deviate from the plane wave assumption.When a small portion of
the dataset is corrupted by (i) and (ii), the OLS method can still
provide a reliable estimate. However, correlated EM noise that
may exists between the local electric and magnetic fields can lead
to strongly biased estimates.

2.2. Remote Reference Least-Squares
Estimate
The remote reference (RR) method introduces an additional
magnetic field (br) from a distant second site to minimize the
impact of noise. The RR method requires uncorrelated noise
between the RR site and the local station. The RR-OLS impedance
estimate is given by

ẑi =
(
bHr b

)−1 (
bHr ei

)
. (5)

MT data can still be affected by correlated noise between the
RR and the local station, whose impact can be reduced with
several RR stations.

2.3. Two-Stage Remote Reference
Estimate
Chave and Thomson (2004) proposed a generalization of the RR
method to multiple RR data sets. The principle is to use a set of q
RR horizontal magnetic fields, collected in the array Q ∈ C

N×q.
The local magnetic field is linked to Q by

b = QW + ǫ, (6)

whereW ∈ C
q×2 is a TF between local and remote magnetic field

data. The predicted local magnetic field b̂ is expressed as

b̂ = QŴ, with Ŵ = O(b,Q), (7)

where O denotes the operator used to estimate the TF W. The
impedance can then be estimated by using the predicted local
magnetic field b̂ rather than the local magnetic field b:

ẑ
q
i = O(ei, b̂) (8)

This formulation for multiple RR impedance estimates
(Equations 7 and 8) will be referred as the two-stage RR
estimate. Chave and Jones (2012) demonstrated that when
only one RR (q = 2) and the OLS are used (O = OOLS),
the two-stage RR estimate is equivalent to the classical RR
OLS estimate.

MT data suffer from time and frequency-dependent
signal-to-noise ratio variations, and the Gauss–Markov
conditions to use the OLS method are violated even
if several remote stations are involved. To overcome
those problems, robust methods were introduced in
the 80s.

2.4. M-estimator
The M-estimator (Egbert and Booker, 1986) is a robust TF
estimator designed to minimize the influence of data associated
with large residuals (Equation 2) in the regression.

The M-estimate of the MT impedance TF, ẑ, is obtained
through the non-linear weighted least squares operator denoted
OME and defined by the implicit relation

ẑi = OME(ei, b) =
(
bHv(ẑi)b

)−1 (
bv(ẑi)ei

)
(9)

where v(̂z) ∈ R
N×N is the weighting diagonal matrix depending

on the residual and given by

vj,j(ẑi) = v(xj(ẑi)) , x(̂z) =
1

d
(ei − bẑi). (10)

Here, d is an estimate of the scale of the residual population.
The weighting function, v(x), must be designed to reduce the
influence of large residuals.

In practice, Equation (9) is solved iteratively, starting with an
initial value ẑ0i and defining the sequence (̂zki )k≥0 by

ẑk+1
i =

(
bHv(̂zki )b

)−1 (
bv(̂zki )ei

)
for k ≥ 0. (11)

The convergence of the above sequence is not guaranteed
in general. However, for some weighting functions, the
procedure (Equation 11) is stable in the sense that the
sequence converges to the same limit independently
from ẑi

0. In practice, the procedure is stopped
when the variation of the weighted residuals sum of
squares, rHi ri, is lower than a user-defined tolerance tol
(typically 1%).

The two key parameters of the M-estimator method are the
scale of the residual population d and the weighting function v of
equations (10) (Chave et al., 1987). The scale d is approximated
by the median absolute deviation (MAD) from the median
computed from the first iteration (with ẑi

k=0) given by

d =
1

0.44845
median

(
|rk=0
i −median(rk=0

i )|
)
.
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Here, the scale is computed with k = 0 and is fixed for k ≥
1. Two weighting functions are proposed, namely, the Huber
weighting function,

vHuber(x) =

∣∣∣∣∣
1 if |x| ≤ α

α/|x| if |x| > α
, α = 1.5 (12)

and the Thomson weighting function,

vThomson(x) = exp
(
exp(−ξ 2)

)
exp

(
− exp(ξ ((|x| − ξ) )

)
,

ξ =
√
2 log (2N) (13)

where ξ is the N-th quantile of the Rayleigh distribution
and N is the size of the sample. The choice of the weighting
function v depends on the robustness and the stability of
the procedure defined by (11). Robustness means lowering
the influence of large residuals, and stability corresponds
to the existence and uniqueness of ẑ. The Thomson
function is more robust, but unlike the Huber function,
it does not ensure stability. The non-stability encountered
with the Thomson function can be overcome in practice
by using a good initial value for ẑ when solving (9). A
procedure to compute the impedance M-estimate with the
Thomson weighting function can be implemented with the
following steps:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Input: e, b

1. Compute ẑOLS defined by Equation (4).

2. Compute ẑHuber defined by Equation (11) with

vHuber (12) as weighting function

and ẑOLS as initial value.

3. Compute ẑThomson defined by Equation (11) with

vThomson (13) as weighting function

and ẑHuber as initial value.

Output: ẑ = ẑThomson

(14)
The M-estimator TF provides reliable protection against
strong data residuals but remains highly sensitive
to extreme values of the magnetic field, known as
leverage points.

2.5. Bounded Influence Estimator
To prevent the effect of leverage points, Chave and Thomson
(2004) proposed using the diagonal part of the hat matrix for
improving the weighting matrix of the M-estimator method. The
hat matrix H depends on the diagonal weighting matrix v and is
defined as

H(v) =
√
vb

(
bHtvb

)−1
bH

√
v (15)

Chave and Thomson (2003) showed that the hat matrix diagonal
follows the beta distribution, β(h, p,M−p), where h is a diagonal
element, p is the number of independent sources (p = 2
for MT), and M is the diagonal size. In practice, M ≫ p,

and the distribution of y = hM tends toward the gamma
distribution with f (y) = 1

(p−1)!
yp−1e−y as the probability density

function. The corresponding cumulative distribution function
is the regularized lower incomplete gamma function γ (p, y).
Note that the expected mean of hM/p is 1 for both beta and
gamma distributions. If we take a probability of rejection prej of
2 × 0.05, we expect that 90% of the values of hM/p associated
with non-leverage points lie in the interval [χlower;χupper],

with χlower = 1
pγ

−1(p, 0.05) and χupper = 1
pγ

−1(p, 0.95).

For p = 2, the interval is approximately [0.178; 2.372] and
increases for smaller probabilities of rejection. In contrast,
the hat matrix values associated with leverage points do not
follow the beta distribution and are more likely to lie outside
the interval.

This information can be integrated in the weights by replacing
the definition (11) of the sequence (ẑi

k)k by

ẑi
k+1 =

(
bHwkv(ẑi

k)b
)−1 (

bwkv(ẑi
k)ei

)
for k ≥ 0 (16)

Here, wk is the diagonal matrix of the leverage weights, and its
diagonal elements lie in [0; 1] such that wk

ii is close to 1 when

hii(v
k−1)M/p ∈ [χlower;χupper] and close to 0 otherwise. Several

definitions of wk are possible. The simplest definition would
be the indicator function of the interval [χlower;χupper]. One
can also use a smooth approximation of the indicator function,
such as

f (y) = exp
[
e−χ2

upper − eχupper(yi−χupper) + e− log(χlower)
2

−elog(χlower)(log(yi)−log(χlower))
]

(17)

from which we can define wk by wk
ii = f (hii(v

k−1)M/p).
To avoid oscillations preventing the convergence of
(ẑi

k)k, Chave and Thomson (2003) proposed computing

wk as wk
ii = wk−1

ii f (hii(v
k−1)M/p). This ensures that

excluding an extreme value at one step of the iterations
is permanent.

As with the M-estimate computation, the most robust
weighting is not stable; thus, a sequence of estimates are
computed beginning with the most stable weighting and ending
with the most robust. We define a sequence of NBI leverage
intervals [χ i

lower
;χ i

upper], where

χ i
lower =

1

2NBI−i
χlower and χ i

upper = 2NBI−iχupper (18)
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The impedance bounded influence estimate is then computed
as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. Compute ẑOLS defined by Equation (4).

2.1 Compute ẑ1Huber defined by Equation (16) with

vHuber (12) as weighting function,

ẑOLS as initial value

and [χ1
lower;χ

1
upper] as leverage weight interval.

2.2 Compute ẑ2Huber defined by Equation (16) with

vHuber (12) as weighting function,

ẑ1Huber as initial value

and [χ2
lower;χ

2
upper] as leverage weight interval.

. . .

2.NBI Compute ẑNBI

Huber
defined by Equation (16) with

vHuber (12) as weighting function,

ẑNBI−1
Huber

as initial value

and [χNBI

lower
;χNBI

upper] as leverage weight interval.

3. Compute ẑThomson defined by equation (16) with

vThomson (13) as weighting function,

ẑNBI

Huber
as initial value

and [χNBI

lower
;χNBI

upper] as leverage weight interval.

(19)

2.6. Discrete Fourier Transform
Computation and Prefilters
Given magnetic and electric time-series data of duration D
(in seconds), it can be split into Nstat time windows of the
same size and evenly spaced. For each window and for each
time signal, one Discrete Fourier Transform (DFT) coefficient
will be computed for the target frequency fk. In practice, the
window length is adapted to the target frequency fk by fixing the

number period, Nper , thus the duration of one window is
Nper

fk
.

Further more, the shifting between two consecutive windows can
be controlled to increase Nstat or on the contrary to decrease
the correlation between windows. This shifting is expressed by
the overlapping ratio, coverlap. All these parameters are linked
together by the relationship:

D = coverlapNstat
Nper

fk

that is used to determined the number of windows as follow

Nstat =
Dfk

coverlapNper
.

Once time series are divided into Nstat time portions, DFTs
are computed using Slepian data taper windows (also known
as discrete prolate spheroidal Slepian sequences), using a time
bandwidth τ (τ=1, 2, 3 or 4). No prewhitening is performed on
the data.

After DFT computation, MT data coefficients can be pre-
filtered using thresholds on the coefficient of determination.
One can use both a lower and an upper threshold value. The
filtering eliminates some of the DFT pairs and keeps the others
unchanged. The filter works on blocks of consecutive DFT pairs
(EB or BBr). It computes the coefficient of determination for the
block (a default value of 10 data by block is used). The block is
eliminated if this coefficient is outside the thresholds.

Available thresholds are (i) ThEB when pairs of local electric
and magnetic fields are considered and (ii) ThBBr when pairs of
local magnetic and remote magnetic fields are considered.

3. MAIN FEATURES OF THE RAZORBACK
LIBRARY

In this section, we describe three core features of Razorback:
handling time-series data, computing Fourier coefficients, and
estimating the response function. We show how they are
designed to preserve modularity and flexibility. The presentation
relies on the theoretical background presented in section 2 and
is accompanied by code examples. The full documentation is
available at http://razorback.readthedocs.io.

3.1. Handling Time-Series Data
Time-series data are the primary material of the processing.
Handling these data does not involve sophisticated algorithms;
however, such algorithms should be easy to work with,
particularly when one aims to consider several combinations
among many data. This is what Razorback proposes by
introducing dedicated structures with specific behaviors.
Appendix 1 presents an extended example of time data
manipulation with the library.

3.1.1. SyncSignal
The most elementary time data that we consider are sampled
signals. A sampled signal is fully described by the sequence of
the values taken by the signal, the sampling rate and the starting
time. However, somemeasuring instruments provide a raw signal
that differs from the signal of interest. The filter to be applied
depends on the instrument, and the corresponding TF is called
the calibration function. Rather than forcing an early conversion
from a raw signal to a calibrated signal, Razorback proposes the
possibility of attaching a calibration function to any raw signal.

Razorback adopts a strict definition for synchronous signals:
two signals are synchronous when they have the same sampling
rate, the same starting time and the same length. According
to this definition, one can easily store a group of synchronous
signals in an object gathering the common sampling rate,
the common starting time, and, for each individual signal,
the sequence of values and the calibration function. The
corresponding class is named SyncSignal. In this simple
structure, an individual signal can be retrieved from its index.

3.1.2. SignalSet
With our strict definition of synchronousness, there are many
cases where one cannot store all the relevant data in one
SyncSignal object. For instance, the starting and ending
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times of acquisition may differ for some signals, acquisition
may be discontinuous and present time intervals without any
data, or consecutive acquisitions may have been run with
different sampling rates. These complications are overcome by
the SignalSet object, which gathers distinct acquisition runs
of the same channels. In practice, a SignalSet object is a
group of SyncSignal objects with a labeling system. All the
SyncSignal objects handled by a SignalSet object must
have the same number of individual signals, and they cannot
overlap in time. These restrictions ensure that at any given time,
either all channels of a SignalSet have one and only one value
or there is no value for any channel. The labeling system is a
meaningful way to retrieve one channel, or a group of channels,
from a SignalSet object. It associates some character strings
to groups of one or more indices. In this way, one can refer to
channels, or groups of channels, by names rather than by indices.

To gather the relevant set of data to process in one
SignalSet object from among all the available data, it is
possible to group or split existing SignalSet objects to
produce new ones. These operations do not duplicate the data
values, which allows building any combination without memory
cost. SignalSet objects can be grouped in two ways: joining
different acquisition runs of the same channels or merging
distinct channels. They can also be split in several ways: selecting
some channels and runs or narrowing the time range.

3.1.3. Inventory
A SignalSet object is able to gather all the time data
required to compute the TF between different channels. Building
it requires exploring among all the available data to select
and combine the relevant ones; this process can be performed
using the SignalSet features. Razorback also provides the
Inventory object to ease this task. An Inventory object is a
container that gathers several SignalSet objects without any
constraints. The Inventory object offers two types of behavior.
On the one hand, it can build a new Inventory containing less
data by selecting some channels and runs or by narrowing the
time range. On the other hand, it can produce a SignalSet
that contains as many signals as possible. In practice, we start
by constructing an Inventory object that gathers all the data
acquired for the survey. Then, for each site, we extract a sub
Inventory, produce the adapted SignalSet and estimate
the TF.

The data volume of an entire survey exceeding the available
computer memory is not rare. This would prevent fully using the
Inventory object. Razorback overcomes this limitation thanks
to the Dask library (Dask Development Team, 2016). By storing
the time data in a dask.array object rather than a classical
(Numpy) array, the memory cost of the Inventory of an entire
survey becomes negligible. The time data files are only loaded
when needed during the computation of the Fourier coefficients,
and then they are unloaded.When we use the dask.array, the
memory footprint of the processing no longer depends on the size
of the survey.

A jupyter notebook dedicated to data handling is provided
by the authors and available at https://github.com/BRGM/
razorback/blob/doc/docs/source/tutorials/signalset.ipynb.

3.2. Computing Fourier Coefficients
The SyncSignal and SignalSet objects provide the
method fourier_coefficients(freq, Nper,
overlap, window) to compute the Fourier coefficients
of time data. Here, freq is the frequency of interest fk, Nper
is the number of 1/fk periods, overlap is the overlapping
coefficient 0 < c < 1, and window is an object coding the data
taper window. The window argument must be a function that
takes the size of the window (a positive integer) and returns a
discrete data taper (an array of the given size).When a calibration
has been provided to the SyncSignal or SignalSet object,
the calibration value at the given frequency is integrated in
the resulting Fourier coefficients. More precisely, the returned
value is the Fourier coefficient computed from the raw time
value divided by the calibration value. Razorback provides
the slepian_window(half_bandwidth) function that
builds the window argument corresponding to the Slepian data
taper with a given half bandwidth. The following code shows
how to compute the Fourier coefficients from a given signal:

>>> from razorback.fourier_transform import
slepian_window

>>> window = slepian_window(4)
>>> coeffs, winfo = signal.fourier_coefficients (freq

, Kper, overlap, window)
>>> Nw, Lw, shift = winfo

As shown, two values are returned, coeffs and winfo.
coeffs contains the Fourier coefficients of the different
channels of signal. winfo summarizes information on the
sliding window: the number of windows, the size of the discrete
window and the index shift between consecutive windows. Note
that this code works for SyncSignal andSignalSet objects.
However, a SignalSet object can hold multiple runs, possibly
at different sampling rates. In that case, coeffs contains the
Fourier coefficients of all the runs, and winfo describes the
sliding window on each run.

3.3. Estimating Response Function
Algorithms (14) and (19) show a similar structure. They compute
a sequence of TFs, where each step of the sequence uses a different
weighting strategy and is initiated with the result of the previous
step. Each step solves a non-linear weighted least squares
problem; see equations (11) and (16). Razorback provides a
single function that implements the common logic of these
algorithms: transfer_function(outputs, inputs,
weights=(None,), init=None, invalid_
idx=None). Here, outputs is the list of arrays of the
Fourier coefficients of the output (electric field components in
MT), inputs is the list of arrays of the Fourier coefficients of
the input (magnetic field components in MT), weights is the
list of functions implementing the weighting strategy at each
step, init is the initial estimate of the TF, and invalid_idx
is the array of indices of the initially rejected coefficients.
The important argument here is weights. Depending on
its value, the function transfer_function can perform
algorithm (14) or (19). It also allows performing other algorithms
with different weighting strategies. When the special value None
is placed in the list weights, it indicates that the corresponding
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step is the least squares estimation (see equation (4)). Thus, None
is often the first element of weights. In Razorback, a weight
function is a function that returns a one-dimensional array of
the size of the data that contains the computed weight values.
The function signature must be func(it, residual,
outputs, inputs, invalid_idx), where it is the
iteration number of the inner loop (see Equation 11 or 16),
residual is an array containing the residual values (see
Equation 2), outputs and inputs are the same as for
transfer_function, and invalid_idx is the array of
indices of the rejected coefficients at the current step.

In the following, we show how the function
transfer_function is used to perform the least squares
estimator (4), the M-estimator (14) and the bounded influence
estimator (19). We consider two arrays of complex values and
size 2 × Nk, E and B, that contain the Fourier coefficients of
the two electric field components and those of the magnetic
field components. Computing the least squares impedance
estimate (4) with the function transfer_function is
simply done by using the default parameter values:

from razorback.mestimator import transfer_function
Z_lsq, rixd = transfer_function(E, B)

For the M-estimate, we need to specify the weights argument
according to (14). Razorback provides implementations of the
Huber weighting function (12) and the Thomson weighting
function (13). The code is written as follows:

from razorback.mestimator import transfer_function
from razorback.weights import Huber, Thomson
weights_mest = [None, Huber(), Thomson()]
Z_mest, rixd = transfer_function(E, B, weights_mest)

The weighting function sequence for the bounded influence
method (see Algorithm 19) is more elaborate. Preparing the
weights argument can be performed as follows:

from razorback.mestimator import transfer_function
from razorback.weights import Huber, Thomson,

BoundedInfluenceStep
from scipy.special import gammaincinv
p = 2 # for MT
n_bi_steps = 3 # number of intermediate BI step
reject_prob = 0.1
lower = gammaincinv(p, 0.5*reject_prob)
upper = gammaincinv(p, 1-0.5*reject_prob)
weights_bi = ([None]

+ [BoundedInfluenceStep(Huber(), lower*2**-i,
upper*2**i)

for i in range(n_bi_steps)[::-1]]
+ [BoundedInfluenceStep(Thomson(), lower, upper)

])
Z_bi, rixd = transfer_function(E, B, weights_bi)

To ease the use of the M-estimator and bounded influence
methods, Razorback provides helpers for the corresponding
weighting function sequences. Here is a shorter way to compute
the same quantities Z_mest and Z_bi as above:

from razorback.mestimator import transfer_function
from razorback.weights import mest_weights,

bi_weights
Z_mest, rixd = transfer_function(E, B, mest_weights)
Z_bi, rixd = transfer_function(E, B, bi_weights(

reject_prob, n_bi_steps, p){)}

The use of a pre-filter on the Fourier coefficients
is achieved thanks to the invalid_idx argument
of transfer_function. Razorback provides an
implementation of the filter described in section 2.6. Using
the M-estimator with this filter can be performed as follows:

from razorback.mestimator import transfer_function
from razorback.weights import mest_weights
from razorbck.prefilter import cod_filter
filtered_idx = [cod_filter(ei, B) for ei in E]
Z_mest, rixd = transfer_function(E, B, mest_weights,

invalid_idx=filtered_idx)

The two-stage RR estimate defined in Equation (8) can also easily
be computed by using thetransfer_function function. For
instance, we show how it can be computed in combination with
the M-estimator. Here, Q is an array of complex values of size
q×Nk that contains the Fourier coefficients of all the components
of the RR magnetic fields:

from razorback.mestimator import transfer_function,
merge_invalid_indices

from razorback.weights import mest_weights
T, rr_ridx = transfer_function(B, Q, mest_weights)
predicted_B = T.dot(B)
rr_ridx = len(E) * [merge_invalid_indices(rr_idx)]
Z_rr, ridx = transfer_function(E, predicted_B,

mest_weights, invalid_idx=rr_ridx)

3.4. Helper Function for Impedance
Estimate
Section 3.3 shows how to use the low-level function
transfer_function to compute an impedance estimate
for given data Fourier coefficients with different algorithms.
At a higher level, Razorback provides the helper function
impedance that integrates the different algorithms, the use
of a pre-filter and the computation of the Fourier coefficients.
It aims to provide a simple yet fully controlled use of the
methods described in section 2. The function signature is
impedance(data, l_freq, weights=(None,),
prefilter=None, fourier_opts=None,
remote=None, remote_weights=None,
remote_prefilter=None, tag_elec=’E’,
tag_mag=’B’). The first two arguments are the SignalSet
object containing all the relevant channels and the list of the
frequencies to investigate. The other arguments are optional
and are used for customizing the processing. The weights
and prefilter arguments correspond to those described in
section 3.3. The fourier_opts argument corresponds to the
options to pass to the fourier_coefficients method
described in section 3.2. Its default value is dict(Nper=8,
overlap=.71, window=slepian_window(4)). The
remote, remote_weights and remote_prefilter
arguments are relative to the two-stage RR method defined in
equation (8) and illustrated in section 3.3. To activate the RR
method, one must provide the tag gathering the remote channels
in data to the remote argument. The remote_weights
and remote_prefilter arguments are used to customize the
first stage of the method, and the default value None indicates to
use the corresponding settings for the second stage (weights

Frontiers in Earth Science | www.frontiersin.org 7 September 2020 | Volume 8 | Article 296

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Smaï and Wawrzyniak Razorback, an Open Source Python Library

and prefilter). The tag_elec and tag_mag arguments
are the tags gathering the electric and magnetic channels, and
their default values are ’E’ and ’B’.

The following code shows the computation of impedance for
5 frequencies using the RR method with the bounded influence
estimator:

>>> from razorback.utils import impedance
>>> from razorback.weights import bi_weights
>>> l_freq = [0.125, 1, 8, 64, 512]
>>> result = impedance(data, l_freq, bi_weights(0.1),

remote=’Bremote’)
>>> result.impedance # computed impedance at each

frequency
>>> result.error # estimated error on impedance at

each frequency
>>> result.invalid_time # rejected times at each

frequency

The value returned by the impedance function contains three
values: the estimated impedance tensor at each frequency, the
estimated error and the times of the sliding windows excluded by
the robust estimator. Using the impedance function is simple;
it mainly requires the preparation of the SignalSet object (the
data argument) as described in section 3.1.

4. VALIDATION

We perform data processing using single site (SS) and two-stage
RR configurations with both the M-estimator (ME) operator
OME and bounded influence (BI) operator OBI . We compare
the ME and BI results obtained with Razorback and the BIRRP
code (bounded influence remote reference processing, Chave and
Thomson, 2004) using the same processing parameters.

The dataset consists of two synchronous and permanent
MT stations installed on the La Fournaise volcano (Réunion
Island, France): the BAV station is located 8.2 km northwest
of the summit of the volcano, while the CSV station is on the
western base of the caldera (see Figure 1). Both stations recorded
the horizontal NS and EW components of the electromagnetic
field with a 50 mHz sampling rate during the year 1997. A
detailed description and analysis of the dataset can be found in
Wawrzyniak et al. (2017).

The CSV data are processed using SS configuration, and RR
configuration with BAVmagnetic data. Sixteen target frequencies
(fk)k are defined ranging from 1.56 to 12.5 mHz. Kper is fixed
to 128, and coverlap is 0.71. This yields a number Nstat of 10,000
data Fourier coefficients for the highest frequency and 1,000 for
the lowest. The time bandwidth factor τ (parameter TBW in the
code) is 4, and the lower thresholds ThBBr and ThEB are set to 0.
The BI regression is controlled by the probability of rejection prej,
which is 0.05, and the number of BI iterations NBI is set to 3.

The ME and BI results in SS configuration are shown in
Figures 2 and 3, respectively. First, we observe SS apparent
resistivity relative difference and phase difference between BIRRP
and Razorback. The ME apparent resistivity differs by less than
10% on the xy, yx, and yy components (Figure 2). The phase
difference is less than 2◦. The relative differences on the xx
component are higher, but the absolute value ρxx is two orders
of magnitude lower than ρxy, ρyx, and ρyy.

The BI apparent resistivity differs from less than 12% on the
xy and yx components to less than 20 % on the yy component
(Figure 3). The phase difference is less than 3◦ on xy and yx and
4◦ on yy. Although the principle is the same, our implementation
of the bounded influence algorithm differs in the computation of
leverage weights from the hat matrix and in the definition of the
increment of intermediate steps of the BI algorithm.

The two-stage RR ME (Figure 4) shows the apparent
resistivity relative difference reaching 20 % on the xy component,
less than 3 % on the yx component and less than 30 % on yy.
The xy and yy components involve the Hy local and remote
magnetic fields. The remote magnetic field component Hy has
been diagnosed as biased in Wawrzyniak et al. (2017).

Thus, the impact of introducing a noisy RR station in the two-
stage RR method leads to a moderate discrepancy between the
BIRRP and Razorback estimates.

The two-stage RR BI (Figure 5) shows the apparent resistivity
relative difference reaching 10 % on the xy and yx component
and reaching several tens of percent on xx and yy. Absolute phase
difference is still below 3◦ onxy and yx.

Apart from the data loading [the load_data() function],
the impedance estimates presented in Figures 5, 3 for Razorback
are obtained with the following code:

>>> data = load_data(’path/to/data/file’)
>>> print(data)
SignalSet: 6 channels, 1 run
tags: {’B’: (2, 3), ’Hremote’: (4, 5), ’E’: (0, 1)}
---------- ------------------- -------------------
sampling start stop

0.05 1997-01-01 00:00:00 1997-12-31 23:59:40
---------- ------------------- -------------------

>>> # frequency parameters
>>> freq_min = 0.0015625
>>> freq_max = 0.02187
>>> Nfreq = 16

>>> # weighting parameters
>>> prej = 0.05
>>> n_bi_steps = 3

>>> # Fourier parameters
>>> TBW = 4
>>> c_overlap = 0.71
>>> Nper = 120

>>> l_freq = np.logspace(np.log10(freq_min), np.log10
(freq_max), Nfreq)

>>> z_ss, l_ivt_ss, l_err_ss = impedance(
... data, l_freq,
... weights=bi_weights(prej, n_bi_steps, 2),
... fourier_opts=dict(Nper=Nper, overlap=

c_overlap, window=slepian_window(TBW))
...)

>>> z_rr, l_ivt_rr, l_err_rr = impedance(
... data, l_freq,
... weights=bi_weights(prej, n_bi_steps, 2),
... fourier_opts=dict(Nper=Nper, overlap=

c_overlap, window=slepian_window(TBW)),
... remote=’Hremote’
...)
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FIGURE 1 | Sketch of La Fournaise volcano, from Wawrzyniak et al. (2017). BAV and CSV are the electromagnetic stations. Lava flows emitted by Krafft, Kapor, and

Hudson cones are in dark gray color. Dashed lines represent the main fracture zone along which most fissure eruptions occur. The gray rectangle illustrates the

regional N120◦E volcanic and fissural axis. Gray cross pattern corresponds to the trace of main earthquakes associated with the March 9, 1998, crisis.

5. ADVANCED USES

5.1. Testing All Possible Remote Reference
Combinations
In the following, we show how the Razorback library allows the

user to run one processing method, such as classical M-estimator
or bounded influence regression, on a given signal set for any

combination of RR stations.We assess the efficiencies of bothME

and BI methods on a noisy peri-urban dataset.
Our experimental dataset is a synchronous array of MT

stations from a CSEM/MT survey realized in the framework
of the European FP7 project IMAGE. The survey area is a 10
by 10 km square located on the western side of the city of
Strasbourg (Figure 6). The main geothermal targets in the Upper
Rhine Graben are fractured zones within the basement or at the
transition zone between the basement and the sedimentary cover.
Unfortunately, in such a peri-urban context, the exploration of
sedimentary basins using MT is challenging due to the presence
of anthropogenic sources (DC railway, factories, power lines and
so forth), leading to biased MT soundings.

We use 6 synchronous MT stations (ADU07 acquisition
system, Metronix). Four “local” stations are located in the

area of interest (stations 2, 4, 6, and 9) and have a 128 Hz
sampling rate. Two “distant” remote reference stations are also
used: one is installed in Schwabwiller (5 channel MT station,
30 km North), and the other is the Welschbruch geomagnetic
observatory (recording horizontal magnetic field only, located at
the Welschbruch pass, Le Howald, 30 km South).

We process station 4 using sites 2, 6, and 9 as “local”
remote stations and Schwabwiller (RR99) and Welschbruch
(RR100) stations as “distant” remote stations. This allows
31 possible combinations of remote stations in addition to
the single site processing. We perform two-stage M-estimate
(ME) and bounded influence (BI) robust processing without
pre-filtering for both the first and second stages. Thirty-
two output frequencies, ranging from 1 mHz to 32 Hz, are
targeted. At the lowest frequencies, for some combinations
of RRs, the computation does not converge. This is due
to the weak signal-to-noise ratio and the small amount of
Fourier data.

Quality assessment is performed on the MT soundings
obtained from combinations of remote channels. First,
components of apparent resistivity ρa

xy,yx and impedance
phase φxy,yx are displayed in Figure 7 for ME and BI. ME
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FIGURE 2 | M-estimator results in SS configuration. Upper left: apparent resistivity xy in blue and yx in red from birrp (circles) and razorback (crosses) with scales on

the left axis, relative differences between birrp and razorback results (dotted lines) for xy (blue) and yx (red) with scales on the right axis. Lower left: same as upper left

but for phase but with absolute differences (dotted lines). Upper Right: apparent resistivity xx in green and yy in black from birrp (squares) and razorback (plus) with

scales on the left axis, relative differences between birrp and razorback results (dotted lines) for xx (green) and yy (black) with scales on the right axis. Lower Right:

same as upper left but for phase but with absolute differences (dotted lines).

FIGURE 3 | Bounded Influence results in SS configuration. Same legend as Figure 2 but for BI results.

soundings (Figure 7, upper part) exhibit significant variability in
the [20mHz–1Hz] band. Some combinations show non-physical
resistivity and phase variations (i.e., artifacts up to one order of
magnitude on the ρyx component and 40◦ on φyx). BI soundings

(Figure 7, lower part) show less variability in the same frequency
band as soon as distant RRs are used. Similar to the ME results,
φyx exhibits a 35◦ shift, centered on the 0.1 Hz frequency,
but with a narrower frequency band imprint. There are more
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FIGURE 4 | M-estimator results in RR configuration. Same legend as Figure 2 but for RR results.

FIGURE 5 | Bounded Influence results in RR configuration. Same legend as Figure 2 but for RR results.

artifacts with wider frequency bands and larger amplitudes in the
ME results than in the BI results.

The sounding quality assessment is completed with phase
tensor (PT) analysis (Caldwell et al., 2004). Booker (2014)
suggests that “smooth variation of the phase tensor with period
and position is a strong indicator of data consistency.” Some
main features of the PT are the orientation of its principal axis
α − β ; the length of its principal axis 8max; its ellipticity λ that

ranges from 0 to 1, and its skew angle β which are indicators of
the dimensionality of the data. Low values of ellipticity indicate
a 1D medium (Bibby et al., 2005), whereas absolute values of β

angles below 10◦ indicate a 2D medium (Booker, 2014). A 1D
medium is characterized by a low λ value and associated with
|β| <10◦. A 2D medium is characterized by larger values of
λ and |β| <10◦. A 3D medium is characterized by |β| >10◦.
Consequently, the normalized phase tensor, i.e., the PT with the
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FIGURE 6 | Map of the MT stations deployed on the western side of Strasbourg. Black dots: complete station set. Red crosses: “local” station inserted in the

SignalSet object. Green lines: major geological faults. Red line: seismic profile. Yellow area: geothermal plant area.

longer axis 8max normalized to 1, is displayed for all frequencies
and RR combinations. Ellipses are filled with a color bar indexed
either on their ellipticity value (left panel in Figure 8) or their β

angle (right panel, same figure).
Comparing upper and lower part of Figure 8 highlights

the superiority of BI processing in the [0.2–2 Hz] band. In
this band, the M-estimator leads to high ellipticity values,
which would be associated with a 3D medium. In contrast,
the BI results indicate a 1D medium with low ellipticity
values. In addition, the BI PT curves exhibit smoother
frequency variations.

An important observation can be made from the M-
estimator results: the combination of a maximum of RR
leads to discontinuous PT behavior. Smoother behavior is
obtained for combinations of sites 02, 99 and 100. When
sites 06 and 09 are added as RRs, discontinuous PTs are
observed. This can have a high impact for any MT operator
working on a peri-urban context and using ME two-stage

processing: introducing additional noisy RR can degrade the
sounding quality.

However, ME MT soundings associated with a selection of
PT curves (RRs 99, 100, 99+100, 6+99+100, 6+9+99+100, and
2+6+9+99+100) are shown in Figure 9, upper part. The selected
results are scattered, and phase and apparent resistivity artifacts
still persist in the [0.02–1 Hz] band. Similarly, the BI soundings
associated with the same combinations of RRs in Figure 9, lower
part. Since 4 remotes are used, the MT soundings are similar.
However, both phases φxy and φyx show sharp variations in
the [0.5–1 Hz] band that can be attributed to persistent noise
contamination of the data. Multiple RR two-stage BI processing
helps reduce noise contamination of the dataset but cannot
eliminate it in this case.

A jupyter notebook dedicated to the robust processing
and handling of this data set is provided by the authors
and available at https://github.com/BRGM/razorback/blob/doc/
docs/source/tutorials/survey-study.ipynb.
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FIGURE 7 | Upper section: M-estimator results. SITE 04 with local RRs 2, 6, and 9 and distant RRs Welschbruch (RR100) and Schwabwiller (R99). No error bars. TF

estimates for all possible combinations of RR stations. Apparent resistivity curves ρxy (top left) and ρyx (top right) and phases φxy (bottom left) and φyx (bottom right) are

shown in dots, with a color code corresponding to the associated combination of RR stations(the associated legend is displayed on the center). Lower section:

bounded Influence results. Same legend as above.

Frontiers in Earth Science | www.frontiersin.org 13 September 2020 | Volume 8 | Article 296

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Smaï and Wawrzyniak Razorback, an Open Source Python Library

FIGURE 8 | Upper section: M-estimator results. Site 4 with local RRs 2, 6, and 9 and distant RRs Welschbruch (rr100) and Schwabwiller (rr99). Left: normalized

phase tensor for all combinations of RR as a function frequency filled with their ellipticity λ value (1D indicator). Right: normalized phase tensors filled with β angle (2D

indicator) value; the color bar is limited to [-10◦ 10◦] range. Lower section: bounded influence results. Same legend as above.

5.2. Time-Lapse Magnetotellurics
The library also allows performing continuous time-lapse
processing. InWawrzyniak et al. (2017), time-lapseMT estimates
were computed using bounded influence robust processing in
both single site and RR configurations in the framework of
volcano monitoring. The time resolution between consecutive
estimates is of 48 h.

The dataset is the same as in section 4. Horizontal components
of the electric and magnetic fields were sampled every 20 s.
Continuous time series were available from 1996 to 1999 at CSV
and from 1997 to March 20, 1998, at BAV. In March 1998, a

major eruption occurred and lasted for 6 months, during which
60 106 m3 of lava was expelled.

RR (not shown here) and single site processing at a
period of 80 s show apparent resistivity determinant variations
synchronous with the eruption (Figure 10). At CSV, the
resistivity shows a continuous two order of magnitude decrease,
reaching several local minima until April, and then slowly
recovers its pre-eruptive values when the volcanic crisis reduced
in activity. BAV shows a short one and a half order of magnitude
decrease at the beginning of the eruptive crisis. Further data
analyses are provided in Wawrzyniak et al. (2017).
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FIGURE 9 | Upper section: selected M-estimator results. SITE 04 with local RRs 2, 6, and 9 and distant RRs Welschbruch (RR100) and Schwabwiller (R99). No error

bars. TF estimates for a selection of combinations of RR stations. Apparent resistivity curves ρxy (top left) and ρyx (top right) and phases φxy (bottom left) and φyx

(bottom right) are shown in dots, with a color code corresponding to the associated combination of RR stations(the associated legend is displayed on the center).

Lower section: selected Bounded Influence results. Same legend as above.

6. CONCLUSIONS

This paper shows the advantages of using a modular library for
robust processing of MT array data. Razorback is designed to
handle and process the large datasets commonly encountered in
MT exploration surveys, with minimal memory footprint. After

validation of TF estimates by comparison with existing codes,
two kinds of study have been performed. First, we explored
combinations of RRs for different robust procedures. This results
in a large amount of estimates of one TF. The phase tensor
analysis is used to compare the quality of the estimates.Moreover,
the ability of the different robust methods to reduce the impact of
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FIGURE 10 | Time-Lapse bounded influence processing, in single site configuration, from Wawrzyniak et al. (2017). From top to bottom: resistivity of the determinant

of the impedance tensor values at CSV and BAV for the 80 s period computed by single MT method between 1996 and the end of 1999, tremor activity and daily

number of earthquakes, and daily rainfall.

noise on soundings has been investigated. This is of particular
interest for geophysicists processing a full MT survey dataset in
anthropogenic environment. In addition, continuous time-lapse
MT processing has been performed and shows promising results
for subsurface monitoring of volcanoes or geothermal reservoirs.

The MT processing workflow mainly consists of (i) data
analysis and transformation, (ii) TF estimation, and (iii) quality
check of estimated quantities. We propose the open source
Razorback library as a collaborative tool to perform these
different tasks. For the first step, the library offers elaborated
time series manipulations, state of the art DFT computation, and
coefficient of determination pre-filtering. Alternate types of pre-
filtering exists and can be included. Provided a detection method,
the current features can eliminate the identified corrupted
time segments. Concerning the second step, a category of
standard robust procedures has been implemented. A well-
tested set of weighting function sequences is available and
can be easily enriched. Alternative categories of TF estimation
procedures (e.g., the RMEV approach proposed by Egbert, 1997)
could be included and would benefit from the other library
features. Regarding the third step, a range of quality check
methods exists and could be integrated in the library. Using the
modular Razorback library, theMT practitioner fully controls the
above workflow.
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