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Precipitation estimates with high accuracy and fine spatial resolution play an important
role in the field of meteorology, hydrology, and ecology. In this study, support
vector machine (SVM) and back-propagation neural network (BPNN) machine learning
algorithms were used to downscale the Integrated Multi-satellite Retrievals for Global
Precipitation Measurement (GPM) (IMERG) data at daily scale through four events
selected from 2017 and 2018 by establishing the relationships between precipitation
and six environmental variables over Zhejiang, Southeastern China. The downscaled
results were validated by ground observations, and we found that (1) generally, the SVM-
based products had better performance and finer spatial textures than the BPNN-based
products, the multiple linear regression (MLR)-based products, and the original IMERG;
(2) all downscaled products decreased the degree of overestimation of the original
IMERG at heavy-precipitation regions to a certain extent; (3) for heavy-precipitation
events in the plum rain season, the downscaled products based on SVM and BPNN
both improved prediction accuracy compared to the MLR-based products and the
original IMERG considering the validations against ground observations. R2 maximally
increased from 0.344 to 0.615 for the SVM-based products and from 0.344 to 0.435
for the BPNN-based products compared to the original IMERG; and (4) for typhoon
precipitation events, the SVM-based products still showed better accuracy with R2

maximally increased from 0.492 to 0.615 compared to the original IMERG. In contrast,
the performance of BPNN-based products was not satisfying and showed no significant
differences with the performance of MLR-based products. This study provided a
potential solution for generating downscaled satellite-based precipitation products at
meteorological scales with finer accuracy and spatial resolutions.
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INTRODUCTION

Precipitation participates in the key process of global water
exchange and energy cycle. It affects global climate formation
and regional weather change and is the driving force behind
hydrological processes such as floods and storms (Guo et al.,
2004; Teng et al., 2014; Ma et al., 2019). High-precision
precipitation data are crucial for weather forecast, disaster
monitoring, water resource management, and vegetation growth.
Although rain gauge is the most straightforward and simplest way
to obtain precipitation information and can accurately monitor
the precipitation within a limited radius (∼5 km) around the
station, it is unenforceable to provide the spatial precipitation
distribution continuously and precisely at a large scale due to
the scarce and uneven distribution of stations limited by the
topography, climate, and economy factors in some areas.

Satellite-based precipitation products published by the Global
Precipitation Climatology Project (GPCP) (Huffman et al.,
1997, 2001, 2009), the Global Satellite Mapping of Precipitation
(GsMaP) project (Kubota et al., 2007), the Tropical Precipitation
Measuring Mission (TRMM) project (Kummerow et al.,
1998, 2000; Huffman et al., 2007), the Global Precipitation
Measurement (GPM) Core Observatory project, and so on
can continuously provide reasonable spatiotemporal resolution
precipitation information with wide space coverage and high-
frequency revisit rate. They gradually become important ways of
precipitation data acquisition. As the successor of TRMM, GPM
carries two key components: the dual-frequency precipitation
radar operating at the Ku band (13.6 GHz) and Ka band
(35.5 GHz) and the conical-scanning multichannel microwave
imager operating between the frequencies of 10 and 183 GHz,
which makes it have more sensor packages compared to TRMM
instruments and thus provides more precise and larger coverage
data (Hou et al., 2014). IMERG is the level 3 product of
GPM at a spatial resolution of 0.1 and temporal resolution of
30 min. There are three kinds of IMERG products including
a near-real-time product (Early Run), a 6-h-latency product
(Late Run), and a post-real-time product with 18-h delays
(Final Run). In some localized regions and basins, IMERG
products are still too coarse for application and parameterization
of hydrological and meteorological models although they can
provide abundant precipitation estimates (Tao and Barros, 2010).
Therefore, it is essential to acquire precipitation data at finer
spatial scales (1 km).

In recent years, multitudinous researches have adopted
different models based on the relationships between satellite-
based products and environmental factors to obtain downscaled
precipitation estimates (Guan et al., 2009; Immerzeel et al., 2009;
Jia et al., 2009; Xu et al., 2015; Ma et al., 2017a, 2018; Chen
et al., 2019). Immerzeel et al. (2009) established exponential
correlation between precipitation and the normalized difference
vegetation index (NDVI). To consider the terrain effect, Guan
et al. (2009) applied a cluster-optimizing regression approach
to downscale precipitation data in the mountainous terrain.
Jia et al. (2009) downscaled the TMPA product by a multiple
linear regression (MLR) function to consider the impacts of
NDVI and the digital elevation model (DEM) synthetically,

while Schultz and Halpert (1994) suggested to use both NDVI
and land surface temperature (LST) to improve the accuracy of
downscaled results. To consider the non-stationary relationships
between precipitation and NDVI/DEM spatially, Xu et al.
(2015) introduced the geographically weighted regression (GWR)
model with moving-window regression to downscale TRMM
products. Based on the works of Xu et al. (2015), Ma
et al. (2017a) applied the Cubist model to combine various
environment variables and remove systematic anomalies of
TRMM data. As traditional statistical downscaling approaches,
quantile mapping (Boé et al., 2007; Themeßl et al., 2012; Maraun,
2013) and copula-based methods (van den Berg et al., 2011;
Vogl et al., 2012; Haese et al., 2017) were also widely used
to get downscaled precipitation estimates. Lorenz et al. (2018)
used spatial correlation (correlograms) to derive the transfer
function of the Gaussian copula to simulate ensembles of
daily precipitation fields based on daily regional climate model
(RCM) precipitation simulations from 1971 to 2000. Yang et al.
(2019) made an intercomparison of three quantile mapping-
based downscaling techniques including bias correction and
spatial downscaling (BCSD), bias correction and climate imprint
(BCCI), and bias correction constructed analogues with quantile
mapping reordering (BCCAQ) for daily precipitation over China.
For IMERG products, there are numerous studies that evaluated
the quality and precision of the data. However, a few focused
on the downscaling performance. In order to get accurate
daily precipitation data, Chen et al. (2019) used an integrated
downscaling-fusion framework to derive downscaled IMERG
products. Ma et al. (2018) proposed a new algorithm called
geographically moving window weight disaggregation analysis
(GMWWDA) to obtain ∼1-km and hourly IMERG products
using DEM or multiple cloud properties as auxiliary data.
Based on the relationships between precipitation and cloud
optical and microphysical properties, Sharifi et al. (2019) adopted
three (MLR, artificial neural networks, and spline interpolation)
approaches to downscale IMERG V05B final-run products.

As mentioned above, there are few downscaling researches on
IMERG data (Ma et al., 2018; Chen et al., 2019) that have explored
at meteorological scales (e.g., daily scale). And the downscaling
methods of these researches are mostly based on statistical
or geographic models with few machine learning algorithms
applied. In order to explore the feasibility of machine learning
algorithms in downscaling IMERG data at daily scale and obtain
high-accuracy and spatial resolution precipitation estimates, two
machine learning methods, support vector machine (SVM) and
backpack neural network (BPNN), and the traditional method
of MLR were introduced as the downscaling models. DEM, air
pressure (PRS), air temperature (TEM), maximum wind speed
(WIN), vapor pressure (VAP), and relative humidity (RHU)
were used as auxiliary data to obtain downscaled precipitation
results (1 km and daily) for the IMERG V06 final-run products
in heavy-precipitation events in the plum rain season and
extreme-precipitation events during the passage of typhoons over
Zhejiang Province.

The objectives of this study were as follows: (1) to obtain
downscaled results based on BPNN and SVM and compare
the accuracy with MLR-based results and the original IMERG;
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(2) to explore the feasibility and capability of the two machine
learning models on spatially downscaling IMERG at daily scale by
validations against rain gauges; and (3) to generate precipitation
estimates with high precision and fine spatial resolution based on
downscaled results.

STUDY AREA AND DATASETS

Study Area
This study focuses on Zhejiang Province (Figure 1) between
118◦01′–123◦08′E and 27◦01′–31◦10′N in the southeast coast of
China. This region occupies an area of approximately 104,141
km2, and the topography is complex with elevation varying from
sea level to 1,922 m and a ladder-like slope declining from
the southwest to northeast. There are three main landforms
in Zhejiang Province: mountains in the southwest, hills in
the middle, and low-lying alluvial plains with dense water
networks in the northeast. This region has a typical subtropical
climate accompanied by significant monsoon and abundant
precipitation. The mean annual precipitation is between 980 and
2,000 mm, and the number of rainy days is up to 180 in a
year. Sixty-nine percent of total precipitation occurs from May to
December, showing an uneven temporal distribution. The annual
average temperature varies between 15 and 18◦C, with the highest
temperature in July and the lowest in January. Due to its unique
geographical location and climatic conditions, Zhejiang Province
has always been prone to being attacked by various kinds of
meteorological disasters and is one of the most seriously affected
areas by typhoons, rainstorms, floods, and droughts in China (Jin
et al., 2017). Therefore, it is necessary and important to study the
spatial pattern and characteristic of precipitation in this region by
utilizing high-precision precipitation data.

IMERG
As research-level products, the IMERG V06 final-run datasets
have the best quality and accuracy and are released by the
GPM mission, which is an international satellite network, to
provide a new generation of precipitation observations globally as
the successor of TRMM. These datasets intercalibrated, merged,
and interpolated all constellation microwave and infrared-based
sensors, together with other potential precipitation estimators at
fine resolutions for the TRMM and GPM eras over the entire
globe and then are calibrated by monthly gauge precipitation
data (Hou et al., 2014). The 0.1◦ and half-hourly products used
in this study have a coverage range from 90◦N to 90◦S and
provide precipitation information from June 2000 to present.
We downloaded the datasets between 2017 and 2018 from http:
//pmm.nasa.gov/data-access/downloads/gpm directly and then
summed up 30-min data to obtain the daily precipitation.

Ground Observations
The daily ground observations of 2017 and 2018 were
downloaded from the China Meteorological Data Sharing
Network1. This dataset provides hourly precipitation values

1http://www.nmic.cn/data/detail/dataCode/A.0012.0001.html

(Preci, mm) measured by rain gauges for validations of the
downscaled products, as well as the hourly atmospheric variables
data including air pressure (PRS, hPa), maximum wind velocity
(WIN, m/s), air temperature (TEM, ◦C), relative humidity (RHU,
%), and vapor pressure (VAP, hPa) for establishing relationships
with precipitation. All ground observations came from 68
stations (Figure 1) in the study area, and the hourly dataset was
aggregated to daily scale.

Topographic Data
We employed DEM as the land surface factor to downscale
IMERG V06 final-run products. The DEM data of Zhejiang
Province were download from the Shuttle Radar Topography
Mission (STRM)2 with the original resolution of 90 m. SRTM
is launched by NASA and the National Geospatial-Intelligence
Agency (NGA) in February 2000 and provides high-spatial-
resolution data with a wide coverage between 56◦S and 60◦N
globally (Rodriguez et al., 2006). The downloaded DEMs were
seamlessly mosaicked and resampled to 10 and 1 km by using the
bilinear method.

MATERIALS AND METHODS

Support Vector Machine
Support vector machine put forward by Vapnik, 1998 is based
on the principle of structural risk minimization, which attempts
to obtain the minimized upper bound on the expected risk
(Tripathi et al., 2006). SVM has been widely used in solving
classification and regression problems, and it has a good ability
and performance to capture nonlinear regression relationships
between predictors and predictands, which makes it a suitable
choice for downscaling precipitation. SVM has been used
to downscale precipitation data at different scales and areas
(Anandhi et al., 2008; Chen et al., 2010; Raje and Mujumdar,
2011; Sachindra et al., 2018). The principle of SVM is to map
the data into a high-dimensional feature space so as to convert
the nonlinear solution in the low-dimensional input space into
a linear solution. The detailed introduction of SVM can be
found in Vapnik (2000).

Given n data pairs {(x1, y1), (x2, y2),..., (xn, yn)} as the training
samples where n is the dimension of input space, xi ∈ x are the
input vectors representing point values of six factors here, and yi
are output vectors denoting the IMERG data at the corresponding
points. The SVM regression equation can be given as

f (xi) = w∗∅ (xi)+ b (1)

where w is the corresponding weight vector, b is the constant bias,
and empty set is the transformation function to map the train
samples into a high-dimensional space; w and b are estimated by
minimizing the cost function ∂ε shown in Eq. 2, where ϑi and ϑi

∗

are slack variables and C is a positive real constant.

∂ε =
1
2
∗
||w||2 + C∗

n∑
i=1

(ϑi + ϑ
∗

i ) (2)

2http://srtm.csi.cgiar.org
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FIGURE 1 | Spatial distribution of 68 ground observation stations and DEM over Zhejiang, Southeastern China.

Equation 2 is constrained by the following two conditions:

yi − f (xi) ≤ ε+ ϑi; ·ϑi ≥ 0

f (xi)− yi ≤ ε+ ϑ
∗

i ; ·ϑ
∗

i ≥ 0

By introducing Lagrange multipliers ai and ai∗ and exploiting
the optimality restrictions, the generic equation of Eq. 1 can be
rewritten as Eq. 3.

f (xi) =
n∑

i=1

(ai − a
∗

i )
∗K
(
xi, xj

)
+ b (3)

where K(xi, xj) is the inner product kernel function to simplify
the computation. The kernel function chosen here was radial
basis function (RBF) expressed in Eq. 4. RBF is the most
frequently used kernel function in past downscaling researches.
It has more parameters and thus less numerical difficulties
compared to the polynomial kernel and can map the samples to a
higher-dimensional space to solve the nonlinear problems.

K
(
xi, xj

)
= exp(−

||xi − xj||
σ

2
) (4)

where σ is the width parameter of the RBF kernel and controls
the radial range of the function. An appropriate σ value can avoid
overfitting problems.

Back-Propagation Neutral Network
Backpack neural network designed by Rumelhart and McCelland,
1986 is a multilayer feedforward neural network based on the
error back-propagation theory. This network has been widely
used in various fields (Ghose et al., 2010; Yang and Luo, 2014;
Kong et al., 2016; Wu et al., 2019). BPNN contains three layers:
input, hidden, and output layers. And each layer includes several
neurons, and the hidden layer connects the input and output
layers through weights and thresholds, respectively. In this study,
there were seven neurons in the input layer, ten neurons in
the hidden layer, and one neutron in the output layer. DEM,
PRS, WIN, RHU, VAP, TEM, and the original IMERG were
the receiving information for the seven neurons in the input
layer. And the output layer’s neuron exported the fitting values
of precipitation. Figure 2 shows the architecture of the BPNN
model used in this study.

This BPNN model has two main procedures, feedforward
of input signals and back-propagation of errors. In the first
step, information in the input layer is processed by the
hidden layer and then transformed to the output layer, and
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FIGURE 2 | The architecture of the BPNN model.

values at every neuron are weighted and summed by the
purelin transfer function. If the outputs after processing fail
to reach the required accuracy, the second step is carried
out to continuously correct the weights and thresholds of
the network to minimize the error and obtain the optimal
fitting results.

Support vector machine and BPNN were used to downscale
IMERG data over Zhejiang Province at daily scale. The ground
observation datasets used here contain only 68 stations of
2017 and 2018 in Zhejiang Province. Two days were selected,
respectively, from 2017 and 2018 as precipitation events for the
research. For each precipitation event, an SVM model, BPNN
model, and MLR model were built. For detailed information
of MLR used here, interested readers are referred to Jia et al.
(2009). The four main procedures in the downscaling processes
are shown in Figure 3 and as follows.

(1) Firstly, at each station, we accumulated the hourly rain
gauge data into daily values and averaged the values of five
atmospheric factors of each day.

(2) Secondly, the above five atmospheric factors were
interpolated into 1- and 10-km grids by using the ordinary
kriging method based on ArcGIS 10.3. The DEMs were
also resampled to 1 and 10 km by using the bilinear
method to maintain spatial consistency with the original
IMERG. Then, all 10- and 1-km grids were converted into
point-based datasets. There are 978 points converted from
the 10-km grids over the whole study area.

(3) Thirdly, models were trained by using the 10-km dot-
values to build regression relationships between the
original IMERG data and six environmental variables for
each precipitation event. The 978 points were divided
into five equal parts randomly, and the ratio of the
number of points for the training dataset and validation
dataset was 4:1. The 10-km modelling results of the two
models for the selected four events can be seen in the
Supplementary Material.

(4) Finally, the fitting models were applied to 1-km dot-
values of six environmental variables to predict 1-km
precipitation for each precipitation event.
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FIGURE 3 | Flowchart of downscaling the original IMERG at daily scale.

FIGURE 4 | The precipitation of selected events based on ground observations at daily scale (red square marks represent the selected events).

Frontiers in Earth Science | www.frontiersin.org 6 June 2020 | Volume 8 | Article 146

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00146 June 8, 2020 Time: 20:30 # 7

Min et al. Spatially Downscaling IMERG

FIGURE 5 | Validations and comparisons of (A,B) the original IMERG in event 1 and event 3, (C,D) downscaled results by BPNN in event 1 and event 3, (E,F)
downscaled results by SVM in event 1 and event 3, (G,H) downscaled results by MLR in event 1 and event 3 against ground observations, and (I,J) boxplots of the
five precipitation datasets in event 1 and event 3 over Zhejiang Province.
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FIGURE 6 | Validations and comparisons of (A,B) the original IMERG in event 2 and event 4, (C,D) downscaled results by BPNN in event 2 and event 4, (E,F)
downscaled results by SVM in event 2 and event 4, (G,H) downscaled results by MLR in event 2 and event 4 against ground observations, and (I,J) boxplots of the
five precipitation datasets in event 2 and event 4 over Zhejiang Province.
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FIGURE 7 | The spatial patterns of (A,B) the original IMERG in event 1 and
event 3, (C,D) BPNN-based downscaled results in event 1 and event 3, (E,F)
SVM-based downscaled results in event 1 and event 3, and (G,H) MLR-based
downscaled results in event 1 and event 3 over Zhejiang Province.

RESULTS

Comparisons of the Downscaled Results
Based on SVM and BPNN With the
Original IMERG and MLR-Based
Downscaled Results
In this study, we separately selected 2 days based on the
daily precipitation observed by rain gauges as the downscaling
research objects in 2017 and 2018. Those 2 days in 1 year
represented a heavy-precipitation event in the plum rain season

(event 1 and event 3 in Figure 4) and an extreme-precipitation
event during the passage of a typhoon (event 2 and event 4
in Figure 4).

Heavy-Precipitation Events in Plum Rain Season
The plum rain season spanned from June 9 to July 5 in
2017 and June 13 to July 14 in 2018 at Zhejiang Province.
June 24 with a daily precipitation of 2,607.2 mm was selected
as the heavy-precipitation event for 2017 in this study. To
compare the performance of downscaled products and the
original IMERG, we validated them against ground observations
over the whole study area by coefficients of determination
(R2), mean absolute error (MAE), bias, and root mean square
error (RSME) (Immerzeel et al., 2009; Duan and Bastiaanssen,
2013; Xu et al., 2015; Ma et al., 2017b). Figures 5A,C,E,G
show the validations of the original IMERG, the BPNN-based
downscaled product, the SVM-based downscaled product, and
the MLR-based downscaled product in event 1, respectively.
The original IMERG had a good correlation with ground-based
observations (R2

∼0.649). Compared to the original IMERG,
the precipitation prediction accuracy was slightly improved by
the BPNN-based product and significantly improved by the
SVM-based product. And they both had increased R2 (0.014
for the former and 0.052 for the latter) and decreased bias
(7.550% for the former and 7.461% for the latter) and RMSE
(0.131 for the former and 1.605 for the latter). The MLR-
based product did not improve the accuracy considering the
R2. Figure 5I shows the numerical distribution characteristics
of five precipitation datasets. Compared to the original IMERG,
the deviations in the interquartile range were smaller for all
downscaled datasets considering the box widths. The median and
third quantiles of the SVM-based dataset were closer to those
of rain gauges than other precipitation datasets, indicating that
the SVM-based dataset was more accurate in predicting high
precipitation values. There was no significant differences in the
numerical distribution between the BPNN-based dataset and
MLR-based dataset.

June 30 with a daily precipitation of 960.6 mm was selected
as the heavy-precipitation event for 2018 in this study. Though
the four satellite-based products all slightly overestimated the
low precipitation values with relatively high biases (52.420%
for the original IMERG, 51.012% for the BPNN-based product,
52.917% for the SVM-based product, and 46.020% for the
MLR-based product, shown in Figures 5B,D,F,H, respectively).
The downscaled products based on machine learning methods
outperformed the original IMERG significantly, especially the
SVM-based product with R2 increased by 0.271, MAE decreased
by 2.756, bias decreased by 0.497%, and RMSE decreased by
4.786, shown in Figure 5F. While the MLR-based product slightly
outperformed the original IMERG considering the R2, bias,
and RMSE. Figure 5J portrays the statistical characteristics of
the five datasets; all satellite-based datasets had higher quartiles
than rain gauges, indicating that they might overestimate the
precipitation values. The BPNN-based dataset and MLR-based
dataset had the larger first quantiles than other datasets. These
two datasets had poorer performance in predicting the low
precipitation values. All downscaled datasets had smaller third
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FIGURE 8 | The spatial patterns of (A,B) the original IMERG in event 2 and
event 4, (C,D) BPNN-based downscaled results in event 2 and event 4, (E,F)
SVM-based downscaled results in event 2 and event 4, and (G,H) MLR-based
downscaled results in event 2 and event 4 over Zhejiang Province.

quantiles than the original IMERG, and they reduced the
degree of the overestimation of the original IMERG at high
precipitation values.

Extreme-Precipitation Events During the Passage of
Typhoons
As a coastal province, Zhejiang is vulnerable to typhoons which
bring a surge in precipitation. A typhoon named Kanu hit
Zhejiang from October 14 to 16 in 2017, and we chose the 15th
with a 3,472.8-mm daily precipitation to study the abilities of the
three satellite-based products in predicting extreme precipitation.

Figures 6A,C,E,G show the fittings of original IMERG, BPNN-
based product, SVM-based product, and MLR-based product
with rain gauges in event 2, respectively. The original IMERG,
BPNN-based product, and MLR-based product all had large
deviations from ground observations with relatively high bias
(more than 30%). However, the BPNN-based product and MLR-
based product both had slightly outperformed the original
IMERG with higher R2 and smaller bias shown in Figures 6C,G,
respectively. The SVM-based product greatly outperformed other
products considering all four indices (R2

∼0.615, MAE∼15.131,
bias∼17.062%, and RMSE∼25.898) shown in Figure 6E. The
boxplot in Figure 6I portrays the numerical distribution
characteristics of the five precipitation datasets. The SVM-
based dataset and the original IMERG had similar numerical
distribution characteristics with the rain gauges. While the
BPNN-based dataset and MLR-based dataset had smaller box
widths and smaller third quartiles, they had limited abilities to
estimate high precipitation values than other products.

The typhoon Lark hit the study area from August 1 to 4 in
2018, and August 2 with a 2,012.2-mm daily precipitation was
selected as the extreme event in this study. Figures 6B,D,F,H
portray the validations of four satellite-based products against
ground observations. The SVM-based downscaled product had
the best performance with the highest R2 (0.719) and lowest MAE
(16.672), bias (31.141%), and RMSE (20.306), then followed by
the original IMERG. The MLR-based product had the poorest
performance with the smallest R2 (0.340) and highest RMSE
(29.794) shown in Figure 6H. The BPNN-based product and
MLR-based product both had poorer performance compared
to the original IMERG considering the R2, MAE, and RMSE.
The boxplot in Figure 6J shows that rain gauges had plenty
low precipitation values than that being overestimated by all
satellite-based products considering the lower first and middle
quartiles. Besides, the MLR-based dataset and BPNN-based
dataset both had the higher first and middle quartiles than
other datasets. They had poorer performance in predicting low
precipitation values.

The Spatial Patterns of the Original
IMERG and Three Downscaled Products
The Spatial Patterns of Four Products in the
Heavy-Precipitation Events in Plum Rain Season
The ordinary kriging method was applied to interpolate the
downscaled point values into precipitation maps at 1-km spatial
resolution. Figures 7A,C,E,G show the precipitation spatial maps
of the original IMERG and three downscaled products in event
1. All satellite-based products had similar spatial patterns and
well captured the heavy precipitation in the midwestern area.
However, they all had overestimations against the rain gauges
shown in Figure 7, especially for the low-intensity precipitation
below 36 mm in the eastern regions. All downscaled products
had finer spatial resolution than the original IMERG; the BPNN-
based product and MLR-based product had highly similar spatial
distribution characteristics of precipitation. And they had less
precipitation spatial characteristics in the local details compared
to the SVM-based product and overestimated the precipitation
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in the surrounding areas of the heavy-precipitation regions
compared to the original IMERG.

Figures 7B,F show that the original IMERG and SVM-
based downscaled product had similar patterns with two heavy-
precipitation regions distributed obliquely from the northeast
to southwest and in the central-southern area, respectively.
The BPNN-based product and MLR-based product had highly
similar spatial patterns. The amount of precipitation of the
two products decreased from northwest to southeast with
the heaviest precipitation concentrated in the midwestern
corner. And they both overestimated the low precipitation
values below 10 mm compared to the original IMERG. There
were overestimations in the original IMERG when the actual
precipitation was above 35 mm, and all the downscaled products
slightly rectified the overestimation of the original IMERG at high
precipitation values.

The Spatial Patterns of Four Satellite-Based Products
in the Extreme Events During the Passage of
Typhoons
Figure 8 shows the spatial precipitation maps of the four
IMERG products in event 2 and event 4. In event 2, all
satellite-based products (Figures 8A,C,E,G) well captured the
heavy precipitation in the northeastern regions though they
overestimated the daily precipitation values below 20 mm.
The similar spatial patterns with high precipitation values
concentrated in the northeast coast regions for the original
IMERG and SVM-based products were quite inconsistent with
the other two products. The BPNN-based product and the MLR-
based product had highly similar spatial patterns. They both had
higher estimates than the original IMERG in the southeastern
coastal areas, and the precipitation estimates diminished from
the east to west.

In event 4, all products (Figures 8B,D,F) had similar
spatial patterns with precipitation decreased from the northeast
to southwest. And they all well captured the heavy daily
precipitation in the northeast coast regions. However, they still
overestimated the low precipitation values below 17 mm. Besides,
the BPNN-based product and MLR-based product overestimated

the precipitation more significantly in the surroundings of the
northeast coast regions with heavy precipitation.

DISCUSSION

The Contributions of Environment
Variables to Downscaled Results
We used six environmental variables to downscale the original
IMERG at daily scale. The contribution of each variable to the
downscaled results in four precipitation events are shown in
Table 1 in the form of Pearson correlation coefficients (CC). For
event 1 and event 3, TEM and RHU had greater contributions
considering the absolute value of CC, which was irrelevant with
the downscaling models. The plum rain season for Zhejiang
Province usually occurs from June to July in the hot summer with
typical characteristics of high air humidity and air temperature.
So there were strong correlations between precipitation events
and TEM as well as RHU in this stage. Therefore, TEM and
RHU were crucial for downscaling IMERG data in the plum rain
season. For event 2 and event 4, PRS, RHU, and VAP contributed
more than other variables. Moreover, VAP tended to have more
contribution in the BPNN model and RHU in the SVM model.
The contribution of DEM was larger in event 2 and event 4
than in event 1 and event 3 for all models. Typhoons were
tropical cyclones with huge amounts of heat and water vapor
and brought sudden heavy precipitation whose distribution was
susceptible to the effect of terrain friction. Therefore, DEM, PRS,
and VAP were critical variables for downscaling IMERG during
the passage of typhoons. The contribution of DEM was probably
underestimated by the values of CC in Table 1.

Environmental variables used in this study affected not only
the numerical characteristics of downscaled results but also the
spatial characteristics of the downscaled precipitation map. Take
event 1 for example, the texture and spatial patterns of the
three downscaled maps in Figures 9A–C were highly consistent
with those of maps of two highest contribution factors (TEM
and RHU) in Figures 9D,E). Compared to the BPNN-based
map and MLR-based map, the SVM-based map had finer local

TABLE 1 | The Pearson correlation coefficients (CC) between the six factors and the two downscaled datasets in four precipitation events (the two largest absolute CC
values were in bold for each event).

PRS RHU TEM VAP WIN DEM

Event 1 BPNN 0.077 0.851 –0.920 −0.675 −0.136 −0.020

SVM 0.071 0.741 –0.806 −0.593 −0.131 −0.015

MLR 0.075 0.841 –0.922 −0.686 −0.142 −0.024

Event 3 BPNN −0.138 0.661 –0.896 −0.453 −0.285 0.061

SVM −0.062 0.513 –0.645 −0.312 −0.247 −0.034

MLR −0.084 0.662 –0.862 −0.427 −0.282 −0.060

Event 2 BPNN 0.605 0.208 0.171 0.730 0.592 −0.237

SVM 0.511 0.490 0.121 0.414 0.481 −0.457

MLR 0.715 0.673 0.107 0.633 0.687 −0.621

Event 4 BPNN 0.567 0.912 −0.664 0.818 0.633 −0.466

SVM 0.451 0.756 −0.549 0.674 0.507 −0.375

MLR 0.568 0.919 −0.664 0.826 0.613 −0.451
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FIGURE 9 | The spatial patterns of the BPNN-based product (A), SVM-based product (B), MLR-based product (C), TEM (D), RHU (E), and DEM (F) in event 1.

textures and more complicated local spatial patterns, which
were significantly similar with the DEM map in Figure 9F.
The reason might be that DEMs had high original resolution
(90 m) and the topography of the study area is complicated.
The CC values might not well reflect the contribution of DEM
to some extent. The five atmospheric indicator datasets for
model training and prediction were generated by interpolation of
ground observations of 68 stations. It was too sparse for the whole
study area. Therefore, the 1-km maps of those indicators, the
BPNN-based downscaled products and the MLR-based products
had relatively simple local textures and spatial patterns. More
datasets of the environmental variables are needed for finer
precipitation estimates in future studies.

It is vital to select the optimal environmental variables
according to the characteristics of precipitation events and
downscaling models to improve the precision and quality of
the downscaled products in future studies. In this research,
TEM and RHU were prime variables for the two models in
heavy-precipitation events in the plum rain season. While PRS,
RHU, and VAP were preferred in typhoon precipitation events.
Moreover, RHU was more important in the BPNN model and
VAP in the SVM model.

Limitations and Advantages of
Downscaled Products
The downscaled products based on the two machine learning
methods had finer spatial resolution and higher accuracy
(except for the BPNN-based product in event 2) in predicting
precipitation at daily scale compared to the original IMERG.

Figure 10 shows that the SVM-based precipitation estimates
were closer to the original IMERG than other precipitation
estimates. Besides, all downscaled products had smaller
estimates than the original IMERG at high precipitation
values, indicating that they might rectify the inherent defect
of overestimation of the original IMERG at high precipitation
values to a certain extent. However, the overestimation of the
original IMERG was probably overcorrected in the BPNN-
based products and MLR-based products, which had poorer
performance compared to the SVM-based products. For
low precipitation values, the overestimation of the original
IMERG was not reduced by the downscaled products and
even was exacerbated slightly by the BPNN-based products
and MLR-based products, which indicated that both models
had limited performances in rectifying the overestimations
of the original IMERG. In future studies, improved SVM or
BPNN algorithms or other models are needed to solve this
overestimation problem.

This study has potential contribution for downscaling
precipitation products at daily scale by using machine learning
methods. However, some improvements are still needed in
future studies. First, heavy precipitation brought by typhoon
and plum rain season is mainly concentrated in a few days,
and the duration of typhoon or plum rain season within a
year is very short. Therefore, the number of samples available
will be limited. Only 2 days were selected as the precipitation
events for a year, making the conclusions poorly representative,
and the models based on selected events may also be less
generalizable, and parameter instability may occur when applied
to other events. Second, DEM might have great contribution
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FIGURE 10 | The scatterplots of downscaled results by BPNN, SVM, and MLR against the original IMERG data in four precipitation events [(A) for event 1, (B) for
event 2, (C) for event 3, and (D) for event 4].

to the spatial distributions of downscaled products as shown
in see sections “The Contributions of Environment Variables
to Downscaled Results” and “Limitations and Advantages of
Downscaled Products.” Therefore, more representing rain gauges
are needed for verification in the areas where precipitation is
highly affected by the terrain. We hope that future researchers
will use richer ground observation datasets to further verify the
conclusions of this study.

CONCLUSION

In this study, we applied BPNN and SVM approaches to
downscale IMERG data at daily scale based on the relationships
between precipitation and six environmental variables. The
downscaled results were validated by ground observations and
compared with the MLR-based results and the original IMERG.
We found the following:

(1) For heavy-precipitation events in the plum rain season,
downscaled products based on SVM and BPNN both
improved prediction accuracy compared to the original

IMERG and MLR-based products. And SVM-based
results had better performance than BPNN-based results
considering the four indices.

(2) For extreme-precipitation events caused by typhoon, the
SVM-based products still had the best prediction accuracy
considering the four indices. The performances of BPNN-
based products and MLR-based products showed no
significant difference, and they both performed slightly
less satisfactorily, even worse than the original IMERG.

(3) The spatial precipitation distribution maps show that
SVM-based products had more similar spatial patterns
with the original IMERG than other products, and all
downscaled products reduce the degree of overestimation
of the original IMERG at high precipitation values.
Besides, they all had finer spatial resolution and more
spatial precipitation details in the local scale compared
to the original IMERG, and that was better reflected by
SVM-based products. BPNN-based products and MLR-
based products had highly similar spatial patterns, and
they both had larger overestimations at low precipitation
values compared to the original IMERG.
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These findings can provide preliminary references for
downscaling IMERG at meteorological scales using machine
learning approaches. And we hope that more ground observation
datasets can be added into such downscaling models in
the future related studies to further enrich the findings
proposed in this study.
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