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One of the most difficult weather variables to predict is rain, particularly intense rain.
The main limitation is the complexity of the fluid dynamic equations used by predictive
models with increasing uncertainties over time, especially in the description of brief,
local, and high intensity precipitation events. Although computational, instrumental and
theoretical improvements have been developed for models, it is still a challenge to
estimate high intensity rainfall events, especially in terms of determining the maximum
rainfall rates and the location of the event. Within this context, this research presents
a statistical and relationship analysis of rainfall intensity rates, total precipitable water
(TPW), and sea surface temperature (SST) over the ocean. An empirical model to
estimate the maximum rainfall rates conditioned to TPW values is developed. The
performance of the maximum rainfall rate model is spatially evaluated for a case study.
High-resolution TRMM 2A12 satellite data with a resolution of 5.1 × 5.1 km and 1.67 s
was used from January 2009 to December 2012, over the Eastern Pacific Niño area
in the tropical Pacific Ocean (0–5◦S; 90–81◦W), comprising 326,092 rain pixels. After
applying the model selection methodology, i.e., the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), an empirical exponential model between
the maximum possible rain rates conditioned to TPW was found with R2 = 0.96,
indicating that the amount of TPW determines the maximum amount of rain that the
atmosphere can precipitate exponentially. Spatially, this model unequivocally locates the
rain event; however, the rainfall intensity is underestimated in the convective nucleus of
the cloud. Thus, these results provide an additional constraint for maximum rain intensity
values that should be adopted in dynamic models, improving the quantification of heavy
rainfall event intensities and the correct location of these events.

Keywords: TRMM 2A12, high resolution precipitation models, intense rain, integrated water vapor, model
selection
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INTRODUCTION

Disasters produced by extreme, episodic, and abrupt rain
events are still the deadliest natural hazard globally, with
the most destructive and long-term effects on the economy,
infrastructure, ecosystems, food security, and people (Jonkman,
2005; Pielke et al., 2013; Ilbay-Yupa et al., 2019; Li et al.,
2019). This vulnerability not only reflects the importance of
adequate population spatial planning but also the low accuracy
of Numerical Weather Prediction (NWP) models in terms
of forecasting high rainfall intensity rates for global events,
especially in the most vulnerable zones (Schumacher, 2016).

Empirical modeling was proposed as a complementary
strategy to improve rainfall modeling and prediction capabilities
in NWP models (Jakob Themeßl et al., 2011). It relates
to observed meteorological variables in new relationships,
improving rain estimations or even providing indications of
new physical implications of rainfall. Empirical relationships
could be used to estimate rainfall over orographically stepped
zones in order to address shortcomings with NWP models
(Haiden and Kahlig, 1994; Vuille et al., 2000; Buytaert et al.,
2006; Villacís et al., 2008; Junquas et al., 2018; Padrón et al.,
2020), by improving the location of rain events (Herman and
Schumacher, 2016) and improving the quantification of high-
intensity rain events.

Over the ocean, temperature and atmospheric humidity have
empirical relationships with rainfall (Bretherton et al., 2004;
Holloway and Neelin, 2009; Nathan et al., 2016; Takahashi
and Dewitte, 2016; Ahmed and Neelin, 2018). The positive
relationship between sea surface temperature (SST) and rain
intensities has been widely reported (Manabe et al., 1974; Johnson
and Xie, 2010; Jauregui and Takahashi, 2018) mainly due to the
increase in parcel instability and the convective available potential
energy (CAPE), which makes it possible to overcome the
convective inhibition (Betts and Ridgway, 1989). Additionally,
using monthly data, the observations show a rainfall peak
between SST values of 26 and 28◦C; this temperature range was
identified as a convection trigger by several authors, and after this
SST maximum, the rain intensities decrease (Gray, 1998; Johnson
and Xie, 2010; Vincent et al., 2012; Jauregui and Takahashi, 2018).

With regards to the relationships with humidity, and using
a different time resolution, Bretherton et al. (2004) present an
exponential dependence between the daily mean precipitation
and the column-relative humidity [obtained by dividing the total
precipitable water (TPW) by its corresponding saturation value].
TPW represents the depth of water in mm in a column of
the atmosphere in the case that the water in that column was
precipitated as rain. This study was conducted over four oceans
and 4 years, and using satellite data with a resolution of 2.5◦× 2.5◦
(279.3× 279.3 km).

In a similar study carried out with a temporal resolution of 3 h
and a spatial resolution of 0.25◦× 0.25◦ (27.9 km × 27.9 km),
Peters and Neelin (2006) reported a power law relationship
between the mean rainfall and TPW, exceeding the critical
value of TPW. In other research with a similar resolution,
rainfall and TPW values were reported (Schroeder et al., 2016;
Kuo et al., 2017) when studying tropical convection over the

ocean at different pressure levels (Neelin et al., 2009), and
even over land (Bernstein and Neelin, 2016; Leon et al., 2016;
Sapucci et al., 2019).

A high temporal and spatial resolution analysis of rainfall
could provide more realistic results. If a coarse temporal and
spatial resolution is used instead, this could lead to the pooling of
small events and the underestimation of large events by averaging
them with shorter or null events (Lovejoy and Mandelbrot, 1985;
Peters et al., 2002; Dickman, 2003; Newman, 2005). Additionally,
an adequate spatial resolution may give a more exact and precise
location of the rainy event and its predictors.

One particular difficulty for estimating rainfall rates lies in the
statistical features related to maximum rainfall events (Arakawa,
2006). Rainfall occurrence is characterized by numerous small
intensity events and only a few heavy intensity events; however,
these large events are strongly representative because, depending
on the study area, they can discharge 70–90% of the total amount
of rain registered in 1 year (Pendergrass, 2018). These large events
are not well reproduced by the NWP model and are one of
the causes of high vulnerability to extreme rainfall events. Then,
the maximum rainfall is of special interest since it indicates the
maximum amount that the atmospheric system can precipitate,
producing the largest and most destructive rainy events.

Therefore, the objective of this study is to develop a high
temporal and spatial resolution analysis of maximum rainfall
rates related to TPW and SST. Thus, microwave satellite data
from TRMM (Tropical Rainfall Measure Mission) Microwave
Imager (TMI) Level 2 Hydrometeor Profile Product (TRMM
Product 2A12), with a resolution of 5.1 × 5.1 km and 1.67 s,
is used in this research. This data proves to be very useful and
provides reliable data over the ocean even during storms and
hurricanes. Moreover, its advantages include reliability, broad
area coverage, and accessibility where in situ data are scarce
(Khairoutdinov and Randall, 2006; Wilcox and Donner, 2007;
Wang et al., 2009). The area chosen in our study is in the
eastern part of the tropical Pacific Ocean (i.e., the Eastern Pacific
Niño, or Niño E region), reported as a heavy rainfall area in
which events could affect the surrounding coastal population
(Takahashi and Dewitte, 2016).

The aims of this paper are threefold: (i) to perform a statistical
evaluation of the rainfall, TPW, and SST, (ii) to determine the
point estimate relationships between intense rainfall and its
predictors by choosing the most suitable mathematical model
able to estimate maximum rainfall by season, and (iii) to spatially
analyze the performance of the empirical model with respect to
the spatial location of the rainfall event as a study case.

STUDY AREA AND DATA

Figure 1 presents the Niño E area, an area spanning 560,242 km2

(0–5◦S and 90–81◦W). This area is important due to the
presence of heavy rains and the influence of the ENSO (El
Niño South Oscillation) phenomenon. It is in the vicinity
of the northern South American coast, affecting Ecuadorian
and Peruvian territories in particular (Takahashi et al., 2011;
Takahashi and Dewitte, 2016).
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FIGURE 1 | Study area over the eastern equatorial Pacific, called Niño E (Takahashi and Dewitte, 2016). The zones over land (red) are excluded from the study area.

This data comes from a TRMM Microwave Imager (TMI)
satellite, which is a passive microwave radiometer and a dual-
polarized (vertical and horizontal) multichannel sensor with
the following five frequencies: 10.65, 19.35, 37, and 85.5 GHz;
the 21.3 GHz frequency has vertical polarization only. The
spatial coverage ranges from 40◦N to 40◦S and the satellite was
launched on November 27, 1997, at an altitude of 380 km and
an inclination of 35◦ (NASDA, 2001). Specifically, the 2A12
level has 16 orbits per day with 2,991 scans, each with 280
high-resolution pixels, and a data offering of 5.1 × 5.1 km each
and 1.9 s, which is the scan rotation period (Wentz et al., 2001).
The satellite swath lasts around 3 min overflying the study area,
twice a day, resulting in a non-continuous but randomized
time series, hereafter referred to as the Rainfall Intensity Data
(RID). This information is available in HDF4 and .nc format
at http://disc.sci.gsfc.nasa.gov/precipitation/documentation/
TRMM_README/TRMM_2A12_readme.shtm.

The available TMI-TRMM instantaneous RID rates are
calculated using the Goddard profiling algorithm (GPROF)
(Kummerow et al., 2001), where the response functions of
different channels detect different depths within the rain column,
defining different brightness temperature vectors Tb, each one
related to a vertical distribution of the hydrometeors R. However,
the desired variable is the contrary, i.e., the vertical distribution of
the hydrometeors R, for a given Tb. Then, in terms of probability,
it is estimated by Bayes Eq. 1:

Pr
(
R|Tb

)
= Pr (R) Pr

(
Tb|R

)
(1)

where Pr (R) represents a rain probability observed profile that
is determined by CRM (cloud-resolving models). Once the
Pr (R) has been reached, the intensity of the rain is derived;

this estimation is especially accurate over the ocean (Furuzawa
and Nakamura, 2005). In order to focus on the maximum
rain rates in this research, the chosen values are higher than
0.1 mm/h (Table 1).

Over the oceans, the GPROF as well as TMI 2A12 product
compare well with atoll rain gauge data. The TMI 2A12 rain
rate is biased negatively by 9%, and with a correlation of 0.86.
The correlation increases to 0.91 and is positively biased by 6% if
two or more atolls are used in the validation (Kummerow et al.,
1996). The expected sampling errors for the rain estimation are
calculated by algorithms and depend on the rain intensity; i.e., the
more intense the rainfall the more accurate the TMI estimation,
following Eq. 2:

σ

R
(%) = 0.26R−0.27 (2)

where R is rainfall intensity in mm.h−1 and σ is its standard
deviation. Therefore, TMI 2A12 data are better for determining
intense rainfall rates (Olson et al., 1999; Bell et al., 2001).

The amount of TPW detected by TMI that is related to the
liquid equivalent of the total water vapor column in mm has
its absorption line in the 21.3 GHz band, i.e., it is an accurate
measurement due to this high signal-to-noise ratio (Furuzawa
and Nakamura, 2005); the root mean square error (RMSE) is
8.1 mm with a bias of −0.76 mm, after radiosonde validation
(Sajith et al., 2007). However, this data is only reliable over the
ocean, since it overlaps with the terrestrial albedo over land.
It is important to mention that CRM ancillary data report few
TPW values higher than 70 mm, and this difference could lead
to numerical instabilities over this value (Kummerow et al.,
2001). Finally, the SST product is estimated directly by using
lower bands such as 19.35 and 10.65 GHz and is given in K
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TABLE 1 | RID, TPW, and SST main statistical metrics.

Skewness Kurtosis Min Q1 Median Q3 Max

RID [mm/h] 4.95 41.48 0.1 0.16 0.3 0.68 39.32

TPW [mm] −0.99 1.43 19.22 56.48 61.32 65.20 75

SST [◦C] −1.45 3.09 15.8 26 27 27.7 30

Note the marked non-Gaussian behavior of RID distribution marked in bold.

(NASDA, 2001); thus, the accuracy of the estimation is 0.95 K
(Guan and Kawamura, 2004).

MATERIALS AND METHODS

A statistical analysis of the studied variables (RID, TPW, and
SST) is presented in section “P, TPW, and SST Statistical Metrics”
to find the model for the maximum rainfall values. In section
“Relationships Between Intense Rainfall Rates, TPW and SST,”
the relationships of the maximum rainfall values conditioned
to TPW (Peters and Neelin, 2006; Neelin et al., 2009) and SST
(Jauregui and Takahashi, 2018) were analyzed. Then, the choice of
the best model and the confidence intervals were found according
to the model selection methodology. Finally, in section “Spatial
Analysis,” the predictive performance and location of the model
in a case study were analyzed.

P, TPW, and SST Statistical Metrics
First, the data were downloaded and decrypted using Python
as detailed in Serrano (2016). Big data post-processing and
data selection were performed in R using High-Performance
Computing (HPC) MODEMAT at the Escuela Politécnica
Nacional laboratory. The chosen data (rain >0.1 mm/h) were
326,092 rain pixels observed over the study area.

Monthly boxplot analyses of the data were performed
to determine the seasonality of RID, TPW, and SST. The
characteristics of the rainy and dry seasons were identified
(Figure 2). Then, a statistical evaluation of RID, TPW, and SST
was presented by using frequency histograms (Figure 3). Table 1
shows the main descriptive estimators to determine the normality
of the data and its statistical implications.

Relationships Between Intense Rainfall
Rates, TPW, and SST
The data were divided into identical 200 bins to determine the
dependence of the rainfall rates on TPW and SST. The data
were first aggregated into 0.25 mm TPW bins, and then into
0.07◦C SST bins. The selected number of bins does not affect the
behavior of the studied meteorological variables. The maximum
RID values related to each bin were collected and identified
with their corresponding SST and TPW values. Based on the
scatter plots of the data and the literature, different models were
evaluated ranging from exponential (Bretherton et al., 2004),
power laws (Peters and Neelin, 2006) and stretched exponential
(Martinez-Villalobos and Neelin, 2018), among others.

Distribution fitting was performed using mixed non-linear
regression methods in the nls R package (Baty et al., 2015). These

methods optimize a modification of the least-squares criterion,
which can be applied to non-Gaussian variables. The parameters
of the model are estimated iteratively by using starting values.
The fit of the non-linear regression is evaluated using graphical
tools and the standard confidence intervals are derived, assuming
normality in the standard deviations, by obtaining the typical
metrics of the residuals. This procedure was repeated for each
model: i.e., exponential, power-law, stretched exponential, and
polynomial relationships.

The best model was chosen using the standard errors
(calculated using the Hessian matrix estimate in the maximum
likelihood estimation) as well as the AIC and BIC. The last two
criteria estimate the information that a model loses when fitting
the data, balancing the underfitting by goodness-of-fit and by
using likelihood with the overfitting, due to the unnecessary
addition of parameters. Therefore, the model that lost the
least amount of information was selected as the best model
(Clauset et al., 2009).

Finally, the chosen model was proven in the dry (ASO) and
wet season (FMA) separately, repeating the procedure described
above, in order to determine the influence of these seasons
on the RID data.

Spatial Analysis
A study case (April 5, 2012) is presented to determine the
performance of the selected model with regards to rain intensity
estimation and spatial location. This event corresponded to
the largest rain event registered in the observed satellite swath
(lasting 3 min, twice a day, over the study area from 2009 to 2012).
A pixel-by-pixel comparison of the RID with TPW and SST was
carried out using R raster libraries.

The maximum rainfall pixels were calculated using the model
selected in Eq. 3, based on each TPW value, in order to obtain
the maximum modeled rainfall. Finally, the differences between
the modeled and observed RID values are used to evaluate the
performance of the spatial model. This type of spatial analysis
will allow to evaluate the performance of the model in the
different regions of the cloud, as well as to verify the ability
of TPW and SST to locate the maximum rainy events, with
low-cost calculations.

RESULTS AND DISCUSSION

Monthly Analysis
In the RID, TPW, and SST boxplots presented by month
(Figure 2), most of the events have small intensities in both
the wet and dry season due to the high resolution of the data.
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FIGURE 2 | Monthly boxplot analysis for (A) RID, (B) TPW, and (C) SST. The rainy season extends from February to April and the dry season extends from August to
October.

Unimodal seasonality is evident with a marked rainy season from
February to April, and a dry season from August to October. This
behavior is well known (Manabe et al., 1974) and is mainly due
to the influence of the Intertropical Convergence Zone (ITCZ),
which is at the southernmost location in March, resulting in low-
pressure systems and a marked increase in SST (Jauregui and
Takahashi, 2018) favoring convective rainfall in the first part of
the year. To the contrary, the ITCZ is at its northern maximum
in July–August, decreasing low pressure and precipitation as well
(Campozano et al., 2016, 2018). During the dry season, the events

are not larger than 1 mm/h, while in the wet season they can reach
magnitudes up to 40 times larger, presenting a large seasonal
contrast. Similar behavior—but not as marked as that observed
for rainfall—is reported for TPW and SST, evidencing their direct
relationship with precipitation. More evaporation occurs with
warmer SST values, and then more warm water vapor over the
surface could ascend, increasing the TPW (Wu et al., 2009).
This response is related to the Clausius-Clapeyron relation: the
warmer the air, the more moisture it can contain; and later it
condensates as precipitation (Roderick et al., 2019).
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FIGURE 3 | High-resolution data frequency histograms for the studied variables: (A) RID (y-log scale), (B) SST, and (C) TPW from 2009 to 2012.

Statistical Evaluation of RID, TPW, and
SST
In Figure 3, the frequency histograms for TPW and SST present
a Gaussian left-skewed behavior. However, the RID distribution
presented on a semi-logarithmic scale shows right skewness and
high kurtosis (see Table 1). It is evident that RID follows a non-
Gaussian heavy-tailed distribution with Q1, Q2, and Q3 less than
0.68 mm/h, whereas the maximum value is 39.32 mm/h.

Due to its Gaussianity, the best parameters for describing
the behavior of TPW and SST were the mean and variance.
However, the strong heavy-tailed behavior of RID shows the
importance of large values in these data. Maximum events
shape rain distributions and need to be analyzed carefully
(Clauset et al., 2009).

Functional Relationships Between
Rainfall, TPW, and SST
The maximum RID values associated with each TPW and SST bin
are presented in Figure 4. These 200 values are hereafter referred
to as MRITPW for the Maximum Rainfall Intensity conditioned to
TPW, and their corresponding TPW and SST values are denoted
as TPWMax and SSTMaxTPW. Similarly, MRISST is the Maximum
Rainfall Intensity conditioned to SST, and the corresponding
TPW and SST are TPWMaxSST and SSTMax, respectively.

The associated TPWMax vs. SSTMaxTPW values for the 200
MRITPW bins are presented in Figure 4A. It shows a positive
but scattered dependence: as the SST increases, the TPW content
increases as well (Gamache and Houze, 1983). An increase in the
slope is presented above 24◦C for SSTMaxTPW. Similar behavior

is shown in Figure 4B where the maximum rainfall MRITPW
values and their corresponding SSTMaxTPw values are presented.
The same threshold of 24◦C marks a phase of higher and more
dispersed rain intensity. Below this value, MRITPW does not
exceed 0.5 mm/h.

The MRITPW bins and their corresponding TPW values are
presented in Figure 4C. It shows that maximum rainfall increases
rapidly with TPW. The rainfall increase related to TPW is
smooth and continuous, which points to a rapid growth function.
From the findings in the literature, similar studies with 3-
hourly mean rainfall values indicate that these suitable models
could be exponential (Bretherton et al., 2004), power law (Peters
and Neelin, 2006; Neelin et al., 2009) or stretched exponential
models (Martinez-Villalobos and Neelin, 2018), among others
like potential functions.

The model selection is presented in Table 2. Based on the
convergence of the parameters, fitting residuals, and the AIC and
BIC information criteria, it is determined that the best model is
the exponential model, followed by the power law model.

Then, the rainfall maximum MRI conditioned to TPW follows
an exponential model (Eq. 3):

MRITPW = aeb∗TPW (3)

It shows that the model performs well for the maximum
rainfall values, and only the highest values are underestimated.
This behavior could be due to two reasons: first, the proximity
to the 70 mm threshold, where the scarcity of the CRM
data needed for the rain satellite calculation could result in

Frontiers in Earth Science | www.frontiersin.org 6 July 2020 | Volume 8 | Article 198

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00198 July 7, 2020 Time: 19:34 # 7

Serrano-Vincenti et al. Maximum Rainfall TPW Conditioned Model

FIGURE 4 | MRI points associated with TPW (left side): (A) TPWMax vs. SSTMaxTPW; (B) MRITPW points and their corresponding SST values (SSTMaxTPW);
(C) MRITPW associated with the TPWMAX bins, including the adjusted exponential model selected (continuous black line) and the 95 percent confidence intervals (red
lines). Right side: MRI points associated with SST: (D) TPWMaxSST vs. SSTMax; (E) MRISST points and their corresponding SST values (SSTMax); (F) MRISST

associated with TPWMaxSST.

artificial numerical instability effects as mentioned in section
“Materials and Methods” (Kummerow et al., 2001). The second
reason could be due to the highest rain values, which could
correspond to a reinforced convection typical of the center of
the storm. The predictability of convection events is limited
due to turbulence complexity (Nielsen and Schumacher, 2016).
Therefore, it is important for future research to determine
if this value of 70 mm represents an artificial threshold
or a physical one.

Scattered relationships are presented for the MRI data
associated with the SST values (right side of Figure 4). First,

in Figure 4A, the TPW vs. SST plot for the maximum values
related to SST are presented. The data presented a mild threshold
between 26 and 28◦C, similarly to Figure 4B, where the reported
threshold of 26–28◦C for the rainfall peaks is presented (Gray,
1998; Johnson and Xie, 2010; Jauregui and Takahashi, 2018). In
this study the peak coincides although the time scale used in the
literature is monthly.

Due to the great thermal inertia of the water, and consequently
of SST, the increase over 26◦C is due to the climatological
presence of ITCZ, which results in general warming and,
therefore, the arrival of the rainy season (Figure 2C). In
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TABLE 2 | Performance measures of model selection between MRITPW and TPW: Multiple R-squared error R2 =ρ2 where ρ is the correlation coefficient.

Model Units R2 RMSE [mm/h] AIC BIC Parameters

MRITPW =aeb∗TPW Exponential 0.96 0.34 126.2 135.7 a=0.01 ± 0.0012 b=0.109 ± 0.0063

MRITPW =aTPWb Power Law 0.89 0.52 290.3 299.9 a=0.01 ± 0.0012 b=4.3885 ± 0.74

MIRTPW =MIR−b
TPW ∗ ea Stretched Exp. 0.79 2.98 337.8 387.9 a=8.69 ± 1.3 b=4.3885 ± 0.4

Root mean-squared error: RMSE = 1/N

√
N∑

i=1
(ŷi − yi)

2 , where ŷiandyi are modeled and observed data, respectively. Akaike information criterion: AIC = 2k − 2 ln (L)

where k are the parameters and L the maximum likelihood of the model. Bayesian information criterion: =ln(n)k − 2 ln (L), similar to AIC where n is the sample size. The
best model was exponential (bolded).

FIGURE 5 | (A) MRI values for the wet and dry seasons, separately,
associated with the TPW values. The adjusted exponential model and its
confidence intervals are presented; (B) TPW values of the Dry and Wet
season; (C) SST values registered in the Dry and Wet season.

other words, SST serves to characterize rain behavior on a
climatic scale, rather than to characterize specific events of
rainy precipitation. In section “Spatial Relationships,” the low
localization capacity of SST can be seen in a case study
(Figure 6B). Therefore, SST is not a suitable variable in terms
of proposing a functional model for rainfall. Finally, Figure 4F
presents the rainfall MRIssT points and their corresponding
TPWMaxTPW values. Over 60 mm of TPW indicate a high rainfall
intensity, but in a very scattered manner.

Figure 5 presents the above analysis for the wet and dry
season separately. Including the TPW and SST values registered
in each season. The events that appear most in the model
correspond to opposite seasons, i.e., the driest (ASO) and wettest
(FMA) seasons (Figure 5A). This result is remarkable because
the exponential model represents the absolute opposite seasons
instead of the intermediate—and most frequent—seasons. Most
of the maximum rain rates associated with the TPW values
belong to the wet season, as expected, however, the smallest
maxima have small TPW values (<34 mm), which are only
present in the dry season (Figure 5B). And its intensity does
not exceed 1 mm/h over the entire range. This fact proves
that the model can be applied over the entire range of the
rainfall and TPW values.

Seasonality is also marked when analyzing SST (Figure 5C);
in the wet season, the majority of events are between
26 and 28◦C. As mentioned before, it is a region with
high rainfall rates.

Spatial Relationships
Figure 6 shows the spatial distribution of the studied variables in
the study case of April 5, 2012, from 8:50 a.m. to 8:53 a.m. In the
spatial analysis, a comparison between RID, SST, TPW, the model
estimation, and the difference between the observed and modeled
data are presented.

The first observations indicate that TPW (Figure 6A) is able to
locate the rain event but not SST (Figure 6B) which has a more
uniform behavior that is primarily influenced by cold coastal
upwelling than by the rain event. Furthermore, it is noticed
that SST experiences a decrease in the area beneath the rain
event. Three main processes could control this decrease in SST
under the rain event—oceanic vertical mixing, air-sea latent heat
exchange, and advection—all of which are mainly influenced
by the convective winds produced by the storm (Vincent
et al., 2012). As mentioned previously in section “Functional
Relationships Between Rainfall, TPW and SST,” SST is influenced
more by seasonal variability than by specific rain events.

Figure 6C shows the RID data, Figure 6D presents the
maximum modeled rain using the exponential model (Eq. 3),
and Figure 6E depicts the modeled rain minus the observed
RID. Two aspects are evident from this figure: first, the model
is able to determine the proper location of the rain event, and
second, this exponential model overestimates rain events in the
surrounding advective zone because the model describes the
maximum rain events related to TPW; however, there could be
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FIGURE 6 | Graphical representation of the satellite scan over the study area on April 5, 2012, from 8:50 a.m. to 8:53 a.m. The variable analyzed for this rainfall
event are (A) TPW, (B) SST, (C) RID, (D) maximum rainfall modeled by the exponential model, and (E) difference between the modeled and observed rainfall.

FIGURE 7 | (A) Histogram and boxplot of the differences between the maximum modeled rainfall and observed rainfall using 29,353 RID data. The positive values
represent an overestimation (correct model). The negative data represent an underestimation (incorrect model) by 0.4%. (B) Histogram and boxplot of RMSE for the
corresponding 23 rainfall events.
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FIGURE 8 | Storm convective cloud diagram, identifying overestimated
(nucleus) and underestimated (anvil) areas using the exponential model.

smaller rain events which correspond to the same amount of
TPW. The development of a rain process does not depend solely
on the amount of TPW. Other dynamic and physical variables
must be considered, such as winds, convection, and variations in
the CAPE (Convective Available Potential Energy). If all of the
weather conditions are well combined, heavy rain will develop,
but its intensity will be limited exponentially by the amount of
TPW in the area.

All of the MRI values associated with TPW >55 mm were
analyzed. Each MRI occurred in 23 rainfall separated events for a
total of 29,353 RID (several MRITPW events correspond to the
same rainfall event). In order to quantify the performance of
the model, RMSE and the difference between the modeled and
observed rainfall are calculated and presented as a histogram and
the associated boxplot (Figure 7).

The differences between the modeled and observed rainfall in
Figure 7A show only 129 negative values, i.e., 0.4%, and therefore
99.6% of the values correspond to an overestimation, which
indicates that the model calculating the maximum rainfall values
is performing correctly in case studies, where the meteorological
conditions for the maximum rainfall development will not
always occur. The mean value of these differences represented
by the RMSE and calculated for the 23 rainfall events is
11.8 mm/h, the minimum is 5.1 mm/h, and the maximum is
19.6 mm/h (Figure 7B).

Therefore, the most important issue related to this model
is that the amount of TPW determines the maximum (but
not the minimum) rainfall that the atmosphere can precipitate
exponentially. To the contrary, the center of the storm is
characterized by deep convection (Figure 8), and the model
underestimates the rain intensity at around 20 mm/h, but over
a very small area. Extreme convective rain is present into the

nucleus of the storm, principally due to a mass convergence from
the areas surrounding the convective area (Gray, 1998). Another
factor could be the numerical instabilities around 70 mm of TPW
(Kummerow et al., 2001) as mentioned in section “Study Area
and Data.”

CONCLUSIONS

In summary, these results empirically show that the maximum
amount of rain that the atmosphere can precipitate depends
exponentially on the amount of tropospheric water vapor under
the specific geographical conditions of this study. This finding
has low computational cost implications for improving heavy
rain estimations in terms of the location of the event as well as
proposing an upper limit for its intensity.

It is useful to evaluate the risk of a possible extreme event of
rain related to a very stable and well-predicted meteorological
variable such as TPW. In addition, TPW correctly locates
the rain event. However, because it is a model for maximum
rainfall, it overestimates the rain in the areas surrounding the
cloud, corresponding to the anvil advective area. In contrast,
an underestimation was reported in its nucleus, supporting
literature findings and the fact that strong convection has its
own difficulties in modeling as well as in its prediction due to
turbulence complexity (Bellenger et al., 2015).

Finally, it is important to consider the two main limitations in
this study. The first is the non-continuity of the collected data,
both temporally and spatially, which prevents us from finding
cause-effect relationships between TPW and rainfall. The second
limitation is the cutoff over 70 mm of TPW; this is due to the lack
of base data used to estimate precipitation via satellite by using
Eq. 1, which could reproduce non-physical effects over 70 mm.
These two limitations can be overcome with future studies on the
current topic, using other non-satellite techniques, and obtaining
data that allow continuous series in space and time, in order to
determine the cause-effect dynamics between TPW and intense
rain, as well as over the ocean and land.

There are several techniques to measure TPW with high
confidence over land, such as differential absorption LiDAR
(Spuler et al., 2015) and atmospheric emitted radiance, among
others. However, the most recommended is to estimate TPW
via tropospheric delays derived from the Global Positioning
System (GPS), which is proportional to the atmospheric TPW
content, and can be measured with high accuracy (±2 mm) in all
meteorological conditions, at low cost and with high resolution
(15 min) (Businger et al., 1996; Walpersdorf et al., 2007; Jade
and Vijayan, 2008). The rainfall quantification for a specific
studied location would be improved by contrasting these GPS-
TPW values with rainfall in situ measurements and by finding
empirical relationships between them (Adams et al., 2013; Kuo
et al., 2017; Sapucci et al., 2019).

The insights gained from this research may be useful to future
studies over land that could be used to prove the relationships
found between TPW and intense rain (Eq. 3) and its implications
over different climates and orographic conditions. Even so,
having reliable TPW data on land could, on its own, improve
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the forecast of regional mesoscale NWP, where TPW could be
adjusted in situ, creating an assimilation process that will improve
the forecast modeling in all of the meteorological variables with a
low computational cost.
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