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Large and growing data resources on the spatial and temporal diversity and distribution
of the more than 400 carbon-bearing mineral species reveal patterns of mineral evolution
and ecology. Recent advances in analytical and visualization techniques leverage
these data and are propelling mineralogy from a largely descriptive field into one of
prediction within complex, integrated, multidimensional systems. These discoveries
include: (1) systematic changes in the character of carbon minerals and their networks
of coexisting species through deep time; (2) improved statistical predictions of the
number and types of carbon minerals that occur on Earth but are yet to be discovered
and described; and (3) a range of proposed and ongoing studies related to the
quantification of network structures and trends, relation of mineral “natural kinds” to their
genetic environments, prediction of the location of mineral species across the globe,
examination of the tectonic drivers of mineralization through deep time, quantification
of preservational and sampling bias in the mineralogical record, and characterization of
feedback relationships between minerals and geochemical environments with microbial
populations. These aspects of Earth’s carbon mineralogy underscore the complex co-
evolution of the geosphere and biosphere and highlight the possibility for scientific
discovery in Earth and planetary systems.
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INTRODUCTION

Minerals, including carbon-bearing phases, are the oldest
available materials from the ancient history of our planet and
other bodies in our solar system – they record information about
their genetic environments and any subsequent weathering
and alteration they underwent, offering a glimpse of ancient
environments through deep time. In this work, we describe
some of the important carbon mineral data resources, outline
a number of new advances in data-driven discovery in carbon
and other mineral systems, including new insights from
mineral network visualizations and statistical modeling. We
also preview upcoming studies and directions of research
related to the diversity and distribution of mineral species,
statistical modeling of complex, multidimensional data objects
and their underlying trends, tectonic drivers of mineralization,
characterization of relationships between microbial populations,
their expressed protein functions and the geochemical
environment, quantification of preservational and sampling
bias present in the mineralogical record, and a number of
predictive algorithms including those which predict formational
environments of minerals as well as the location of previously
unknown mineral localities.

Carbon minerals are particularly compelling for multi-
dimensional analysis due to their diverse range of bonding
behaviors, paragenetic modes, mineral properties, and ages.
Carbon minerals are some of the first condensed phases formed
in a solar system and among the hardest materials known,
yet carbon minerals are also some of the latest occurring and
most ephemeral crystalline phases. Carbon has the ability to
behave as a cation, anion, or neutral atom, allowing bonding
with itself and 80+ other elements, with a variety of bonding
coordination numbers including 2, 3, and 4, and valance
states of −4, +2, and +4 (Hazen et al., 2013a). Many of
the first crystals formed in our cooling solar system were
refractory carbon-bearing phases, including diamond (C) (Lewis
et al., 1987), graphite (C) (Amari et al., 1990), and moissanite
(SiC) (Zinner et al., 1987). Carbon and its mineral phases
are intrinsically linked to organic and biological processes –
biomineralization is responsible for a significant portion of
rhombohedral carbonates on Earth’s surface and organic minerals
make up nearly 15% of the 411 known carbon mineral species
(as of June 2019; rruff.info/ima). Carbon’s widely varying
character offers a fascinating opportunity to employ rapidly
developing advanced analytics and visualization techniques
to characterize its complex, multivariate systems and answer
previously inaccessible questions at the interface of Earth,
planetary, and life sciences.

MINERAL DATA RESOURCES

The International Mineralogical
Association List of Mineral Species
The International Mineralogical Association (IMA) list of
mineral species (RRUFF.info/IMA) is part of the RRUFF
Project (Lafuente et al., 2015) – a mineral library and

series of databases with the goal of providing robust, diverse
mineralogical data, including high-quality chemical, spectral, and
diffraction data, the IMA list of approved mineral species, the
American Mineralogist Crystal Structure Database (AMCSD;
RRUFF.geo.arizona.edu/AMS/amcsd.php), mineral locality age
information (see “Mineral Evolution Database” section below),
and other mineral properties (see “Mineral Properties Database”
section below). The IMA list allows users to search the over
5400 (as of June 2019) mineral species by name, chemical
composition, unit-cell parameters and crystallography, crystal
structure group, paragenetic mode, and the availability of
ancillary data including crystal structure files in the AMCSD
or direct RRUFF Project analyses. This database also provides
useful information about each mineral species, including
composition, oldest known age, crystal structure group, and
unit-cell parameters along with corresponding compositions,
all of which can be downloaded in a number of machine-
readable file formats. Lastly, this page offers links to a number
of related informational pages and websites, including the
Handbook of Mineralogy (Anthony et al., 2003), measured
data in RRUFF Project databases, crystal structure files in
the AMCSD, mineral locality information at Mindat.org (see
“Mindat.org” section below), and age and locality data in the
Mineral Evolution Database (MED).

The Mineral Evolution Database (MED)
The Mineral Evolution Database (MED; RRUFF.info/Evolution;
Golden et al., 2016; Prabhu et al., 2020) was created to support
mineral evolution and ecology studies – studies that examine
and characterize spatial and temporal mineral diversity and
distribution in relation to geologic, biologic, and planetary
processes (Hazen et al., 2008, 2011, 2013c,b, 2014, 2015a,b,
2016, 2017a,b, 2019b; Hazen and Ferry, 2010; McMillan et al.,
2010; Golden et al., 2013; Hazen, 2013, 2018, 2019; Grew
and Hazen, 2014; Zalasiewicz et al., 2014; Grew et al., 2015;
Hystad et al., 2015b,a, 2019a; Liu et al., 2017a,b, 2018b; Ma
et al., 2017; Morrison et al., 2017b; Glikson and Pirajno,
2018). The MED contains mineral locality and age information
extracted from primary literature and the mineral-locality
database, Mindat.org. As of 14 June 2019, 15,906 unique
ages for 6,253 directly dated mineral localities, documenting
810,907 mineral-locality pairs and 194,090 mineral-locality-
age triples are available in the MED. Specific to the known
411 carbon-bearing phases, there are 8,635 dated carbon
mineral localities, 94,677 carbon mineral-locality pairs, and
20,773 dated carbon mineral-locality pairs available in the
MED, as of June 2019. These data have been assembled
and documented to maximize the accuracy and transparency
of age associations, which include data on specific mineral
formations, mineralization events, element concentrations,
and/or deposit formations. The MED interface allows many
sorting and displaying options, including sorting by age or
locality name, as well as displaying all of the queried minerals
at a given locality or displaying a line of data for each
mineral-locality pair. These data are available for download
directly from the MED (RRUFF.info/Evolution) with various
file format options.
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The Mineral Properties Database (MPD)
The Mineral Properties Database (MPD; Morrison et al.,
2017b; Prabhu et al., 2019a) was created with the goal of
better understanding the multidimensional, multivariate trends
amongst mineral species and their relationships to geologic
materials, preservational and sampling biases, and geologic,
biologic, and planetary processes. At present, this database
contains dozens of parameters, including age, color, redox state,
structural complexity (Krivovichev, 2012, 2013, 2016, 2018;
Hazen et al., 2013b; Grew et al., 2016; Krivovichev et al., 2017,
2018) and method of discovery associated with copper, uranium,
and carbon minerals. Ongoing efforts are in place to expand
to minerals of each element of the periodic table. These data,
coupled with those of the MED, offer the opportunity to study
changes in redox conditions through deep time and are the basis
for mineral network analysis studies (Morrison et al., 2017b;
Perry et al., 2018; Hazen, 2019; Hazen et al., 2019b). This database
will be publicly available through the RRUFF Project on the Open
Data Repository platform (ODR; opendatarepository.org). The
ODR interface will maximize the flexibility with which users view,
explore, subset, and download data of interest.

Mindat.org
Hudson Institute of Mineralogy’s Mindat.org is an interactive
mineral occurrence database with a wealth of information on
mineral localities around the globe, as well as Apollo Lunar
samples and meteorites. At present, mindat houses nearly
300,000 mineral localities, with >1.2 million mineral-locality
pairs and nearly one million mineral photographs. A large
majority of the mineral occurrence information available on
Mindat.org is from published literature, but users can also add
localities, mineral-locality pairs, photographs, and references.
The MED directly interfaces with mindat, harnessing and
incorporating the huge amount of mineral locality data held in
mindat. It has been an important resource for scientific research
and discovery – many studies on the diversity and distribution of
minerals on Earth’s surface have relied in part on mindat mineral
locality information (Hazen et al., 2008, 2011, 2013c,b, 2014,
2015a,b, 2016, 2017a,b, 2019b; Hazen and Ferry, 2010; McMillan
et al., 2010; Golden et al., 2013; Hazen, 2013, 2018, 2019; Grew
and Hazen, 2014; Grew et al., 2015; Hystad et al., 2015a,b,
2019a; Liu et al., 2017a,b, 2018b; Ma et al., 2017; Morrison
et al., 2017b). These studies include those of Carbon Mineral
Ecology detailed below.

Global Earth Mineral Inventory (GEMI)
The Global Earth Mineral Inventory (GEMI1) is a Deep Carbon
Observatory (DCO) data legacy project born out of the diverse
data types collected in conjunction with the DCO’s broad
range of scientific driving questions (Prabhu et al., 2019a,
2020). Specifically, Prabhu et al. (2019a, 2020) aimed to support
and facilitate scientific discovery by merging and integrating
DCO data products, such as the MPD and MED, into a
digestible, accessible, and user-friendly format for exploration,
statistical analysis, and visualization. Therefore, GEMI is a

1https://dx.deepcarbon.net/11121/6200-6954-6634-8243-CC

faceted, searchable knowledge graph or network in which each
node represents a feature of the MED and MPD – allowing
users to explore, query, and extract the specific subset of data or
combinations of data necessary for their research goal.

CARBON MINERAL ECOLOGY

Statistical approaches are particularly useful in characterizing
surface and near-surface environments where biology and
reaction kinetics play a major role in mineral formation and
stability, as opposed to the dominance of thermodynamics in
the subsurface. Mineral ecological studies employ the MED and
Mindat.org to examine and characterize the spatial diversity
and distribution of mineral species on planetary bodies (Hazen
et al., 2015b,a, 2016, 2017b; Hystad et al., 2015a,b; Grew
et al., 2017; Liu et al., 2017a, 2018a). “Mineral species” in this
case are those recognized by the IMA Commission on New
Minerals, Nomenclature and Classification (CNMNC), which
often does not account for subtle variations in chemistry or
formational processes (see section “Natural Kind Clustering”).
Previous studies have found that minerals on Earth’s surface
follow a distinct trend, a “Large Number of Rare Events”
(LNRE) frequency distribution in which most mineral species
are rare, occurring at fewer than five geologic localities, and
only a few species are very common (Hazen et al., 2015b;
Hystad et al., 2015a,b).

The discovery of an LNRE frequency distribution across all
mineral systems on Earth enabled the modeling of accumulation
curves and, thereby, the prediction of the number of missing
or previously unknown mineral species that occur on Earth but
have yet to be discovered. Carbon minerals are no exception
to the LNRE trend and Hazen et al. (2016) explored their
ecology – discovering that in addition to the 400 known
carbon mineral species, there were likely at least 145 more
species awaiting discovery. Hazen et al. (2016) delved into the
likely candidates of missing species, generating accumulation
curves for carbon minerals with and without oxygen, hydrogen,
calcium, and sodium. They predicted that, of the 145 as-yet
undiscovered carbon minerals, 129 would contain oxygen, 118
would contain hydrogen, 52 would contain calcium, and 63
would contain sodium. This study led to the Carbon Mineral
Challenge (mineralchallenge.net) – a DCO initiative to engage
scientists and collectors in finding and identifying the missing
carbon phases. As of June 2019, the Carbon Mineral Challenge
boasts 30 new mineral species approved by IMA, a number of
which were predicted in Hazen et al. (2016).

At the time of the initial mineral ecology studies, it was
understood that the models and the predictions based upon them
were to be treated as lower limits of the estimate of missing
mineral species. This is due, in part, to sampling bias toward well-
crystallized, colorful, or economically valuable specimens. An
additional constraint is the advent of new, unforeseen technology
that can identify and distinguish minerals at increasingly finer
scales. While it is difficult to predict the next technological
advance, we can attempt to develop better models to make
predictions on our existing data. With this in mind, Hystad
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et al. (2019a) developed a new Bayesian technique for modeling
mineral frequency distribution and predicting the number of
undiscovered mineral species on Earth’s surface. Hystad et al.
(2019a) updated the prediction of the number of missing mineral
species on Earth from the previous minimum estimate of 6394
(Hystad et al., 2015a,b) to an increased estimate of 9308 with 95%
posterior interval (8650, 10,070). Note that this new, higher value
is still a low estimate due to the unknowns of future technology.

Here, we apply the Poisson lognormal model of Hystad
et al. (2019a) to the currently known 411 carbon mineral
species and their 50,095 localities (with 94,677 mineral-
locality pairs, 22% of which have associated ages, as of June
2019). Figure 1A illustrates the carbon mineral frequency
distribution with a Poisson lognormal LNRE model overlaid
in blue. The frequency distribution is used to generate an
accumulation curve (Figure 1B), which models the expected
number of carbon minerals species as a function of the
number of localities characterized, and therefore predict the
expected number of carbon mineral species currently present
on Earth’s surface, many of which remain undiscovered. The
new estimate of carbon mineral diversity on Earth is 993
with a 95% posterior interval of (759, 1268), up from the
former prediction of 548 carbon mineral species (Hazen et al.,
2016). Note again that, as with the above, this prediction
should be considered a lower estimate given the unknowns
associated with future technological advances and their impacts
on mineral discovery.

CARBON MINERAL NETWORK
ANALYSIS AND VISUALIZATION

Network Analysis
Network analysis, a subfield of graph theory (Otte and Rousseau,
2002; Clauset et al., 2004; Newman, 2006; Kolaczyk, 2009a;
Abraham et al., 2010; Newman and Mark, 2010), is particularly
useful for visualizing many variables in a multidimensional
system in a digestible and meaningful way, particularly when
the questions rely on the interrelationships of many entities
and their properties, as is the case in mineralogical systems
in the context of Earth and planetary processes. Networks
are composed of nodes (or vertices) representing entities and
edges (or links) between the nodes symbolizing a relationship
between two connected nodes. Nodes can be sized, shaped,
colored, etc. according to any variables of interest. Likewise, edges
can be directed, colored, texturized, or their thickness can be
adjusted to represent any parameter of choice and the length
of edges can be scaled in proportion to the strength of the
connecting variable. With all of these options, it is possible to
display upward of eight variables within one network. Network
renderings are projections from N-1 dimensional space (where
N is the number of different mineral species) into two or three
dimensions, although the multidimensionality is preserved in
the original data object and therefore in any statistical metrics
derived from the network data. Network metrics fall into two
categories, the first of which are “local” metrics that describe
the role and significance of individual nodes in a network.

Local metrics include degree, which is the number of links
connected to a given node, and betweenness, a measure of
the number of geodesic (shortest) paths that pass through a
given node. The second type of metrics are “global” and are
used to evaluate overall trends within a network and allow
for comparison of different networks, such as networks of
minerals of different elements, from different environments or

FIGURE 1 | (A,B) Carbon mineral frequency distribution and corresponding
accumulation curve. (A) The frequency distribution of carbon minerals on
Earth’s surface. The x-axis, “frequency class,” is the number of minerals that
occur at a locality. The y-axis is the number of mineral species that occur at
exactly the corresponding frequency class (i.e., nearly 100 carbon mineral
species occur at exactly one locality). The blue line represents the Poisson
lognormal LNRE model. (B) Accumulation curve for the mean number of
carbon mineral species versus the number of localities sampled, N, based on
the Poisson lognormal LNRE model. Today, there are 411 known carbon
mineral species based on N = 92,466 sampled localities. As N approaches
infinity, the median number of predicted carbon mineral species is 993 with a
95% posterior interval of (759, 1268).
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planetary bodies, or a series of networks over a time interval.
Global metrics include density, which is the number of links
divided by the number of possible links (i.e., a measure of the
interconnectedness of a network), and centralization, a measure
of how central a network’s “most central” node is relative to
how central all the other nodes are (i.e., indicating whether or
not there are many highly interconnected nodes or if there are
a few key “broker” nodes). Additionally, there are a number of
network modularity and community detection algorithms, which
allows users to determine if there are distinct groups within
their network and what nodes belong to those groups. With
further exploration, users can determine what characteristics are
shared within each group and/or between groups. Furthermore,
random forest or decision tree algorithms can offer insight into
the relative importance or weight of each characteristic to the
network partitioning.

Mineral Network Analysis
Mineral network analysis, which is a powerful approach
to exploring complex multidimensional and multivariate
systems, facilitates a holistic, integrated, higher-dimensional
understanding of Earth and planetary systems (Morrison et al.,
2017b; Hazen et al., 2019a,b). The renderings of Fruchterman-
Reingold force-directed (Fruchterman and Reingold, 1991;
Csardi and Nepusz, 2006) mineral coexistence networks
herein are of two types: unipartite and bipartite. Interactive,
manipulatable versions of these networks, including node labels,
can be found at https://dtdi.carnegiescience.edu/node/4557.

Unipartite Mineral Networks
In the unipartite networks (Figures 2–4), each node represents a
mineral species; the nodes are sized according to the frequency of
occurrence of each species and colored according to chemistry,

paragenetic mode, or structural complexity; the edges represent
co-occurrence (which may or may not correspond to an
equilibrium assemblage) of two mineral species at a locality on
Earth’s surface and their length is scaled inversely proportional
to their frequency of co-occurrence (i.e., when two species
occur together more frequently, they are closer together in the
graph). Note that while the nodes of Figures 2–4 are colored
according to various parameters (e.g., composition, paragenetic
mode), those parameters were not coded into the network
layout – meaning that the network topology and any trends
are strictly a function of mineral co-occurrence. A number
of interesting trends can be observed in the topologies of
unipartite mineral co-occurrence networks. Firstly, the copper
(Cu) networks show a high density and low centralization;
in the Cu network colored by chemistry (Figure 2A), there
is strong chemical segregation in which sulfides (red nodes)
cluster together, as do sulfates (yellow nodes), and Cu mineral
containing oxygen and no sulfur (blue nodes) (Morrison et al.,
2017b; Hazen et al., 2019a,b). This chemical segregation results
in chemical trend lines throughout the graph, including sulfur
fugacity, f S2, increasing from bottom (oxides) of the graph to
top (through sulfates and into sulfides) and oxygen fugacity,
fO2, increasing from the top left (sulfides) to the bottom
(sulfates and oxides). For any variable that exhibits an embedded
trendline, that trend can be used to predict the value of said
variable for any node in which the value is unknown. In the
case of chemical variables in mineral networks representing
equilibrium assemblages, this could allow for the extraction of
thermochemical parameters. Secondly, Figure 2B renders the
Cu network with nodes colored by crystal structural complexity
(Hazen et al., 2013b; Krivovichev, 2013, 2016, 2018; Krivovichev
et al., 2017, 2018). Structural complexity is a mathematical
measure for evaluating the symmetry and chemical complexity

FIGURE 2 | (A,B) Copper mineral networks. Force directed, unipartite, copper (Cu) mineral network renderings. Nodes represent Cu mineral species, sized
according to their frequency of occurrence. Edges represent co-occurrence of mineral species at localities on Earth’s surface; edge length is scaled inversely
proportional to frequency of co-occurrence. (A) Nodes are colored according to chemical composition, specifically the presence or absence of sulfur and oxygen.
(B) Nodes are colored according to crystal structural complexity (i.e., the bits of information contained in each crystal structure; Krivovichev, 2013).
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of a mineral’s crystal structure and IMA-approved ideal chemical
formula, and converting that complexity into information,
measured in bits. Krivovichev et al. (2018) hypothesize crystal
structure complexity exhibited by minerals has increased through
deep time, with the simplest structures existing at the earliest
stages of mineral evolution and becoming increasingly complex
moving into modern day. In this network, there is segregation
resulting in a trendline from the simplest crystal structures to
moderately complex structures. The most complex structures
are few and scattered throughout the network, an unexpected
trend that begs further investigation alongside whether or not
age of first occurrence plays a role in the structural complexity
trends observed in network Figure 2B. Thirdly, the chromium
(Cr) network (Figure 3) has a very low density and high
centralization, with the mineral phase chromite having the
highest centrality (Morrison et al., 2017b; Hazen et al., 2019a,b).
The most notable feature of the Cr co-occurrence network
is its strong clustering by paragenetic mode, indicating that
formational environment and mode is the strongest driver
for Cr mineral co-occurrence. Lastly, Figure 4 illustrates the
changes in carbon mineral co-occurrence through deep time.
The earliest known carbon minerals are few and form a dense,
highly interconnected network with low centralization. Through
time into modern day, the density decreases slightly while the
centralization becomes significantly more pronounced, forming
two lobes of carbon mineral populations connected by a few
key nodes of high centrality beginning as early as 799 Ma
and becoming very distinct at 251 Ma, contemporaneous with
the end-Permian mass extinction. These two lobes comprise
different populations of carbon mineral chemistry, with the
left lobe containing a much higher proportion of organic
carbon minerals and hydrous phases containing transition
elements, lanthanides, and/or actinides, and the right lobe
having a higher frequency of anhydrous phases lacking transition
elements, lanthanides, or actinides. This unexpected trend and
its underlying geologic or biologic implications are the subject
of further study.

Bipartite Mineral Network
In the bipartite network rendering (Figure 5), the set of
colored nodes represent carbon mineral species, sized by their
frequency of occurrence and colored according to the age
of the oldest known occurrence (Hazen, 2019; Hazen et al.,
2019a). The other set of nodes in black represent the localities
at which the carbon minerals occur, sized proportionally to
their carbon mineral diversity (i.e., the number of mineral
species found at a locality). The edges between nodes signifying
that a mineral occurs at a locality. Mineral bipartite diagrams
illustrate many relationships between carbon minerals and
their locations on Earth’s surface. The first surprising feature
of the network is the “U-shaped” (or “vase shaped” in 3D,
see “Advanced Mineral Network Visualizations” section below)
locality node distribution. This topology provides a striking
visual representation of mineral ecology, specifically the LNRE
frequency distribution in which there are a few very common
species (such as calcite and aragonite), but most species are
rare. In the network graph, the most common minerals fall

FIGURE 3 | Unipartite chromium mineral network. Force directed, unipartite,
chromium (Cr) mineral network rendering. Nodes represent Cr mineral
species, sized according to their frequency of occurrence and colored
according to their paragenetic mode. Edges represent co-occurrence of
mineral species at localities on Earth’s surface; edge length is scaled inversely
proportional to frequency of co-occurrence.

at the bottom of the locality “U,” the frequency of occurrence
quickly falls off moving up and out of the locality “U,”
ultimately radiating outward and around the locality nodes
where the majority of carbon minerals lie, most of which
have small radii (i.e., they occur at very few localities).
Another related feature clearly visible in the rendering is
that rare mineral species tend to occur at localities rich in
other rare species, as opposed to localities dominated by
the more common species. This is visible at the individual
node level, but also in the overall topology of the network:
the mineral diversity of the localities, and therefore the size
of the locality nodes, decreases from top to the bottom,
as the network trends from more rare mineral species into
more common mineral species. This trend gives researchers
exploration targets to look for new, rare mineral species: at
localities already known to host other rare mineral species.
This qualitative observation can be parlayed into a quantitative
method, specifically affinity analysis (see “Affinity Analysis”
in the future directions section below) for predicting new
locations of existing mineral species, predicting which minerals
are likely to occur but have not been reported at a given
locality, and possibly make predictions on the most likely
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FIGURE 4 | Evolving unipartite carbon mineral networks. Force directed, unipartite, carbon mineral network renderings. Nodes represent carbon mineral species,
sized according to their frequency of occurrence and colored according to composition. Edges represent co-occurrence of mineral species at localities; edge length
is scaled inversely proportional to frequency of co-occurrence. Each network represents a cumulative time bin in order to illustrate the changes in carbon mineralogy
on Earth’s surface through deep time.

locations for finding new mineral species. Additionally, an
embedded timeline can be observed in the carbon mineral-
locality network topology. The nodes of Figure 5 are colored
according to the age of first occurrence; however, their ages were
not coded into the network layout – meaning that the network
topology is strictly a function of mineral-locality occurrence.
Despite the lack of age information encoded in the topological
layout, the oldest known minerals occur at the bottom of
the locality “U” and radiate up and outward as the minerals
become younger, with the youngest minerals skirting around
the outside of the locality “U”. Observing trendlines in any
network system can lead to predicting missing values, but age, in
particular, offers the opportunity to pin other parameters, such as
chemistry, structural complexity, bioavailability, etc. to a timeline
and therefore relate these parameters to geologic, biologic, or
planetary events throughout deep time.

Advanced Mineral Network Visualizations
Network renderings are projections from multidimensional
space into two dimensions and, inherently, some information
is lost. Therefore, it is important to explore variations in
visualization techniques that will allow the user to maximize
the accuracy and amount of information rendered. With
this in mind, we are developing 3D networks and also
exploring virtual reality (VR) techniques for visualization and
network manipulation. VR offers two primary benefits for
visual analytics: (1) the ability to employ true 3D layouts
that are not projected to 2D displays and offer additional
insight especially for very dense networks, and (2) direct
natural interaction, and observation of a network’s response to
such, creates an additional dimension for analysis not captured
in static or non-interactive visualizations. At the following
link, a video demonstration of an early VR visualization
prototype of the bipartite carbon mineral-locality network in
Figure 5 can be viewed2. The locality “U-shape” observed
in the 2D version becomes a “vase” shape in 3D, with the
most common, oldest carbon minerals at the base of the
locality vase and the youngest, rarest carbon minerals radiate
out of the top of the locality vase and down the sides. This
and other networks can also be explored in an immersive
fashion with VR.

2https://www.youtube.com/watch?v=5GDnpqpOokU

ORGANIC CARBON MINERALOGY IN
EARLY EARTH ENVIRONMENTS AND
PLANETARY SYSTEMS

Currently, there are more than 50 organic mineral species
approved by the IMA (Skinner, 2005; Perry et al., 2007; Echigo
and Kimata, 2010; Hazen et al., 2013a; Piro and Baran, 2018),
most of which form through alteration of biological materials
(Oftedal, 1922; Rost, 1942; Nasdala and Pekov, 1993; Perry
et al., 2007; Chesnokov et al., 2008; Witzke et al., 2015; Pekov
et al., 2016; Hummer et al., 2017). Recent discoveries and new
studies of organic minerals (Pekov et al., 2016; Bojar et al.,
2017; Hummer et al., 2017; Mills et al., 2017) and minerals
with metal-organic framework structures that contain metal
centers bonded via molecular linkers into porous assemblies
of different dimensionalities (Huskić et al., 2016) led to the
formulation of novel geomimetic approaches in the design and
synthesis of metal-organic frameworks (Huskić and Friščić,
2018; Huskiæ and Frišèiæ, 2019; Li et al., 2019). Most organic
minerals observed on Earth today are oxalates and carboxylates
of low nutrient value to microbes (Benner et al., 2010) and
are therefore able to persist on a planet teeming with life. The
presence of life limits the long-term survival of other organic
crystals on modern Earth, but such crystals, including co-
crystals, could have existed on early Earth and may currently
exist on other planetary bodies (Hazen, 2018; Maynard-Casely
et al., 2018; Morrison et al., 2018). Organic molecules can be
created by abiotic processes (Glasby, 2006; Fu et al., 2007;
Kolesnikov et al., 2009; McCollom, 2013; Sephton and Hazen,
2013; Huang et al., 2017). They have been shown to exist in
many planetary settings, including meteorites (Cooper et al.,
2001; Sephton, 2002; Pizzarello et al., 2006; Burton et al.,
2012; Sephton and Hazen, 2013; Kebukawa and Cody, 2015;
Cooper and Rios, 2016; Koga and Naraoka, 2017), comets
(Kimura and Kitadai, 2015), and have been detected or are
hypothesized to exist on many other planetary bodies in our
solar system, including Mars, Titan, Enceladus, Callisto, and
Ganymede (McCord et al., 1997; Formisano et al., 2004; Cable
et al., 2012, 2018; Kimura and Kitadai, 2015; Webster et al.,
2015, 2018; Zolensky et al., 2015; Hand, 2018; Maynard-Casely
et al., 2018). On bodies with low temperatures there is also
the possibility of clathrates containing and protecting organic
molecules (Kvenvolden, 1995; Buffett, 2000; Shin et al., 2012;
Hazen et al., 2013c; Maynard-Casely et al., 2018). Therefore, the
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FIGURE 5 | Bipartite carbon mineral-locality network. Force directed, bipartite, carbon mineral-locality network rendering. Colored nodes represent carbon mineral
species, sized according to their frequency of occurrence and colored according to age of first occurrence. Black nodes represent carbon mineral localities on Earth
and are sized according to mineral diversity (i.e., the number of mineral species found at a locality). Edges represent the occurrence of a mineral species at a locality.

earliest, prebiotic minerals on Earth’s surface, many of which
may currently be present on other planetary bodies, were likely
organic crystalline compounds, such as amino acids, nucleobases,
hydrocarbons, co-crystals, clathrates, and other species that have
since been consumed by cellular life here on Earth (Hazen, 2018;
Morrison et al., 2018).

CURRENT AND FUTURE DIRECTIONS

Network Structure Quantification
Many trends associated with geologic or planetary processes
have been recognized in the topologies of mineral networks
and a multitude of unrecognized trends also exist within

Frontiers in Earth Science | www.frontiersin.org 8 August 2020 | Volume 8 | Article 208

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00208 November 28, 2023 Time: 16:1 # 9

Morrison et al. Exploring Carbon Mineral Systems

mineral network topologies and/or data objects. Therefore, it
is imperative to develop statistical methods for quantifying
mineral network structures and relating these structures to their
underlying geologic, biologic, or planetary drivers (Hystad et al.,
2019b). Such methods will allow for the systematic study of
network features, such as degree distribution, distribution of
shared partners, centrality, clustering, connected subgraphs, and
cliques, and will employ an exponential random graph model
(ERGM) (Frank and Strauss, 1986; Snjiders, 2002; Hunter and
Handcock, 2006; Snijders et al., 2006; Hunter, 2007; Pattison
et al., 2007; Lusher et al., 2012). The models will determine
whether or not the substructures within a network occur
more often than would be expected by chance. They will also
determine which attributes are most significant to mineral co-
occurrence, or any other relationship of interest, including,
for example, whether or not minerals of the same paragenetic
mode tend to be found at the same location or if there is a
more influential parameter. The ERGM model will be expanded
to include multilevel networks (Wang et al., 2013), such as
one of mineral species, their localities, and their chemical
compositions. The multilevel approach will provide a means
to model the complex dependence structures and interactions
amongst the many network parameters. Additionally, we will
employ a latent network model, which models unobserved
factors that underlie the expression of network structures by
incorporating latent variables (Kolaczyk, 2009b; Kolaczyk and
Csárdi, 2014).

Natural Kind Clustering
Physical and chemical attributes of minerals are the direct
product of and, as a result, encode their formational conditions
and any subsequent weathering and alteration. Therefore,
multivariate correlation of these attributes will allow for
association of minerals to their paragenetic modes, resulting in
a number of distinct “natural kinds” within a mineral species
(Hazen, 2019). For example, diamond may have many “natural
kinds,” including stellar vapor-deposited diamonds (Hazen et al.,
2008; Ott, 2009; Hazen and Morrison, 2019), Type I (Davies,
1984; Shirey et al., 2013; Sverjensky and Huang, 2015), Type II
(Smith et al., 2016), and carbonado (Heaney et al., 2005; Garai
et al., 2006). Cluster analysis and classification algorithms will
allow characterization and designation of various natural kinds of
each mineral species and thereby relate the wealth of information
contained within mineral samples to their geologic, biologic,
and/or planetary origins. Designation of the natural kinds of
minerals within the earliest environments of our universe is given
in Hazen and Morrison (2019) and Morrison and Hazen (2020),
preliminary work is underway to classify the natural kinds of
many mineral species, with a particular focus on carbon-bearing
phases, including diamond, calcite, and aragonite (Boujibar et al.,
2019; Zhang et al., 2019).

Affinity Analysis
The mineral co-occurrence information stored in the MED and
Mindat.org provide the means to make predictions on the most
likely locations to find certain mineral species, geologic settings,
deposits, and/or planetary environments, as well as a probabilistic

list of minerals likely to occur at any given locality (Prabhu
et al., 2019b; Morrison et al., 2020). Affinity analysis is a machine
learning method that discovers relationships between various
entities in a dataset. This method analyzes co-occurrence data
and identifies strong rules based on associations between entities.
This method was first introduced by Agrawal and Srikant (1994),
and they present two algorithms to create association rules (i.e.,
the Apriori and AprioriTid algorithms). Apriori uses a bottom-up
approach where subsets of entities that frequently co-occur are
generated as candidates for testing against the data. The number
of occurrences of the candidates are then compiled and patterns
observed from the occurrence of these candidates are used to
generate rules. For example, consider the following small carbon
mineral dataset:

{malachite, calcite, azurite}
{malachite, azurite}
{malachite, calcite, azurite, dolomite}
{malachite, calcite}

Let us assume these data represents the co-occurrence of
carbon minerals. If we generate candidates of size 2 and 3, then
most commonly occurring sets of minerals are:

Candidates Occurrences (Support)

{malachite, calcite} 3

{malachite, azurite} 3

{malachite, calcite, azurite} 2

{malachite, calcite, dolomite} 1

{malachite, azurite, dolomite} 1

Based on the occurrence of candidates, we can create the
following rules:

• 75% of the sets with malachite also contain calcite.
• 75% of the sets with malachite also contain azurite.
• 50% of the sets with malachite and calcite also

contain azurite.
• 25% of the sets with malachite and calcite also

contain dolomite.
• 25% of the sets with malachite and azurite also contain

dolomite.

Such association rules can be used to predict the probability
of occurrence for certain minerals or mineral assemblages, given
the currently known mineralogy of a locality. Therefore, this
method allows for prediction of the most probable locations
on Earth or other planetary bodies to find mineral species
or mineral assemblages of interest, as well as certain geologic
settings, deposits, or environments. Likewise, this method can
assess the probability of finding any mineral species at a locality
in question. In a preliminary case study on Mindat.org mineral
occurrence data, pair-wise correlations (i.e., candidates of size 2)
were used to predict a likely locality of the mineral species
wulfenite. The model predicted the Surprise Mine, Cookes Peak
District, Luna County, NM, United States as a very likely new
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location of wulfenite (locality3). Erin Delventhal, a member of
the Mindat.org management team, validated this prediction by
going to Cookes Peak and positively identifying an occurrence
of wulfenite (image of collected sample4). These preliminary
results highlight the promise of discovery with affinity analysis
in mineral systems.

GPlates Plate Tectonic Reconstructions
GPlates is an open-source and cross-platform plate
reconstruction software that enables users to incorporate
any vector or raster data into digital community plate motion
models (Merdith et al., 2017; Müller et al., 2018; Young et al.,
2019). Incorporation of mineralogical data into plate tectonic
reconstructions (Figure 6) will illuminate tectonic drivers
and feedbacks of mineralization through deep time, such as
identifying tectonic settings that preferentially generate or
focus particular mineral species. We will begin to answer
questions related to subduction conditions (i.e., depth of
mantle wedge interaction and estimation of slab angle, rate
of subduction, devolatilization of the subducting slab, etc.) of
subduction-related mineralization, characterize mineralization
associated with mantle plume and hydrothermal settings,
collisional regimes, and identify mineralization clearly not
controlled by tectonic influences. A video of a preliminary
reconstruction model of carbon mineralization through
deep time (from modern day to 1.0 Ga) can be found at
https://4d.carnegiescience.edu/explore-our-science.

Quantifying Preservational Bias
Preservational and sampling bias is inherent to geologic
materials, the magnitude of which is not uniform through time
or across a system and, therefore, can be very difficult to quantify.
Recent data-driven studies of mineralization associated with the
Rodinian assembly (Liu et al., 2017b, 2018b) have examined the
differences in the mineralogy and geochemistry of igneous rocks
associated with the assembly of the Rodinian supercontinent, as
igneous rocks of Rodinian age tend to have different geochemical
signatures than those from other supercontinents. The question
remains: how much of the trend is related to conditions
and processes during assembly and how much is related to
preservational and sampling bias? This is evident in Figure 6
where major increases in carbon mineralization is associated with
the younger mega-continent of Gondwana and supercontinent of
Pangea, while the signal related to Nuna and Rodinia assembly is
more subdued in the cumulative frequency plot. This question
must also be asked of many other formational environments,
including those relevant to carbon mineralization (e.g., carbonate
platforms, carbonatites). Ongoing and future studies will attempt
to quantify preservational bias in the mineralogical record
by examining factors that contribute to preservation, such
as mineral characteristics (e.g., solubility, hardness), common
tectonic settings of mineral formation, etc. It is also important
to consider human factors that govern sampling, including
economic significance of the material, physical characteristics
(e.g., color, crystal habit, size, luster), and scientific importance,

3https://www.Mindat.org/loc-300363.html
4https://www.mindat.org/photo-930500.html

and may result in sampling bias within datasets. These data will
be used to develop statistical models for prediction of the amount
of erosional loss through deep time.

Microbial Populations and Mineral
Systems
An underlying driving principle of studying Earth’s mineralogy
through deep time is to gain insight into the co-evolution
of the geosphere and biosphere. Mineral evolution studies
characterize Earth’s mineralogy during the time of life’s
emergence and throughout its evolution, but how do we garner
an understanding of direct influence and feedback systems
between Earth materials (e.g., the “geochemical environment”)
and microbial populations? Given the dearth of ancient microbial
samples, we can examine modern day equivalents, particularly
in geochemical environments most likely to be analogous to
ancient environments (e.g., hydrothermal vents, hot springs).
Therefore, a study is underway to employ advanced analytics
and visualization, including network analysis, to characterize the
complex, multidimensional, multivariate relationships between
the metagenomes of extant microbial populations and their
geochemical environments (Morrison et al., 2017a; Buongiorno
et al., 2019a,b, 2020; Giovannelli et al., 2019). Figures 7A,B
illustrate a preliminary look at bipartite networks of sampling
site locations and their metagenomes (A) and mineralogy
(B). A multilevel network approach (see “Network Structure
Quantification” section above) and transfer learning techniques
will be used to relate location, metagenomic data, and mineralogy
(Figures 7A,B), as well as aqueous geochemistry, temperature,
pressure, pH, salinity, and more, and to generate models
quantifying the complex relationships therein. These studies are
examining trends in metagenomic and geochemical parameters
across a single arc system (Barry et al., 2019a,b), across multiple
systems such as volcanic arcs, mid-oceanic ridges, and hot spots,
and across disparate systems around our planet, as depicted in
Figures 7A,B (e.g., including settings like acid-mine drainage,
permafrost, and hot springs). Targeting closely related systems,
such as a single volcanic arc or all hotspot related hot spring
systems, allows tight correlation of changes in geochemical
conditions with changes in microbial communities due to the
fact that there is less variance in the environmental parameters.
Whereas a more global comparison allows for examination of
all possible environmental and microbial variables. Preliminary
results show distinct, complex trends in geochemical parameters
related to changes in protein functions of microbial populations.

DISCUSSION

Motivated by understanding Earth’s mineral diversity and
distribution through deep time, bioavailability of redox
sensitive elements during the emergence and evolution of
life, biosignatures at mineralogical and planetary scales, and
underlying geologic and biologic drivers of mineralization, we
have made many discoveries in carbon science, including: (1)
Earth’s mineralogy is a function of the physical, chemical, and
biological processes that are different at each stage of planetary
evolution. (2) Earth’s mineral diversity and spatial distribution
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FIGURE 6 | GPlates plate tectonic reconstruction snapshots with carbon mineral occurrences, and a cumulative frequency plot highlighting that some increases in
carbon mineral occurrences are contemporaneous with changes in the supercontinent cycle. Full video (modern day to 1.0 Ga) available at
https://4d.carnegiescience.edu/explore-our-science.

FIGURE 7 | (A,B) Bipartite microbial population-locality and mineral-locality networks. Force-directed, bipartite networks of a preliminary analysis of interaction
between metagenomes and mineralogy of the same sampling sites. (A) Metalloprotein oxidoreductases (colored nodes; enzyme commission EC1 class) and the
sites where they were found (black nodes). Enzyme nodes sized according to their counts and colored by their subclass. (B) Bipartite network of the mineral diversity
at the same sites. Mineral nodes in gray, sized according to their mineral diversity; site nodes in black.
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follows an LNRE trend, a trend that is visually represented in
the topology of mineral-locality bipartite network renderings
and is likely a planetary-scale biosignature. (3) Predication
of as-yet undiscovered mineral species, which spurred the
Carbon Mineral Challenge – an initiative that has reported
30 new carbon minerals species in less than 3 years. (4)
Recognition of embedded trend lines in network topologies,
such as those of chemical composition, crystal structural
complexity, time, and paragenetic mode. In addition, this
work has developed new tools for visualization of mineral
systems, including mineral networks, as well as 3D and VR
platforms thereof. Furthermore, we are exploring and are on
the brink of discoveries related to (1) quantifying mineral
network structures and their underlying geologic, biologic,
and planetary drivers, (2) predicting mineral paragenetic
mode on Earth and other planetary bodies through natural
kind clustering, (3) predicting the new locations of mineral
occurrence and missing minerals at specified locations on
Earth’s surface via affinity analysis, (4) investigating the tectonic
drivers of mineralization through deep time through integration
with paleotectonic reconstructions, (5) understanding the
complex feedback systems controlling the relationships between
mineralogy and the geochemical environment with microbial
populations and their enzymatic functions, and (6) quantifying
preservational and sampling bias in the mineralogical record.
These recent discoveries and new research directions show great
promise for further unraveling the complexities surrounding
carbon mineral formation, the deep carbon cycle, and life’s
coevolution with Earth materials and processes.
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