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This paper develops a new method for the diagnosis and prediction of the evaporation

duct heights on the sea, which has certain reference significance for the study of the

evaporation ducts. Based on traditional diagnostic and predictive models of evaporation

duct heights, a new diagnostic model is proposed. By determining the overall Richardson

number Rib, the Monin-Obukhov (M-O) length L and the wind speed characteristic

parameter u∗, temperature characteristic parameter θ∗ and humidity characteristic

parameters q∗ are calculated, and then the evaporation duct height is diagnosed. Taking

the diagnosed heights as a time series, and using the support vector regression (SVR)

algorithm improved by a simulated annealing operator, then the time series is analyzed

by taking three consecutive sample steps as input and the next sample step as output in

order to develop an algorithm for predicting future heights. Finally, the prediction results

are compared with those from the traditional auto-regressive (AR) algorithm and classical

SVR algorithm to identify the advantages and disadvantages of the improved SVR

algorithm. The results show that the root-mean-square error (RMSE) of the traditional

AR, the classical SVR and the improved SVR algorithms is 0.60, 0.45, and 0.38, and

the mean absolute percentage error (MAPE) of the three algorithms is 7.79%, 6.10%

and 4.78%, respectively. The prediction error of the improved SVR algorithm is 37% less

than that of the traditional AR algorithm and 15% less than that of the classical SVR

algorithm, signifying an improvement in its prediction capability.

Keywords: evaporation duct heights, new diagnostic height model, AR algorithm, improved SVR algorithm, time

series

INTRODUCTION

The propagation of electromagnetic waves in the atmosphere is affected not only by absorption and
scattering by molecules and aerosol particles but also by refraction (Kang et al., 2014). Abnormal
refraction, such as negative refraction, super refraction, and trapping refraction, can cause
abnormal propagation of electromagnetic waves (Kang et al., 2014). Under trapping refraction
conditions, part of the electromagnetic wave is captured within a certain thickness of atmosphere
and propagates back and forth between the upper and lower layers, just like waves propagating in
a metal pipe; Regions of atmosphere causing this sort of propagation are called atmospheric ducts
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(Kang et al., 2014). There are four kinds of atmospheric
ducts: surface ducts, surface-based ducts, elevated ducts, and
evaporation ducts (Kang et al., 2014). Evaporation ducts often
appear close to the sea surface and it is formed by the evaporation
of sea water, which leads to the rapid change of humidity in
the vertical direction, and then produces the evaporation ducts.
The evaporation ducts have an important influence on the
propagation of electromagnetic waves, so they are a vital factor
affecting the communication systems of ships and low altitude
airborne radar (Shi et al., 2019). The height of an evaporation
duct refers to its top height, which is numerically equal to the
thickness of the evaporation duct layer (Ivanov et al., 2007).
It is the key parameter in determining the refractive index
profile of the atmosphere in lower layers and has an important
reference significance for the propagation loss of electromagnetic
waves. Babin et al. (1997) proposed and tested a new model
that uses recently refined bulk similarity expressions developed
for the determination of the ocean surface energy budget
in the Tropical Ocean Global Atmosphere Coupled Ocean-
Atmosphere Response Experiment. Tian et al. (2009a) studied
the applicability of evaporation duct Model A in Chinese sea
areas by using modified refractivity profiles and meteorological
data measured during recent years. To evaluate a method for
detecting evaporation ducts, Yang et al. (2016) used hydrological
and meteorological data from the South China Sea to compare
and analyze measured and predicted evaporation duct heights.
Babin and Dockery (2002) developed a wave-riding catamaran
with a mast-traveling sensor package (profiling buoy) to generate
time-averaged modified refractivity (M) profiles that were then
compared with those determined from four evaporation duct
models based on the surface layer theory of Liu, Katsaros, and
Businger (LKB). Burk et al. (2003) investigated the conditions
under which atmospheric island wakes form leeward of Kauai,
Hawaii, by using idealized numerical simulations and real
forecast data from the U.S. Navy’s Coupled Ocean-Atmosphere
Mesoscale Prediction System (COAMPS). Tian et al. (2009b)
analyzed model sensitivity to air-sea temperature difference,
wind speed and relative humidity, and studied the applicability
of their model in semitropical sea areas using measured data
from recent years. Based on a theoretical derivation, Sheng and
Huang (2009, 2010) used simulated and measured radar echo
data to retrieve evaporation duct parameters, and analyzed the
inversion results and the anti-noise capability of the inversion
system. Zhang et al. (2016) and Xie et al. (2017) analyzed
the variation of arctic polar vortex in the stratosphere, which
may affect the generation of atmospheric ducts. Mai et al.
(2020) studied the spatiotemporal distribution of atmospheric
ducts in Alaska. Li et al. (2014) proposed a non-iterative
scheme using multiple regression to produce similar results
to those from classical iterative computation. Liu et al. (2019)
compared the sensitivity of four evaporation duct prediction
models to meteorological factors, and calculated evaporation
duct heights using the four models, based on meteorological
observations of the South China Sea, providing a theoretical
basis and practical experience for future applications. In order
to improve the applicability of the Babin model, Yu et al. (2015)
performed a theoretical derivation of the model and conducted

simulations to analyze its sensitivity to input parameters. Based
on atmospheric boundary layer theory, Liu et al. (2001) studied
a theoretical formula for estimating the heights of evaporation
ducts using similarity theory, with pseudo refractive index as
the similarity parameter. Paulus (1985) applied the P-J model of
evaporation ducts in operational and climatological assessments
of propagation and examined the sensitivity of the model to
meteorological measurements.

As discussed above, there have been many studies on
diagnostic model calculations of heights of evaporation ducts
over the ocean surface. The common models are the P-J model
(Paulus, 1985), the Babin model (Babin et al., 1997), and the
Naval Postgraduate School (NPS) model (Babin and Dockery,
2002). In addition, Sheng and Huang (2009, 2010) used radar
echo to reverse the height of evaporation ducts. At present,
traditional auto-regressive (AR) algorithms are mainly used
to predict the heights of evaporation ducts (He et al., 2018).
However, with the development of artificial intelligence in
recent years, machine learning is being used more and more in
meteorological prediction (Tag and Peak, 1996; Bankert et al.,
2002; Wang et al., 2010; Lee et al., 2014; Rhee and Im, 2017;
Czernecki et al., 2018). For example, Wang et al. (2010) predicted
wind speeds using SVR. Xue et al. (2009) introduced the theory
of the SVR, and developed an optimal meteorological prediction
model based on SVR with genetic algorithms. Ham et al. (2019)
showed that a statistical forecast model employing a deep-
learning approach produces skillful El Niño-Southern Oscillation
(ENSO) forecasts for lead times of up to one and a half years.
Ebtehaj and Bonakdari (2016) proposed a novel method based on
a combination of SVR and the firefly algorithm (FFA) to predict
the minimum velocity required to avoid sediment settling in pipe
channels. Besides, some new optimization algorithms can be seen
from Wang et al. (2019), Zhao et al. (2019), and Chang et al.
(2020). However, little research has so far been carried out on the
prediction of evaporation duct heights using machine learning,
so this is a key theme for the ongoing study of evaporation ducts.
The traditional prediction method is AR method, which is a
linear method. So this paper attempts to use SVR which is a non-
linear method to predict evaporation duct heights. After that, we
use the simulated annealing operator to improve SVR and apply
it to the prediction of evaporation duct heights. Finally, the three
prediction results are compared and analyzed to determine which
is the best.

In this paper, a new diagnostic model of evaporation duct
height, the Liuli 2.0 model, is proposed. High-resolution global
positioning system (GPS) sounding data (He et al., 2020) and
sea surface temperature (SST) data from the DMSP satellite
from 2008 to 2009 over Hawaii are selected as the observational
dataset. Based on the new model, the heights of evaporation
ducts near the station at Coordinated Universal Time (UTC) =
12:00 are diagnosed on each day. Taking the diagnosed heights of
evaporation ducts as a time series, and using the SVR algorithm
improved by the simulated annealing operator, the first three
quarters of the time series which has 549 samples is selected
as training data. For each time step, three consecutive time
steps are taken as input and the next time step as the output
predicted evaporation duct heights. The last quarter of the time
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series which has 182 samples is then used as the test sample,
using RMSE and MAPE to evaluate the prediction by comparing
the predicted value with the real value. Finally, the prediction
results of the improved SVR algorithm are compared with
those of a traditional AR algorithm and classical SVR algorithm
to identify the advantages and disadvantages of the improved
SVR algorithm. The new diagnosis and prediction method will
provide a new method for studying the evaporation duct heights,
which has certain reference significance for the study of the
evaporation ducts.

ATMOSPHERIC DUCT DATA

Atmospheric Duct Definitions
Atmospheric refraction in radio meteorology refers to the
bending of electromagnetic waves propagating in atmospheric
media. The degree of refraction can be measured by the refractive
index n (Kang et al., 2014), which is defined as the ratio of the
propagation velocity c (speed of light) of a radio wave in free
space to the propagation velocity v in the medium, as follows:

n =
c

v
(1)

The normal value of the atmospheric refractive index at the
Earth’s surface is generally 1.00025−1.0004 (Kang et al., 2014).
Because of the small departure from unity, n is not convenient
for practical application in the study of radio wave propagation.
Therefore, the refractivity N of the atmosphere is defined (Kang
et al., 2014) as follows:

N = 77.6
T ×

(

p+ 4810e
T

)

, (2)

where p is the atmospheric pressure (hPa), T is the atmospheric
thermodynamic temperature (K), and e is the vapor pressure
(hPa). The atmospheric refractivity N near the surface generally
varies between 250 and 400 (Kang et al., 2014). As the
atmospheric pressure and water vapor decrease rapidly with
increasing altitude, while the temperature decreases slowly, the
atmospheric refractive index or refraction generally decreases
with increasing height (Kang et al., 2014). When the distance
of the propagation of the electromagnetic waves is short, the
surface of the Earth can be approximated as a plane, but
when this distance is long the curvature of the Earth must be
considered. Treating the surface of the Earth as a plane means
that the atmospheric refractivity gradient and its effect on the
propagation of the electromagnetic waves can be evaluated more
easily; in this case the atmospheric corrected refractivityM (Kang
et al., 2014) is defined as follows:

M = N + 0.157Z = 77.6
p
T + 3.73× 105 × e

T2 + 0.157Z (3)

where M is a dimensionless number. For statistical convenience,
M is used as the variable under consideration. p, T, e, and
Z are the atmospheric pressure (hPa), temperature (K), vapor

FIGURE 1 | Atmospheric duct definitions: (A) surface duct; (B) surface-based

duct; (C) elevated duct; (D) evaporation duct. (A–C) usually appears over

land. The difference between (B) and (C) is that the atmospheric corrected

refractivity M at the second inflection point of (B) is smaller than that at the

ground, while (C) is larger than that at the ground. (D) usually appears over the

ocean and its height h does not exceed 40m.

pressure (hPa), and height above ground (m), respectively. The
lowest height at which the atmospheric corrected refractivity M

satisfies dM
dz

< 0 is defined as the bottom of the atmospheric

duct layer. Above this, the lowest height at which dM
dz

> 0 is
defined as the top of the atmospheric duct layer (Kang et al.,
2014). The difference between these two heights is defined as
the thickness of the atmospheric duct and is represented by H.
The difference in atmospheric corrected refractivity M between
the bottom and the top of the atmospheric duct layer is defined
as the intensity of the atmospheric duct, represented by 1M.
According to the changes in M with height, atmospheric ducts
are primarily divided into four categories: surface ducts, surface-
based ducts, elevated ducts, and evaporation ducts; as illustrated
in Figure 1.

Preprocessing of Atmospheric Duct Data
The meteorological data used in this paper are high-resolution
radiosonde data from the global telecommunication system and
inversion data from the DMSP satellite. The data location is
an observation station in Hawaii (U.S. state), with longitude
and latitude (155.1◦W, 19.7◦N). Data are taken daily at UTC
= 12:00 from 2008 to 2009. The high-resolution sounding data
includemeteorological parameters such as temperature, pressure,
humidity, and wind at the height of the sounding balloon. The
vertical resolution is 10–80m below 100m and 30–300m at
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100–1,000m, and the typical thicknesses of atmospheric ducts
are between tens of meters and hundreds of meters, so these
sounding data are appropriate for studying atmospheric ducts.
The SST data from the DMSP satellite were provided by NOAA,
with a spatial resolution of 0.25◦ × 0.25◦ and a temporal
resolution of 3 h. The selected ocean area is about 1,000m
away from the station. First, the temperature, pressure, relative
humidity, and wind speed at a height of 10m are extracted
from the high-resolution sounding data for each day. Then these
data and the corresponding SSTs are put into the new height
diagnostic model to diagnose the heights of evaporation ducts at
this time. Finally, all calculation results are recorded as a time
series X and the three points smoothing is then used to carry
out low-pass filtering to get a new series X′. Specific methods
are listed in section Preprocessing of Input Data. The series X′

obtained after smoothing is used for analysis and prediction by
the traditional AR algorithm and the SVR algorithm improved
by the simulated annealing operator. Considering the rapid
change of the weather at sea, the influence of the ocean
environment, measurement error, and turbulence, it is necessary
to preprocess the meteorological data before using the new Liuli
2.0 model. Firstly, abnormal data are eliminated: specifically,
the mean square deviation σ of the meteorological data is
calculated, any data where the absolute difference between the
data value and the average value is greater than 3σ are marked
as an “abnormal value” and removed, and they are replaced
using interpolation.

A NEW DIAGNOSTIC MODEL FOR
EVAPORATION DUCT HEIGHTS: THE LIULI
2.0 MODEL

Introduction to the Liuli 2.0 Model
In the Liuli 2.0 model, the input parameters are atmospheric
temperature, relative humidity, wind speed and pressure at a
certain height, and SST. The height of the evaporation duct
is obtained by introducing the K-theory flux observation
method into the atmospheric refractive index equation.
The difference between this model and the traditional
model is that this model avoids the previous method
of setting an initial value for the iterative calculation
to determine the M-O length L and the characteristic
parameters u∗, θ∗, and q∗, and instead selects a variable
ξ = z

L through the size of the overall Richardson number
Rib, then uses the size of ξ to determine these characteristic
parameters, which can improve the stability and efficiency of
the calculation.

Flux Algorithm Calculation Scheme
At present, most flux calculation schemes need to be
iterative and have low accuracy (Fairall et al., 2003). The
non-iterative scheme adopted by the Liuli 2.0 model is
similar to the classical iterative method. It uses multiple
regression, which makes the calculation scheme applicable
to a wide roughness range. The parameterization scheme
depends on the atmospheric stratification. Under stable

TABLE 1 | The eight categories divided according to the values of z/z0 and z/z0t.

Category z/z0 z/z0t

1 10–160 0.607–100

2 160–105 0.607–100

3 10–80 100–107

4 80–105 100–107

5 10–40 107-1011

6 40–105 107-1011

7 10–40 1011-1.07×1013

8 40–105 1011-1.07×1013

conditions, the scheme is divided into eight different
categories according to the values of z/z0 and z/z0t ,
Where z0 is aerodynamic roughness length and z0t is
thermodynamic roughness height (Li et al., 2014), as shown in
Table 1.

Then Ribcp is calculated according to the category
corresponding to the values of z/z0 and z/z0t :

Ribcp =
∑

Cmn log(LOM)
m
(LOH − LOM)n, (4)

LOi = log(z/z0i). (5)

Values of Ribcp and Cmn for all categories are given in Li et al.
(2014), and the parameters corresponding to the first category are
shown in Table 2 as an example.

According to the value of Ribcp, we can determine the
location of Rib: for example, when the size of Rib is between
Ribcp1 and Ribcp2 it is section Introduction, when it is
between Ribcp2 and Ribcp3 it is in section Atmospheric Duct
Data, and so on. Finally, the following equation is used to
calculate ξ :

ξ = Rib
∑

CijkR
i
ibL

j
OM(LOH − LOM)k, (6)

Rib =
gz1θ

θu2
. (7)

The coefficients Cijk are given for the first category as an example,
in Table 3.

Under unstable conditions, the scheme is divided into eight
categories according to the values ofRib, z/z0, and z/z0t , as shown
in Table 4.

The value of ξ is calculated according to the category
as follows:

ξ = Rib
L2OM
LOH

∑

Cijk(
−Rib

1− Rib
)
i

L
−j
OML−k

OM . (8)

The coefficients Cijk have different values according to the
calculation results of different iteration schemes. This paper uses
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TABLE 2 | The coefficients of Equation (4).

Category C00 C10 C20 C01 C11 C21 C02 C12

1 Ribc1 0.3095 −0.2852 −0.2852 0.07955 −0.0161 0 0 −0.00011

Ribc2 0.3219 0.3219 0.2613 0.06753 −0.0310 0.00391 −0.0018 0.00117

Ribc3 0.3545 0.3545 −0.2569 0.06609 −0.0393 0.00564 −0.0034 0.00220

Ribc4 0.439 0.439 −0.3133 0.0893 −0.0711 0.01403 −0.0060 0.003981

Ribc5 0.6887 0.6887 −0.5375 0.1754 −0.1564 0.03489 −0.0128 0.00810

Ribc6 1.706 1.706 −1.62 0.5124 −0.5026 0.1239 −0.0358 0.02238

TABLE 3 | Coefficients of Equation (6) for category 1.

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

C000 −1.134 0 0 0 0 0 0

C100 31.1 86.35 −280.4 0 0 −17.32 −6.343

C200 −71.16 0 3235 0 0 8.773 7.66

C300 227.4 0 −6165 0 0 0 −0.7661

C001 −0.2094 −11.53 −10.64 0 0 0 0.0125

C101 3.293 194.9 193.8 0 1.113 0 −2.203

C201 −20.11 −975.4 −1194 −12.37 −97.56 0 0.8896

C301 14.42 1472 2161 0 159.4 0 −0.1273

C002 0.1476 −2.535 −4.603 0 0 1.919 −0.00827

C102 −0.07325 28.24 52.02 11.99 16.33 0 0.3327

C202 0.5627 −61.13 −110.7 −15.63 −25.67 0.2679 −0.04613

C003 −0.01178 −0.2378 −0.5367 −0.3157 −0.6447 −0.2892 0

C103 0.0218 0.7405 1.503 0.2948 0.9718 0 −0.04968

C010 1.405 13.6 30.26 0 6.821 10.27 7.513

C110 −32.47 −316.2 −314.9 0 −57.13 0 0

C210 46.59 1067 186 −108.1 227.3 0 −4.799

C310 −38.25 −1494 0 317.8 −224 0 0.5598

C011 −0.2286 8.023 9.038 0 0.9287 −3.457 −1.1612

C111 −1.097 −91.31 −87.06 −12.52 −17.88 −1.617 0

C211 −0.3394 213.7 198.6 0 34.41 0 0

C012 0 1.035 1.529 0 0.319 −0.07536 0.4666

C112 0 −5.072 −7.439 −1.025 −2.452 0 0.0605

C013 0 0.03622 0.07369 0.4669 0.08583 0.05146 −0.01808

C020 0 −4.699 −10.71 −1.896 −2.195 −3.108 0

C120 10.71 97.46 122.1 28.39 22.21 7.948 2.442

C220 0 −152.4 −76.91 −14.19 −31.44 −2.985 0.1584

C021 0 −1.704 −2.035 0 −0.1355 0.8751 0

C121 0 9.069 8.248 2.214 1.976 0.3139 −0.04377

C022 0 −0.09576 −0.1263 −0.01472 −0.04636 −0.05131 −0.0694

C030 −0.007485 0.4446 1.015 0.3069 0.1708 0.2598 −0.1675

C130 −0.9671 −7.991 −10.96 −3.635 −1.623 −0.8513 −0.2181

C031 0.003402 0.1138 0.1426 −0.008769 0 −0.05427 0.05052

Cijk based on the results of the Paulson 70 scheme (Paulson,
1970), as shown in Table 5 for category 1.

In the flux algorithm scheme, the turbulent flux τ and sensible
heat flux Hs are defined as:

τ = ρu2∗ = ρCmu
2, (9)

Hs = −ρcpu∗θ∗ = −ρcpChu(θ − θ0). (10)

Here, ρ is the air density, cp is the specific heat capacity at
constant pressure, u∗ is the characteristic wind speed, and θ∗ is
the characteristic temperature.

The overall transport coefficient of flux is defined as:

Cm =
κ2

[ln( z
z0
)− ψm(ξ )+ ψm(

z0
z ξ )+ ψ

∗
m(ξ ,

z
z∗
)]
2

(11)
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Ch =
κ2

[ln( z
z0
)− ψm(ξ )+ ψm(

z0
z ξ )+ ψ

∗
m(ξ ,

z
z∗
)][ln( z

z0t
)− ψh(ξ )+ ψh(

z0t
z ξ )+ ψ

∗
h
(ξ , z

z∗
)]

(12)

ψ∗
h (ξ ,

z

z∗
) = ϕm,h[(1+

v

µz/z∗
)ξ ]

1

λ
(1+

λ

µz/z∗
) exp(−µz/z∗).

(13)

Here, κ is the von-Karman constant, z0 is the aerodynamic
roughness height, z0t is the thermodynamic roughness, z0q is the
water vapor roughness, and the coefficients λ = 1.5,µ = µm =

2.59, µ = µh = 0.95, and v = 0.5.
Under stable conditions, according to the CB05 flux scheme

(Li et al., 2015), the stability correction function is defined as:















ϕm = 1+ a ξ+ξ
b(1+ξb)

1−b
b

ξ+(1+ξb)
1
b

ϕh = 1+ c ξ+ξ
d(1+ξd)

1−d
d

ξ+(1+ξd)
1
d

. (14)

In Equation (14), a= 6.1, b= 2.5, c= 5.3, d = 1.1 and ξ = z
L .

Under unstable conditions, the stability correction function is
defined as:

{

ϕm = (1− Amξ )
− 1

4

ϕq = ϕh = α(1− Ahξ )
− 1

2
. (15)

In Equation (15), according to Paulson (1970), α = 16, Ah = 16,
and Am = 16.

At the height of an evaporation duct, the following formula
applies (Liu et al., 2017):

A+ 0.157 =
Eϕh

kz
√

− τ
ρ

Hs +
Fϕq

kz
√

− τ
ρ

Hl. (16)

The following formula is used to determine ϕh and ϕq in
this paper:

ϕh = ϕq =











1+ c ξ+ξ
d(1+ξd)

1−d
d

(1+ξd)
1
d

( zL ≥ 0)

(1− 16 z
L )

− 1
2 ( zL < 0)

. (17)

TABLE 4 | The eight categories divided according to the values of Rib, z/z0 and

z/z0t.

Region Rib z/z0 z/z0t

1 10 ≤ z/z0 ≤ 80 0.607 ≤ z/z0t ≤ 10

2 10 ≤ z/z0 ≤ 80 10 < z/z0t ≤ 1.069× 1013

3 80 < z/z0 ≤ 105 0.607 ≤ z/z0t ≤ 10

4 80 < z/z0 ≤ 105 10 < z/z0t ≤ 1.069× 1013

5 −5 < Rib < −2 10 ≤ z/z0 ≤ 80 0.607 ≤ z/z0t ≤ 10

6 −5 < Rib < −2 10 ≤ z/z0 ≤ 80 10 < z/z0t ≤ 1.069× 1013

7 −5 < Rib < −2 80 < z/z0 ≤ 105 0.607 ≤ z/z0t ≤ 10

8 −5 < Rib < −2 80 < z/z0 ≤ 105 10 < z/z0t ≤ 1.069× 1013

Under neutral conditions ( zL=0), the evaporation duct height is
therefore given by:

ZEDH =
1

k(A+ 0.157)

√

−
ρ

τ
(EHs + FHl); (18)

under stable conditions, the evaporation duct height is given by:

ZEDH =

(EHs + FHl)(1+ 5.3×
zEDH

L +
zEDH

L
1.1

(1+
zEDH

L
1.1

)
− 1
11

zEDH
L +(1+

zEDH
L

1.1
)

1
1.1

)

k(A+ 0.157)
√

− τ
ρ

.

(19)

and under unstable conditions, the evaporation duct height is
given by:

zEDH

√

1− 16
zEDH

L
=

EHs + FHl

k(A+ 0.157)
√

− τ
ρ

. (20)

Equations (18)–(20) can be used to calculate the heights of
evaporation ducts under different atmospheric stratification
conditions by selecting the appropriate iterative method.

Putting the meteorological data from the selected station into
the model, the calculation results are shown in Figure 2. It can
be seen from this that the evaporation duct heights form a
stationary time series, which is roughly consistent with the height
distribution of the evaporation ducts calculated by Babin et al.
(1997) and Paulus (1985).

PREDICTION METHOD

Traditional AR Prediction Algorithm
Overview of AR
The auto-regressive (AR) algorithm is a time series processing
method developed from linear regression analysis (Twiddle et al.,
2006). The method uses itself as the regression variable, i.e., a
linear combination of random variables in an earlier period is
used to describe the linear regression process of random variables
in a later period (Twiddle et al., 2006). Compared with other
linear regression models, AR does not use x to predict y, but x to
predict x. It is therefore widely used for prediction in economics,
informatics, natural sciences, and other areas. Its basic principle
is described in the following paragraph (see also Huang, 2004).

Suppose that a time series {Xt} satisfies:

Xt = ϕ0 + ϕ1Xt−1 + · · · + ϕpXt−p + at , (21)
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TABLE 5 | Coefficients of Equation (8) for category 1.

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

C031 −28.813 0 0 0 0 0 0 0

C013 0 0 0 0 0 0 0 0

C103 0 0 0 0 0 0 0 0

C130 0 0 0 0 0 0 0 0

C022 171.37 21.868 0 0 71.863 0 0 0

C112 0 0 0 0 0 0 0 0

C121 0 0 0 98.068 0 0 0 0

C003 −4.4659 −2193.5 0 0 0 −1490 0 0

C030 0 0 0 0 −30.825 0 −333.57 0

C012 −145.38 24.905 63.562 0 −26.723 −48.521 −625.04 −35.527

C021 0 0 −133.56 0 0 0 914.04 0

C102 −2.9284 6.6752 0 0 −11.479 0 0 0

C120 11.867 0 0 0 −1.2311 0 0 0

C111 −7.1901 1.9789 0 0 −67.415 2.8259 0 0

C002 31.481 5.7057 0 4.5019 16.059 27.861 149.79 32.682

C020 0 3.2231 34.817 5.4319 23.452 2.9699 83.588 10.73

C011 19.158 −14.009 0 0 5.5104 −7.3367 −209.17 −19.373

C101 7.1458 0 5.337 0.65443 20.643 0 1.7803 0

C110 −7.8929 −1.2357 −4.8263 −1.6828 0 0 0 0

C001 −6.2982 0 1.5325 −0.7537 −5.5493 −2.1701 0 0

C010 0 0 −7.0107 −1.4565 −4.764 −1.0425 −4.9982 −3.344

C100 0 −0.43163 −0.21693 −0.20131 −1.6828 −0.79024 −0.51948 −0.53418

C000 1.1233 1.0384 1.2577 1.0603 1.6062 1.3643 1.4222 1.3386

FIGURE 2 | Evaporation duct heights diagnosed by the Liuli 2.0 model. The samples in the figure are from January 1, 2008 to December 31, 2019, which have 731

samples in total. Each sample in turn corresponds to the number 1–731 of the abscissa.

where {at} is a white noise sequence and ϕ0,ϕ1, · · ·ϕp are real
numbers. This algorithm is denoted as AR(p), and {Xt} suitable
for this algorithm is called the sequence of AR(p). The centralized
algorithm of AR is used in this paper, that is, ϕ0 = 0.

Generally, we can define the polynomial ϕ(u) = 1− ϕ1u− · ·

·−ϕpu
p as the auto-regressive polynomial of an AR(p) algorithm.

Letting ∂(L) = 1 − ϕ1L − ϕ2L
2 − · · · − ϕpL

p, the operator
expression of the AR(p) algorithm can be expressed as:
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∂(L)Xt = at . (22)

From Equation (21), it can be concluded that:

(1− ϕ1L− ϕ2L
2 − · · · − ϕpL

p)Xt = at , (23)

so the solution of the AR(p) algorithm is as follows:

Xt =
1

ϕ(L)
at =

∞
∑

j=0

φjL
jat =

∞
∑

j=0

φjat−j, (24)

where φ0 = 1.

Establishment of the AR Algorithm

Preprocessing of input data
The evaporation duct height data calculated by the Liuli 2.0
model still contain a large amount of clutter, so it is necessary
to carry out low-pass filtering to obtain a new sample sequence.
The specific smoothing method is described in the following
paragraph (see also Huang, 2004).

The 3-day smoothing average evaporation duct height is
calculated on a 1-day time step as follows:

X
′

n =

n
∑

i=a
xi

m
, (25)

where X′
n is the average evaporation duct height calculated at the

nth time, xi is the evaporation duct height value calculated at the
ith time, and a is the first sample in the smoothing average range:
when n ≤ N, a = 1, and when n > N, a = n − N + 1; N is
the total number of samples and n is the number of samples in
the current smoothing average range. The result after smoothing

is shown in Figure 3. The sample sequence X
′
obtained by

smoothing is used for analysis and prediction by the traditional
AR algorithm.

Choice of the order of the algorithm
In establishing an ideal algorithm AR(p), it is not possible
to know in advance the appropriate order p. Different orders
should be tested, so that the best order can be chosen for
the final algorithm. Generally, the scheme used is a dynamic
modeling scheme, which uses a series AR(m), (m = 1, 2 · · · )
to approximate data step by step, and, at each step, the
approximation effect is evaluated by the reduction in the sum
of squares of residuals. If the sum of squared residuals does
not improve significantly, the test of further increasing m is not
carried out. Experiment shows that ifm is increased not by 1 but
by 2 every time, this is advantageous, and more computationally
efficient. The specific methods are described in the following (see
also Huang, 2004).

If AR(m) is the current model, the AR(m+1) is the model to
be tested. It is observed whether the reduction in the sum of the

squares of the residuals exceeds a standard significance. This is
carried out according to the following formula:

F =
(A1−A0)/s
A0/(n−r)

. (26)

The variable F follows the F-distribution of the freedom degree
of molecule s and denominator n-r. A0 is the sum of squares of
residuals of the model to be tested, A1 is the sum of squares of the
residuals of the previous model, r is the sum of two parameters of
model A0, and s is the difference of a parameter between model
A1 and model A0. In changing from AR(m) to AR(m+ 1), if F >
F5%, then the improvement in the sum of squares of the residuals
is significant, implying that the AR(m) model is insufficient. If
F < F5%, then AR(m) can be considered to be appropriate at
this significance level. The results in Table 6 were obtained for
this paper. It can be seen that, when m = 2, the model passes the
95% significance test. Therefore, in this paper, the AR(2) model is
selected for the time series prediction.

The SVR Prediction Algorithm Improved by
the Simulated Annealing Operator
Overview of the SVR
The support vector machine is an important part of statistical
learning theory, and also the most practically applicable part
(Yuan et al., 2010). In pattern recognition, in order to find
decision rules with generalization ability, some subsets of the
selected training data are denoted as support vectors. The best
separation of support vectors is equivalent to the separation of all
data. Support vector machines are similar to neural networks; the
output is a linear combination of intermediate nodes, and each
intermediate node corresponds to a support vector. Its structure
is shown in Figure 4. In recent years, support vector machines
have also shown excellent performance in research on regression
algorithms, so a new algorithm has been developed, the support
vector regression (Basak et al., 2007), which has been successfully
applied to the prediction of time series.

This paper uses the SVR, and the principle is described in the
following (see also Basak et al., 2007):

For a given sample set S = {(x1, y1), ..., (xl, yl)|xi ∈ Rn, yi ∈ R},
where the vector xi is the input sample of the model and yi is the
corresponding output sample, the regression problem is to find
out the relationship between xi and yi:

y = f (x) =< w · ϕ(x) > +b. (27)

Here, < · > represents a mapping of the input samples in
the original space to the inner product of the high-dimensional
space using the kernel function, so that the non-linear problem
in the original space can be transformed into a linear problem in
the high-dimensional space. The insensitivity loss ε (ε > 0) is
introduced, according to:

L = |y− f (x)| =

{

0
|y− f (x)| − ε

if |y− f (x)| ≤ ε

otherwise.
(28)
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FIGURE 3 | Original evaporation duct heights and heights after smoothing.

TABLE 6 | Results of the F test.

F F5%

m = 1 7.24 3.90

m = 2 0.18 3.89

When the loss function satisfies this equation, the optimal
solution is obtained. By introducing relaxation variables of ξi and
ξi
*, the above problems can be transformed into optimization

problems as follows:

min{12 ||w||
2 + C

l
∑

i=1
(ξi + ξi

∗),ξi, ξi
∗ ≥ 0,C ≥ 0}.

s.t.|f (x)− yi| ≤ ε, i = 1, 2, 3, ..., l

(29)

Here, the first term improves the generalization ability, and the
second item improves the accuracy. To solve these optimization
problems, a Lagrangian function is constructed:

L(w, b, ξ , ξ∗,α,α∗) =
1

2
||w||2 + C

l
∑

i=1

(ξ + ξ∗)

−

l
∑

i=1

αi[ξi + ε − yi + f (x)]

+

l
∑

i=1

αi
∗[ξi + ε + yi − f (x)] (30)

where αi,αi
∗ ≥ 0; i = 1, ..., l.

FIGURE 4 | Structure of the support vector machine.

In Equation (30), the partial derivatives with respect to w, b,
ξi, and ξi

∗are calculated as follows:

∂

∂w
L = 0,

∂

∂b
L = 0,

∂

∂ξi
L = 0,

∂

∂ξi
∗
L = 0. (31)

After simplifying Equation (31), we obtain:
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l
∑

i=1
(αi − αi

∗) = 0,w =
l
∑

i=1
(αi − αi

∗)ϕ(xi)

C − αi = 0,C − αi
∗ = 0, i = 1, ..., l.

(32)

In Equation (32), sample data for which αi − αi
∗ is not

equal to zero represent the support vector. The dual form
of the non-linear optimization problem can be obtained
from Equation (32), so the regression function can be
rewritten as:

f (x) =

l
∑

i=1

(αi − αi
∗)K(xi, x)+ b, xi ∈ Rn, b ∈ R. (33)

Therefore, using existing input and output samples, the output
expression is obtained through the training of the SVR, and then,
using Equation (33), the output data of a new sample can be
obtained by inputting data from this sample, so as to achieve the
data prediction.

Establishment of the Improved SVR Algorithm

Preprocessing of input data
Similarly to the auto-regressive algorithm, the improved SVR
algorithm needs to preprocess the data before they are input. The
method is the same as for the auto-regressive algorithm, so it will
not be repeated here.

Normalization of data
In order to prevent output saturation caused by large absolute
input values, the training sample is normalized before it is input
to the input layer of the SVR, so that the data vector falls within
the range [0,1] or [−1,1]; it also needs to be denormalized
when the SVR outputs the data. The normalization means
that input and output vector data have similar weights in each
dimension and prevents one dimension from dominating
the weighting algorithm. The normalization formula is
as follows:

x
′

i =
xi − xmin

xmax − xmin
, (34)

where xi is the input or output data, xmin is the minimum value
in the dataset, and xmax is the maximum value in the dataset.

Selection of algorithm parameters
The selection process for the improved SVR algorithm
includes the choice of kernel function and the optimization
of parameters.

Selection of kernel function. There are mainly three kinds of
kernel functions: linear kernel function, polynomial kernel
function, and radial basis kernel function. The linear kernel
function is not suitable for this algorithm, because the SVR is
non-linear. The polynomial kernel function has many super-
parameters, which makes its structure complex. In addition,
polynomial kernel function is suitable for orthogonal normalized
data, so it is also not suitable for this algorithm. The radial
basis function (RBF) kernel is a kind of kernel function with

strong locality, which can map a sample to a higher dimensional
space for both large and small samples, and it has better anti-
interference ability for the noise in the data. Besides, it has only
one super-parameter σ , so this is chosen for this paper. The
expression is as follows:

K(xi, xj) = exp

(

−
||xi − xj||

2

2σ 2

)

. (35)

Selection of parameters. The main parameters to be selected
in the prediction model are the penalty parameter C, the
insensitivity loss degree ε, and kernel function parameter
σ . To select these three parameters, we use the simulated
annealing operator (Serrurier and Prade, 2008) to find the
optimal values. The simulated annealing operator starts from
a certain state and adjusts the current state according to the
current temperature to generate a new state (Serrurier and
Prade, 2008). It has five adjustable parameters: the starting
temperature T (T = 1 × 107), the ending temperature Tmin

(Tmin = 1 × 10−6), temperature decreasing rate C1 (C1 = 0.99),
the maximum number of iterations N (N = 1 × 108), and
the minimum boundary value of each parameter n (n = 1 ×

10−8). If the new state is better, the new state is accepted. If
the new state is worse, a probability will be generated based
on the current temperature and the difference between the
results of the two states. The system then decides whether
to accept the state according to this probability. After each
state transition, the temperature value is reduced, and the
search stops the temperature value goes below a predetermined
minimum value.

In this paper, the state is determined by three variables, the
penalty parameter C, insensitivity loss ε, and kernel function
parameter σ . The vector Xi composed of these three variables
is taken as a state, and the RMSE of the regression prediction
algorithm obtained for this state is taken as the evaluation
function f (Xi). The specific steps are illustrated in Figure 5, and
are described as follows:

(1) Set the initial state Xi, temperature T and minimum
temperature Tmin

(2) Move to the next state X′
i based on the current state

(3) If f (Xi)> f (X′
i), accept the status and go to (5)

(4) Generate the probability P = e
−(f (X′)−f (X))

T , and generate a
random number p between 0 and 1. If p < P, the system accepts
the state, otherwise it does not.

(5) Calculate T= T ∗ 0.99, if the current value of f (X′) is the
optimal value, the new optimal state is retained.

(6) If T< Tmin, the algorithm ends, otherwise go to (2).
After applying the above algorithm, the optimal

parameters found were: C=187511.19, ε=0.00181,
and σ=0.001812.

DISCUSSION AND ANALYSIS OF RESULTS

The total number of sample X′ is 731, after the algorithm is
completed, the first 549 samples are used as training sets, and
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FIGURE 5 | Flow chart of the improved SVR.

the last 182 samples are used as test sets to verify whether the
predicted results are similar to the actual values. Figures 6–
8 show comparisons between predicted values using the three
algorithms, and real values, for the last 182 samples of time
series X′.

From Figures 6–8, we can see that the prediction curves of
the three algorithms follow the same trends as the true values.

In order to evaluate the quality of prediction, we use RMSE and
MAPE, which are calculated as follows:

RMSE =

√

√

√

√

√

N
∑

i=1
(Xobs,i − X mod el,i)

2

N
(36)
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FIGURE 6 | Real values and values predicted by AR algorithm. The samples in the figure are from July 3, 2008 to December 31, 2019, which have 182 samples in

total. Each sample in turn corresponds to the number 1–182 of the abscissa.

FIGURE 7 | Real values and values predicted by classical SVR algorithm. The samples in the figure are from July 3, 2008 to December 31, 2019, which have 182

samples in total. Each sample in turn corresponds to the number 1–182 of the abscissa.

MAPE =
1

N

N
∑

i=1

∣

∣Xobs,i − X mod el,i

∣

∣

Xobs,i
× 100%. (37)

Figures 9, 10 show the individual RMSEs and MAPEs of
the last quarter of time series X

′
, using the three prediction

algorithms. Table 7 shows the corresponding overall RMSE and
MAPE values.

Frontiers in Earth Science | www.frontiersin.org 12 April 2020 | Volume 8 | Article 102

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Mai et al. The Prediction of Evaporation Ducts

FIGURE 8 | Real values and values predicted by improved SVR algorithm. The samples in the figure are from July 3, 2008 to December 31, 2019, which have 182

samples in total. Each sample in turn corresponds to the number 1–182 of the abscissa.

FIGURE 9 | RMSE of evaporation duct heights.

From Figures 9, 10, we can see that nearly one-third of the
RMSE values using the traditional AR algorithm are more than
0.5, and nearly one-third of the MAPE values are more than 10%,

and nearly one-fourth of the RMSE values using the classical
SVR algorithm are more than 0.5, and nearly one-fourth of
the MAPE values are more than 10%, whereas most of the
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FIGURE 10 | MAPE of evaporation duct heights.

TABLE 7 | Analysis of overall error.

RMSE (m) MAPE (%)

AR 0.60 7.79

Traditional SVR 0.45 5.66

Improved SVR 0.38 4.78

RMSE values using the improved SVR algorithm are less than
0.5, and most of the MAPE values are less than 10%. From
Table 7, we can see that the overall RMSE using the traditional
AR algorithm is 0.60, and the MAPE is 7.79%, and the overall
RMSE using the classical SVR algorithm is 0.45, and the MAPE
is 6.10%, while the overall RMSE using the improved SVR
algorithm is 0.38, and the MAPE is 4.78%. The prediction error
of improved SVR algorithm is about 37% lower than that of
the traditional AR algorithm and 15% lower than that of the
classical SVR algorithm. Figures 11–13 are the fitting graphs
obtained by univariate linear regression (Neto et al., 2004) of
the real and predicted values of the last 182 samples of the
time series.

From Figures 11–13, we can see that the correlation
coefficient r of the traditional AR algorithm is 0.8186,
and the sum of squares of residuals is R2 = 63.8501,
and the correlation coefficient r of the classical algorithm
is 0.8990, and the sum of squares of residuals is R2 =

22.9994, while the correlation coefficient r of the improved
SVR algorithm is 0.9097, and the sum of squares of

residuals is R2 = 21.566. The prediction accuracy of the
improved SVR algorithm is the highest, so its correlation
coefficient r is the largest, and its residual adjustment
and R2 is the smallest, which shows that it has a better
performance overall.

CONCLUSION AND FUTURE WORK

In this paper, a new diagnostic model of evaporation duct heights,
the Liuli 2.0 model, is proposed. The difference between this
model and the traditional model is that, when determining
the M-O length L and the characteristic parameters u∗,θ∗, and
q∗, it avoids the previous method of setting an initial value
for an iterative calculation to determine these parameters, but
instead selects a variable ξ = z

L , through the size of the
overall Richardson number Rib, then uses the size of ξ to
determine the characteristic parameters. This can improve the
stability and efficiency of the calculation, saving a large amount
of computation time. Using high-resolution sounding data and
retrieved SST data from the DMSP satellite from 2008 to 2009
at a Hawaiian station, the height of the evaporation ducts near
the station is diagnosed according to the model. Then, the
traditional AR algorithm, classical SVR algorithm and the SVR
algorithm improved by a simulated annealing operator, are used
to analyze and predict time series of evaporation duct heights,
and the prediction results are compared to verify the advantages
and disadvantages of the improved SVR algorithm. The results
show that the prediction error of the improved SVR algorithm

Frontiers in Earth Science | www.frontiersin.org 14 April 2020 | Volume 8 | Article 102

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Mai et al. The Prediction of Evaporation Ducts

FIGURE 11 | Fitting graph for the result of AR algorithm.

FIGURE 12 | Fitting graph for the result of classical SVR algorithm.

is 37% lower than that of the traditional AR algorithm and
15% lower than that of the classical SVR algorithm. It has a
good accuracy and strong generalization ability, and acts as a

reference for the study of short-term prediction of evaporation
duct heights. The new diagnosis and prediction method will
provide a new method for studying the evaporation duct heights,
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FIGURE 13 | Fitting graph for the result of improved SVR algorithm.

which has certain reference significance for the study of the
evaporation ducts.

However, evaporation duct heights have a significant seasonal
variation, which is not discussed in this paper. Therefore, future
work will be applied to predicting the seasonal characteristics of
evaporation ducts. In addition, when predicting, the regression
function expression f (x) obtained by the improved SVR
algorithm is fixed and not updated with new observation data,
that is, f (x) is “static.” In future work, a “dynamic” f (x) will
be introduced, to enhance the prediction model of atmospheric
ducts using the real-time observation data, so as to further
improve the accuracy of the predictions.
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