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The Early Cretaceous volcanic-arc granitic rocks from Kyushu, SW Japan are
contemporaneous with the granitic rocks of the Yanshan Orogeny (SE China) along the
eastern Eurasian continental margin. The secular geochemical variations of the whole-
rock major elemental and Sr–Nd isotope data of the Early Cretaceous granitic rocks
from Kyushu, SW Japan, as well as the zircon and apatite saturation temperatures,
shows distinct changes during the Albian (∼115 to ∼100 Ma) as: (1) the mASI value
of the rocks (i.e., Shiraishino granodiorites) decreases below 1, (2) the Sr–Nd isotopic
data are relatively constant [87Sr/86Sri = 0.70471 to 0.70573; εNd(t) = + 0.2 to + 1.9]
within different rock types including granites, granodiorites, tonalites, and adakitic rocks
(i.e., the Shiraishino granodiorites), following the increase of 87Sr/86Sri and decrease of
εNd(t) from Berriasian, and (3) higher maximum temperatures at ∼105 Ma. The secular
changes indicate that important geodynamic changes occurred in the arc system of SW
Japan as it changed from subduction-accretion during the Jurassic to continental arc
during the Early Cretaceous. Thermodynamic partial melting modeling demonstrates
that the Albian granitic rocks can be derived from mélange rocks, such as chlorite-
actinolite schists, at moderate depth and variable redox conditions. It is concluded that
the genesis of the Early Cretaceous granitic rocks from Kyushu, SW Japan, may be
related to upwelling of the asthenosphere and hot corner flow into the mantle wedge
caused by slab rollback, which followed a shallowing of the subduction angle and
subsequent flat-slab subduction during the Late Jurassic. The resultant heat induced
the partial melting of the mélange rocks that formed on and were transported from the
subducted plate interface.

Keywords: granitoids, mélange, arc magma, partial melt, Early Cretaceous, SW Japan, Yanshan orogeny

INTRODUCTION

Convergent margin magmatism occurred along the eastern Eurasian continental margin during the
Late Jurassic to Late Cretaceous as the Paleo-Pacific plate subducted. Magmatism extended from the
Korean Peninsula in the north to Vietnam in the south and represents a major period of juvenile
crust formation and recycling in East Asia (Xu et al., 2002; Nguyen et al., 2004; Zhou et al., 2006;
Kiminami and Imaoka, 2013; Shellnutt et al., 2013; Kim et al., 2016). Alternating periods of crustal
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shortening and extension accompanied by magmatism during
the Late Mesozoic are collectively referred to as the Yanshan
Orogeny (Wu, 2005; Zhou et al., 2006; Li and Li, 2007; Dong
et al., 2018). The Yanshan Orogeny consists of an early period
(∼170 to ∼135 Ma) of crustal shortening and a late (∼135 to
∼90 Ma) period of extension followed by a brief period (∼80 Ma)
of weak crustal shortening (Dong et al., 2018). The majority of
Early Cretaceous magmatic rocks from SE China, NE China,
Korea, and SW Japan are compositionally similar to volcanic-arc
granites and it appears that their emplacement migrated eastward
toward the Eurasia margin over time (Chen and Jahn, 1998; Zhou
and Li, 2000; Xu et al., 2002; Zhou et al., 2006; Kiminami and
Imaoka, 2013; Kim et al., 2016).

The formation of Late Yanshanian granitic rocks is debated as
there are different models proposed for different regions. On the
one hand, plutons from SE China are thought to be related to
extension-induced melting of mafic igneous protoliths at mid-
lower crustal depths, due to the heat advection resulting from
the underplating of basaltic magmas along the active continental
margin (Zhou and Li, 2000; Zhou et al., 2006). On the other
hand, the Early Cretaceous granitic rocks from the Korean
Peninsula and SW Japan are explained by partial melting of lower
continental crust, due to slab rollback (Kiminami and Imaoka,
2013; Kim et al., 2016), whereas, for NE China, by interaction
of delaminated lower mafic continental crust with an upwelling
asthenosphere (Xu et al., 2002; Hou et al., 2007; Lan et al., 2011).
The difference in the melting regimes and tectonomagmatic
models may be, in part, related to the paleoposition of Korea
and Japan relative to China. Although there is along strike
subduction, Early Cretaceous magmatism in NE Asia may be
related to subduction of the Izanagi plate, whereas in eastern
China, it is related to subduction of the Paleo-Pacific plate
(Maruyama et al., 1997). Moreover, it is still debated whether the
paleogeographic position of Korea and SW Japan belongs to the
North China craton or the South China craton (Osanai et al.,
1999, 2006; Ishiwatari and Tsujimori, 2003; Ernst et al., 2007; Oh
and Kusky, 2007; Omori and Isozaki, 2011; Suga et al., 2017).

The upwelling of hot asthenosphere into the mantle wedge
caused by slab rollback may have played a vital role in the
formation of Early Cretaceous granitic rocks in NE Asia as this
is thought to be the primary process that produces the adakitic
rocks of SW Japan (Kamei, 2004; Imaoka et al., 2014; Kim
et al., 2016). Alternatively, it is possible that the combination
of asthenospheric upwelling and hot corner flow caused by
slab rollback may have induced partial melting of mélange
rocks, such as chlorite-actinolite schists, producing intermediate
to silicic melts (Marschall and Schumacher, 2012; Hao et al.,
2016). The Early Cretaceous granitic rocks, including adakitic
rocks, in Kyushu, SW Japan, therefore, potentially provide an
opportunity to investigate the genesis of granitic rocks related to
the combination of asthenospheric upwelling and hot corner flow
caused by slab rollback.

In this study, whole rock geochemical data from∼150 granitic
samples across Kyushu, SW Japan, are compiled in order to
determine if there is a secular variation in the nature of the
plutons and to assess the role subduction-related mélange rocks
may play in their origin. Thermodynamic modeling using the

program Rhyolite-MELTS is used to evaluate whether partial
melting of mélange rocks is either partially or wholly responsible
for the genesis of some Early Cretaceous felsic igneous rocks,
including the adakitic plutons.

GEOLOGICAL BACKGROUND

The Japanese Islands comprise a number of subduction-related
orogenic belts that were produced beneath the Eurasian continent
over more than c. 500 Myr (Maruyama et al., 1997; Isozaki
et al., 2010). The geotectonic framework in the inner zone of
southwest Japan is made up of, from north to south, the Hida–
Oki, Renge, Akiyoshi, Suo, Maizuru, Ultra-Tamba, Mino–Tanba,
and Ryoke belts, with a tectonically downward-younging polarity
that resulted from stepwise accretions during the Paleozoic to
Mesozoic (Nishimura, 1998; Figure 1). In Kyushu, SW Japan,
the Renge, Akiyoshi, Suo, and Ryoke belts occur on the northern
side of Usuki–Yatsushiro tectonic line, where Cretaceous igneous
rocks are distributed (Figure 1).

Cretaceous plutonic rocks in Kyushu consist mainly of
granites, tonalites, and granodiorites with subordinate gabbro
and diorites (Figure 1). They intruded metamorphic rocks of
the Renge, Suo, Ryoke, and Higo belts, and sedimentary rocks of
the Cretaceous Kanmon Group. Cretaceous andesites and dacite
occur in and around Kyushu (Imaoka et al., 1993; Matsuura,
1998; Owada et al., 1999).

Published age dates of the granitic rocks using various
methods (K–Ar, Rb–Sr, Sm–Nd, CHIME, U–Pb) on whole rock
and minerals range from 143 to 75 Ma, whereas the mafic
rocks yielded ages (K–Ar, Rb–Sr, U–Pb) that are comparatively
more restricted and were emplaced from 123 to 97 Ma (Hattori
and Shibata, 1982; Sasada, 1987; Osanai et al., 1993; Nakajima
et al., 1995; Kamei et al., 1997, 2000, 2004; Matsuura, 1998;
Hamamoto et al., 1999; Owada et al., 1999; Takagi et al., 2000,
2007; Sakashima et al., 2003; Nishimura et al., 2004; Fujii et al.,
2008; Kouchi et al., 2011; Miyoshi et al., 2011; Adachi et al., 2012;
Tiepolo et al., 2012; Miyazaki et al., 2018). In comparison, the
dacite and andesite yielded K–Ar mineral ages of 107 ± 3 Ma
(Imaoka et al., 1993) and from 110 to 102 Ma (Imaoka et al., 1993;
Matsuura, 1998; Owada et al., 1999), respectively.

The Nagasaki high-P metamorphic rocks are distributed
in western Kyushu (Figure 1). The rocks are a western
extension of the high-P Sanbagawa metamorphic rocks of
southwest Japan (Faure et al., 1988; Nishimura et al., 2004),
which are the higher P/T members of a Cretaceous paired
metamorphic belt that joins the high-T metamorphic rocks of
the Ryoke plutono-metamorphic belt along the Median Tectonic
Line. Toward the west, the Cretaceous plutonic rocks and
related high-T metamorphic rocks, including the Higo high-
T metamorphic rocks, are distributed throughout central to
northern Kyushu.

The Nishisonogi unit of the Nagasaki metamorphic rocks
forms a Late Cretaceous subduction complex that consists mainly
of epidote-blueschist facies pelitic, psammitic, and mafic schists
with minor serpentinite (Nishiyama, 1990; Mori et al., 2014).
The serpentinite, which is in tectonic contact with the schists,
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FIGURE 1 | Distribution of Cretaceous accretionary complex, metamorphic complex, plutonic rocks, volcanic rocks, and non-accretionary sedimentary rocks in
Kyushu, SW Japan [modified from Miyazaki et al. (2016) based on the seamless geological map of Japan (1:200,000), Geological Survey of Japan,
https://gbank.gsj.jp/seamless/index_en.html] with solid circle indicating the locality of granitic rock samples of which the thermodynamic modeling was modeled in
this study. UYTL, Usuki–Yatsushiro Tectonic Line; BTL, Butsuzo Tectonic Line; SF, Sashu Fault; HAF, Hatashima–Ariake Fault; FWF, Fukabori–Wakimisaki Fault; OF,
Omurawan–Amakusa Fault; YF, Yobikonoseto Fault; MF, Mogi Fault; NT, Nobeoka Thrust; MC, Metamorphic Complex; AC, Accretionary Complex; polymeta,
polymetamorphic rocks; non-ac.sed., non-accretionary sedimentary rocks; K1–2, Early–Late Cretaceous; K1, Early Cretaceous. Inset-map showing a geotectonic
map of SW Japan (modified form Nishimura, 1998 with permission). MTL, Median Tectonic Line; I–STL, Itoigawa–Shizuoka Tectonic Line; Hg, Higo belt.

occurs as pod-like bodies of < 150 m in diameter and ultramafic
melanges of < 350 m in thickness (Mori et al., 2014). The
ultramafic melanges contain tectonic blocks of metagabbro, mafic
schist, pelitic schist, and albitite in a matrix of chlorite-actinolite
schist, talc schist, and schistose serpentinite (Nishiyama, 1989,
1990). Small blocks (<5 m in diameter) of jadeitite, omphacitite,
rodingite, and zoisitite are found locally (Nishiyama, 1978;
Shigeno et al., 2005, 2012a,b; Mori et al., 2011). The mineral
assemblages of the schists suggest the peak metamorphic P–T
conditions of 8 kbar and 400◦C (Mori et al., 2014). The peak

metamorphic conditions for the jadeitites were estimated to be
P > 13 kbar and T > 400◦C (Shigeno et al., 2005).

Metamorphic age data (K–Ar, 40Ar/39Ar, U–Pb) from the
pelitic and psammitic schists range from 85 to 60 Ma (Hattori
and Shibata, 1982; Faure et al., 1988; Miyazaki et al., 2019), 85–
65 Ma (40Ar/39Ar, U–Pb) for the jadeitites (Mori et al., 2007,
2011; Yui et al., 2012), and 108–105 Ma (U–Pb) for the rodingites
(Fukuyama et al., 2014). The youngest detrital zircon ages and
metamorphism duration were estimated to be 97–79 Ma and 10
to 20 Myr, respectively (Miyazaki et al., 2019).
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FIGURE 2 | Division of the Cretaceous (A) granites, (B) granodiorites, (C) tonalites, and (D) diorites from Kyushu into ferroan and magnesian compositions using the
Fe* [FeOt/(FeOt + MgO)] vs. SiO2 (wt%) discrimination of Frost et al. (2001).

GEOCHEMICAL CHARACTERISTICS OF
CRETACEOUS GRANITOIDS IN KYUSHU,
SW JAPAN
Whole-rock major elemental data published for 148 samples
of granitic rocks from Kyushu were compiled (Supplementary
Table S1) and plotted using the geochemical classification
diagrams of granitic rocks reported by Frost et al. (2001;
Figures 2, 3) and Harker diagrams (Figure 4). The granites
(n = 40) are peraluminous to metaluminous, ferroan to
magnesian (Fe∗ = 0.48–0.98), and alkalic to calcic in composition
with Mg# ranging from 4 to 66 and K2O/Na2O ratios of 0.5–
1.6. The rocks have high SiO2 contents as all but 3 samples
have SiO2 from 68.1 to 75.0 wt.%. The granodiorites (n = 65)
are peraluminous to metaluminous, ferroan to magnesian
(Fe∗ = 0.57–0.95), and calc-alkalic to calcic in composition with
Mg# ranging from 8 to 57 and K2O/Na2O ratios of 0.2–1.5. The
SiO2 contents range from 62.8 to 75.3 wt.%. The tonalites (n = 19)
are peraluminous to metaluminous, magnesian (Fe∗ = 0.61–0.80),
and calc-alkalic to calcic in composition with Mg# ranging from
30 to 53 and K2O/Na2O ratios of 0.3–1.1. The SiO2 contents
range from 56.5 to 73.8 wt.%. The granite, granodiorite, and
tonalite plutons have similar negative trends of TiO2, Al2O3,

CaO, and Mg#, and positive trends of Na2O+ K2O, against SiO2
(Figure 4). They also have similar loss on ignition (LOI) values
of 0.0–1.8 wt.%.

By comparison, the diorites (n = 24), for the exception of 3
samples, are metaluminous, magnesian (Fe∗ = 0.36–0.50), and
calc-alkalic to calcic in composition (Figures 2–4). They have
higher Mg# ranging from 64 to 76 and lower SiO2 contents of
52.2–59.4 wt.%, and have similar K2O/Na2O ratios of 0.3–0.9,
compared to the granites, granodiorites, and tonalites. There is
a weak positive trend of Na2O + K2O against SiO2. The trend
line is extrapolated into the corresponding lines for the granites,
granodiolites, and tonalites. LOI contents are 0.5–2.1 wt.%, which
are similar to those of the granites, granodiorites, and tonalites.

Some or all trace elemental data were reported from 127
samples across all rock types. The trace element concentrations of
the granites, granodiorites, and tonalites show broad similarities
across all elements, but the diorites are somewhat unique. The
concentration of transition metals (Sc ≤ 12 ppm, V = 2 to
178 ppm, Cr ≤ 56 ppm, Ni ≤ 22 ppm, Cu = 3 to 182 ppm, and
Zn = 4 to 117 ppm) for the granites, tonalites, and granodiorites
are similar. In contrast, the diorites have comparatively higher
concentrations of V (125–231 ppm), Cr (5–1544 ppm), and Ni
(10–259 ppm), but similar concentrations of Cu (18–116 ppm)
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FIGURE 3 | Modified alkali-lime index (Na2O + K2O − CaO wt%) vs. SiO2 (wt%) of the Cretaceous (A) granites, (B) granodiorites, (C) tonalites, and (D) diorites from
Kyushu (Frost et al., 2001). Symbols as in Figure 2.

and Zn (57–110 ppm). The large ion lithophile elements (Rb, Sr,
and Ba) show more chemical variability in all rock types, but the
diorites tend to have lower concentrations of Rb (10–74 ppm)
and Ba (52–405 ppm) and similar Sr (75 to 864 ppm) compared
to the granites, tonalites, and granodiorites (Rb = 38–186 ppm,
Sr = 117–859 ppm, Ba = 214–1142 ppm). The concentrations
of Y and Nb across all rock types are generally similar (Y = 5–
39 ppm, Nb = 4–24 ppm), although the diorites tend to have lower
concentrations of Zr (16–102 ppm) and the granites tend to have
higher concentrations of Th (3–26 ppm), compared to other rock
types (Zr = 47–218 ppm, Th = 0.9–23 ppm).

The primitive mantle normalization patterns show enrich-
ment of the less incompatible elements over the incompatible
elements but they also have prominent depletions of Ba, Nb, and
Ti (Figure 5). The granodiorites have a subgroup of Hf depleted
rocks but it is not certain if it is unique as Hf data was not reported
for the diorites. The chondrite-normalized rare-earth element
patterns of the granodiorites and tonalites show similar light rare-
earth element (LREE) enrichment and tend to have high La/YbN
ratios (5.6 to 35.4), whereas the diorites have moderately to slight
LREE (La/YbN < 5) enrichment (Figure 6). Rare earth elemental
data are not available for the granites. The rocks generally do not

display prominent depletion of Eu as the tonalites, diorites and
most of the granodiorites (all but 4) have Eu/Eu∗ values ≥ 0.8.
The relatively high Eu/Eu∗ values indicate that the rocks probably
did not experience significant plagioclase fractionation.

Strontium and Nd isotopic data are only available for the
granites, granodiorites, and tonalites (Supplementary Table S2).
There are more samples with Sr isotopes (123) reported than
Nd isotopes (48). Moreover, the Sr isotopes cover nearly
the entire Cretaceous (∼145 to ∼85 Ma), whereas there is
an age gap (∼140 to ∼120 Ma) within samples that have
Nd isotope data. The initial Sr isotope ratios (87Sr/86Sri)
of granites (0.70404 to 0.70654), granodiorites (0.70471 to
0.70573), and tonalites (0.70430 to 0.70529) are similar and
have relatively restricted ranges, although there are two outliers
(0.70302 and 0.70620) within the granodiorites. The Nd
isotopes, as expressed by the εNd(t) notation, show distinct
negative values for the granites [εNd(t) = −4.7 to + 1.0]
compared to the granodiorites [εNd(t) = + 0.5 to + 1.6] and
tonalites [εNd(t) = + 0.2 to + 3.1]. The Nd depleted mantle
model ages of the granites are 0.7–1.4 Ga, which are older
than those of the granodiorites (0.6–1.1 Ga) and tonalites
(0.8–1.2 Ga).
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FIGURE 4 | Major element variation of the Cretaceous granites, granodiorites, tonalites, and diorites from Kyushu. (A) Alumina saturation index [mASI = molecular
Al/(Ca − 1.67P + Na + K)] vs. alkali-alumina ratio [molecular (Na + K)/Al]. (B) TiO2 (wt%) vs. SiO2 (wt%). (C) Al2O3 (wt%) vs. SiO2 (wt%), (D) CaO (wt%) vs. SiO2

(wt%). (E) Na2O + K2O (wt%) vs. SiO2 (wt%). (F) Mg# [molecular Mg/(Mg + Fe)*100] vs. SiO2 (wt%). The division of rocks into magnesian and ferroan is plotted in
Figure 2.

DISCUSSION

Petrogenesis of the Early Cretaceous
Granitic Rocks in Kyushu, SW Japan
Tectonomagmatic Classification
According to the classification scheme of Frost et al. (2001),
the Early Cretaceous granitic rocks from Kyushu, are primarily

magnesian, peraluminous to metaluminous, calc-alkalic to calcic
in composition (Figures 2–4). Rocks of this composition are
considered to be most commonly associated with subduction-
zone settings. There are some rocks in the data set that are ferroan
but they are also highly silicic (SiO2 > 72 wt.%). Magnesian
and ferroan rocks tend to overlap at highly silicic compositions
within cogenetic rock suites due to chemical differentiation as
intermediate magnesian magmas eventually become ferroan after
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FIGURE 5 | Primitive mantle-normalized incompatible trace element diagrams of the Cretaceous (A) granites, (B) granodiorites, (C) tonalites, and (D) diorites from
Kyushu. Normalizing values are from Sun and McDonough (1989).

extensive fractional crystallization (Frost et al., 2001). Given that
the ferroan rocks in this study are highly silicic and that they
fall along the same negative or positive trends of TiO2, Al2O3,
CaO, Mg#, and Na2O + K2O against SiO2 as the magnesian
granitic rocks, they are likely the most evolved compositions
of an original magnesian parental magma (Figure 4). The
trace element compositions of all samples fall unambiguously
within the volcanic-arc/I-type granite field of the Y + Nb–
Rb discrimination diagram (Pearce et al., 1984; Christiansen
and Keith, 1996) (Figure 7). Moreover, the results indicate that
the chemical differentiation trends identified in some of the
plutons did not have a significant effect on their Y, Nb, and Rb
concentrations and thus did not cause ‘elemental drift’ across the
field boundaries (Forster et al., 1997). In other words, the major
and trace elemental compositions are mutually supportive of
each other, and consistent with the fact that the Japanese Islands
comprise a number of subduction-related orogenic belts over
more than c. 500 Myr (Maruyama et al., 1997; Isozaki et al., 2010).
Thus, there is little doubt that the Early Cretaceous granitic rocks
of Kyushu were exclusively emplaced at a volcanic-arc setting.

Secular Compositional and Temperature Variations
The whole-rock major elemental and Sr–Nd isotope data, as well
as zircon (TZrc) and apatite (TApt) saturation temperatures, of the
granitic rocks are plotted against time (Ma), in order to evaluate
the secular compositional and temperature variations during the
Cretaceous (Figures 8, 9 and Supplementary Tables S1, S2). The
ages of the rocks are reported from high closure temperature
minerals (U–Pb zircon, Rb–Sr whole-rock isochoron, K–Ar
hornblende) and are interpreted to be crystallization ages. The
zircon (TZrc) and apatite (TApt) saturation temperatures were
calculated using the whole rock major and trace element data
available for the granitic rocks (Harrison and Watson, 1984;
Boehnke et al., 2013).

There is clear secular variation in the major element
compositions (Figure 8). The most distinct major element change
is the decrease in the alumina saturation index (mASI) value at
∼105 Ma (i.e., Shiraishino granodiorites). All other intrusions
have near constant mASI values of ∼1.1 to ∼1.2, whereas the
Shiraishino granodiorites have a wide range but drop below 1
and become metaluminous (Figure 8A). In fact the Shiraishino
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FIGURE 6 | Chondrite-normalized rare earth element patterns of the
Cretaceous (A) granodiorites, (B) tonalites, and (C) diorites from Kyushu.
Chondrite values are from Sun and McDonough (1989).

granodiorite is the most distinct intrusion as it has high TiO2
(∼0.66 wt.%) and low SiO2 (∼63.8 wt.%) contents and low
K2O/Na2O ratios (∼0.3) compared to the other granitic rocks.

However, in spite of the Shiraishino granodiorite, the overall
trends show an increase in the Mg# and TiO2 and Al2O3
contents and a decrease in the K2O/Na2O ratio and SiO2 over
time (Figures 8B–F).

The Sr–Nd isotopes show two secular trends (Figures 9A,B).
There are overall trends for both Sr and Nd, but they both show
changes during the Albian (∼115 to ∼105 Ma). The 87Sr/86Sri
ratio increases from the Early Cretaceous to the Late Cretaceous,
which is mirrored by an overall negative trend in the εNd(t)
values. However, between ∼115 and ∼105 Ma it is clear that the
87Sr/86Sri ratio flattens and becomes relatively constant (∼0.7047
to ∼0.7057) until it increases (∼0.7065) after 105 Ma and then
drops (∼0.7051) at ∼90 Ma. Although there is less Nd isotopic
data, a similar pattern as the Sr isotopes is observed at ∼115
to ∼105 Ma. The εNd(t) values of the tonalites, granodiorites
and some granites are constant (∼ + 0.2 to ∼ + 1.9) before
dropping to the lowest values (−4.7) at ∼95 Ma and increasing
again (+ 0.4) at ∼85 Ma. Unlike the major elements where
most of the compositional variation at ∼105 Ma is attributed to
the Shiraishino granodiorites, the isotopic consistency between
115 and 105 Ma occurs within different rock types, implying
a relatively uniform source for the Albian rocks. After ∼105
Ma, the increase of the 87Sr/86Sri ratio and decrease of the
εNd(t) values suggests a greater contribution of less radiogenic
material was involved in the origin of the granites. It could be
that these primitive magmas experienced crustal contamination
during emplacement; or that the granites were derived by partial
melting of the crust; or the source became more enriched due
to an increase in subducted sediment into the mantle wedge. It
would seem the first two options are more likely as the Sr and Nd
isotopic values after 95 Ma return to the values observed during
the Albian and some of the granites have higher Th/NbPM values
(>20) (Figure 10).

The calculated TZrc and TApt for the granites, granodiorites,
and tonalites are similar: TZrc = 653–740◦C and TApt = 806–
927◦C for the granites, TZrc = 666–756◦C and TApt = 803–
1022◦C for the granodiorites, TZrc = 674–739◦C and TApt = 779–
943◦C for the tonalites. The diorites did not yield meaningful
TZrc values, because their M values were outside (>1.9) of the
experimental range (Miller et al., 2003), but TApt (584–896◦C)
estimates are the lowest of all rock types. The estimates of TZrc for
each rock type are lower than those of TApt, implying the magma
sources were undersaturated in Zr during partial melting and
crystallization. In other words, the estimates of TApt represent
the maximum temperatures experienced by the granitic rocks,
whereas, for TZrc, are probably the minimum temperatures.

Over this time interval, the TZrc and TApt estimates
of the granites, granodiorites, and tonalites increased from
TZrc = ∼660◦C and TApt = ∼810◦C at 135 Ma and reached a
peak of TZrc = ∼750◦C and TApt = ∼960◦C at ∼105 Ma. This
is followed by lower TApt temperatures to 840◦C at 81 Ma. Both
the higher peaks of TZrc and TApt estimates are recorded in the
granodiorites (i.e., Shiraishino granodiorite).

The secular variations observed within the whole-rock major
elemental and Sr–Nd isotope data, and zircon (TZrc) and apatite
(TApt) saturation temperatures reveal important geodynamic
changes in the development of the Cretaceous arc system of
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FIGURE 7 | Tectonomagmatic discrimination of the Cretaceous (A) granites, (B) granodiorites, (C) tonalites, and (D) diorites from Kyushu using Rb (ppm) vs. Y + Nb
(ppm) criteria of Pearce et al. (1984) enhanced with Christiansen and Keith (1996). Symbols as in Figure 2. VAG, volcanic arc granites; ORG, ocean ridge granites;
syn-COLG, syn-collisional granites; WPG, within-plate granites; OR, ocean ridge.

SW Japan. The rocks are principally magnesian and calc-alkalic,
and have relatively high Eu/Eu∗ values (≥0.8). The magnesian
nature of the rocks implies that their parental magmas were likely
oxidized as this would lead to early crystallization of magnetite
or Ti-rich magnetite and a relatively high Mg# (Osborn, 1959;
Buddington and Lindsley, 1964). Moreover, the rocks are calc-
alkalic to calcic and have relatively high Eu/Eu∗ values which is
likely a consequence of water-rich magma systems as plagioclase
crystallization is suppressed under hydrous conditions (Arculus,
2003). In this regard, the relative uniformity of the rocks is
supportive of a long term volcanic-arc setting as oxidizing and
water-rich conditions are expected at subduction zones (Arculus,
2003; Plank et al., 2013).

It is clear that the Albian rocks, and perhaps the older
(Valanginian) and youngest (Coniacian) rocks, are derived from
a relatively uniform source as they have similar 87Sr/86Sri ratios
and εNd(t) values, as described above. The two exceptions
are the oldest rocks (Berriasian) that are the most radiogenic
and the ∼95 Ma rocks (Cenomanian) that are the most
unradiogenic rocks. As mentioned previously, the Sr–Nd isotopic
data of the ∼95 Ma rocks may reflect crustal contamination

during emplacement, or partial melting of the crust. The
fact that the Albian rocks are all less radiogenic than the
Berriasian-Valanginian rocks in spite of their different rock
types (granodiorite, tonalite, granite) indicates they are probably
derived from a source that became slightly less radiogenic over
time as a result of the material that was brought into the
subduction system/mantle wedge. The TZrc and TApt estimates
may also be supportive of the change in the subduction and
melting geodynamics as the Albian rocks (i.e., Shiraishino
granodiorite) have the higher mineral saturation temperatures,
whereas older and younger rocks appear to have lower mineral
saturation temperatures (Figure 9D). The higher temperatures
for the granodiorites at Albian may imply the heat input into the
magma source was higher during this time.

The magma source of the Shiraishino granodiorites was
proposed to be subducted oceanic crust that melted due to
asthenospheric upwelling and hot corner flow caused by slab
rollback (Kamei, 2004; Kiminami and Imaoka, 2013; Imaoka
et al., 2014; Kim et al., 2016). The proposed petrogenetic model
is broadly consistent with the classification of the granodiorites
as being related to slab failure using the Nb + Y–Nb/Y
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FIGURE 8 | Major element secular variability of the Cretaceous granitic (granties, granodiorites, tonalites, diorites) rocks from Kyushu. (A) mASI [molecular
Al/(Ca − 1.67P + Na + K)], (B) K2O/Na2O, (C) Mg# [molecular Mg/(Mg + Fe)*100], (D) TiO2 (wt%), (E) SiO2 (wt%), and (F) Al2O3 (wt%). Symbols as in Figure 2.

discrimination diagram (Figure 11), which implies that they were
derived from partial melting of the upper layers of oceanic crust
(Whalen and Hildebrand, 2019). In contrast, the other granitic
rocks are thought to be derived by partial melting of mafic lower
continental crust (Kamei, 2004), tonalitic middle crust (Kamei,
2002), and young and hot subducted oceanic crust (Kamei et al.,
2004). However, the other granitic rocks are also classified as slab

failure-related (Figure 11), suggesting they were derived from
the same source as the Shiraishino granodiorites. The model
proposed for the genesis of the Shiraishino granodiorites, as well
as the other granitic rocks, can be tested as there are constraints
on the type of source material that is representative the upper
part of subducted oceanic crust in the region. For example, the
proximal Nishisonogi chlorite-actinolite schist is interpreted to
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FIGURE 9 | Secular variation of (A) 87Sr/86Sri, (B) εNd(t), (C) zircon saturation temperature (TZrc
◦C), and (D) apatite saturation temperature (TApt

◦C) in the
Cretaceous granitic (granties, granodiorites, tonalites, diorites) rocks from Kyushu. Symbols as in Figure 2.

be a mélange sequence that was derived from the upper part
of subducted oceanic crust and melting of these rock types
are known to produce silicic melts (Marschall and Schumacher,
2012; Hao et al., 2016). In the following section, we present
thermodynamic modeling in order to determine if granitic melts
similar to the Albian rocks can be derived by partial melting of
the Nishisonogi chlorite-actinolite schist.

Thermodynamic Modeling of the Albian
Granitic Rocks
For this study, the origins of the Albian granitic rocks of Kyushu
are evaluated as they appear to be derived from the same source
(Figures 9A,B, 11) as discussed above. Namely, the Tsutsugatake
granite (Kamei et al., 2009), the Shiraishino granodiorites (Kamei,
2004), the Manzaka tonalite (Kamei, 2002), the Kunisaki and
Kita-Taku high-Mg diorites (Kamei et al., 2004), and the Kanmon
andesites (Imaoka et al., 1993) (Figure 1). The reported ages in
previous studies are 117 ± 13 Ma for the Tsutsugatake granite
(Osanai et al., 1993), 121–100 Ma for the Shiraishino granodiorite
(Nakajima et al., 1995; Kamei et al., 1997, 2000), 113 ± 5 Ma
for the Manzaka tonalite (Sakashima et al., 2003), 99 ± 5 Ma

for the Kunisaki high-Mg diorite (Kamei et al., 2004), and 105–
102 Ma for the Kanmon andesite (Imaoka et al., 1993; Matsuura,
1998). The age of the Kita-Taku high-Mg diorite, which occurs as
a xenolith in the Kita-Taku gabbros (Oshima, 1961), is inferred to
be c. 116 Ma, based on the geological relations of its host rocks
with the surrounding granitic and metamorphic rocks (Owada
et al., 1999; Kamei et al., 2004).

Equilibrium partial melting models were calculated using the
Nishisonogi chlorite-actinolite schist as a proxy for mélange
rocks in the region. Our goal is to determine if it is possible
to derive some or all of the Albian granitic rocks from the
Nishisonogo schist including: the Tsutsugatake granite, the
Shiraishino granodiorites, the Manzaka tonalite, the Kunisaki
and Kita-Taku high-Mg diorites, and the Kanmon andesites. We
selected a starting composition that is typical of the Nishisonogi
chlorite-actinolite schist (NK25; Mori et al., 2014; Table 1).

The thermodynamic modeling of granitic rocks can be mode-
led using the program Rhyolite-MELTS (Gualda et al., 2012).
Rhyolite-MELTS as it is calibrated to the SiO2–TiO2–Al2O3–
Fe2O3–Cr2O3–FeO–MnO–MgO–CaO–Na2O–K2O–P2O5–H2O
bulk composition system. The software is optimized for silicic
systems and enables the user to adjust modeling parameters, such
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FIGURE 10 | Sr/Y vs. primitive mantle-normalized Th/Nb (Th/NbPM) plot of
the Cretaceous granitic (granites, granodiorites, tonalites, diorites) rocks from
Kyushu. Primitive mantle values are from Sun and McDonough (1989).
Symbols as in Figure 2.

as pressure (bars), relative oxidation state (fO2), and water (wt.%)
content of the system being modeled, in order to constrain the
possible conditions and processes (i.e., fractional crystallization
or partial melting). The crust of Kyushu is comprised of the
Paleozoic–Mesozoic high-P metamorphic rocks and Jurassic
accretionary rocks, and its thickness is estimated to be ∼26 km
(Arai et al., 2009). However, it is likely that the crust was thinner
during the Cretaceous as it would not include the additional
material added since the Cenozoic. Consequently, the initial
pressure used for the modeling is 0.5 GPa (i.e., 5 kbar, ∼20 km
thickness) which is based on the likely depth of melting for
the rocks. The relative oxidation state of the parental rock
assemblage is not constrained and therefore we ran models
using oxidation conditions that range from relatively reducing
to relatively oxidizing (i.e., FMQ − 1, FMQ + 1, and FMQ + 3)
with water contents of 0.5 wt%.

The results are shown in Figure 12 at 10◦C intervals,
with models represented by different colored dots (i.e., white
dots = FMQ − 1; black dots = FMQ + 1; gray dots = FMQ + 3).
The thermal window of the models for this study extends from
1300 to 700◦C and represents ∼60 to ∼0.3% melting of the
source. The results indicate that the source composition, under
the melting conditions outlined in Table 1, can reasonably
produce the compositions of the Shiraishino granodiorite, the

FIGURE 11 | Nb + Y (ppm) vs. Nb/Y discrimination plots used to separate arc, slab failure, and A-type (A1, A2) compositions of the Cretaceous (A) granites, (B)
granodiorites, (C) tonalites, and (D) diorites from Kyushu (Whalen and Hildebrand, 2019). Symbols as in Figure 2.
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TABLE 1 | Starting compositions used for equilibrium partial melting models and compositions for Albian granitic rocks from Kyushu.

Starting composition Albian granitic rocks from Kyushu

Name Nishisonogi Tsutsugatake Shiraishino Manzaka Kunisaki Kita-Taku Kanmon

Sample NK25 Model 1 Model 2 Model 3 05031803 Average (n = 12) Average (n = 7) 98970505 93100506 CH905

Lithology Chlorite-

actinolite High-Mg High-Mg

schist Granite Granodiorite Tonalite diorite diorite Andesite

SiO2 (wt.%) 51.98 54.25 54.25 54.25 74.69 66.21 56.53 55.14 52.93 57.62

TiO2 0.33 0.34 0.34 0.34 0.17 0.54 0.96 0.71 0.63 0.65

Al2O3 5.33 5.56 5.56 5.56 14.02 15.81 17.62 12.97 6.67 17.17

Fe2O3t 8.83 9.22 9.22 9.22 1.26 3.61 6.58 7.75 9.84 6.80

MnO 0.16 0.17 0.17 0.17 0.04 0.08 0.13 0.16 0.22 0.05

MgO 19.00 19.83 19.83 19.83 0.30 1.64 3.95 9.65 13.23 3.07

CaO 8.58 8.95 8.95 8.95 1.18 3.88 7.41 10.81 13.43 5.02

Na2O 0.93 0.97 0.97 0.97 3.43 3.88 3.46 2.21 1.09 5.26

K2O 0.09 0.09 0.09 0.09 3.79 2.23 1.44 0.71 0.36 2.95

P2O5 0.11 0.11 0.11 0.11 0.03 0.16 0.14 0.07 0.11 0.13

H2O 0.5 0.5 0.5

Pressure 0.5 GPa 0.5 GPa 0.5 GPa

fO2 FMQ −1 FMQ + 1 FMQ + 3

Data of the starting compositions from Mori et al. (2014), and the compositions of Tsutsugatake granite from Kamei et al. (2009), Shiraishino granodiorite from Kamei
(2004), Manzaka tonalite from Kamei (2002), Kunisaki and Kita-Taku diorites from Kamei et al. (2004), and Kanmon andesite from Imaoka et al. (1993). FMQ, fayalite-
magnetite-quartz buffer.

Manzaka tonalite, the Kunisaki and Kita-Taku high-Mg diorites,
and the Kanmon andesites for the exception of K2O. Moreover,
the modeling results could not replicate the highly silicic
Tsutsugatake granites suggesting an additional process (e.g.,
fractional crystallization, assimilation-fractional crystallization)
or possibly source is required to generate highly evolved rocks.

The thermodynamic modeling demonstrates that equilibrium
partial melting of chlorite-actinolite schists can produce the
Early Cretaceous granitic rocks, except for the highly silicic
Tsutsugatake granites (Figure 12). The compositions of the
Manzaka tonalite (∼20 to ∼25% melting), the Kunisaki high-
Mg diorite (∼30 to ∼37% melting), and the Kanmon andesite
(∼20 to∼25% melting) rocks are best replicated with a relatively
reducing oxidation state (i.e., FMQ − 1), whereas the rocks
from Shiraishino granodiorite (FMQ + 1 = ∼18% melting;
FMQ + 3 = ∼9 to ∼13% melting) favor oxidizing conditions
(FMQ + 1 or + 3), which is consistent with their relatively high
Eu/Eu∗ (∼1.1). The Kita-Taku high-Mg diorite probably requires
more melting (i.e., 65–70%), but the relative oxidation state does
not appear exert a strong influence on the composition.

Although the models show that there is good agreement
between the liquid evolution curves and the bulk composition of
the granitic rocks, the K2O content in each model is consistently
too low (Figure 12). The explanations for the discrepancy
between the model curves and the K2O concentration are either
related to the highly mobile nature of K+ during metamorphism
to hydrothermal alteration or to the fact that the Nishisonogi
chlorite-actinolite schist is not a perfect analog of the mélange
rocks that melted during the Albian (Wood et al., 1976; Kogiso
et al., 1997; Zheng et al., 2011).

Tectonomagmatic Evolution of the Early
Cretaceous Granitic Rocks
It is thought that slab rollback during the Early Cretaceous,
following a shallowing of the subduction angle and subsequent
flat-slab subduction during the Late Jurassic, changed the
geotectonic setting of SW Japan from subduction-accretion to
continental arc (Kiminami and Imaoka, 2013; Kim et al., 2016).
As a result of the slab rollback, a slab gap could be created and
filled with an upwelling asthenosphere, creating a ‘hot corner’
within the mantle wedge. The change in subduction geodynamics
is expected to be reflected in the secular compositional and
temperature variations of the granitic rocks.

The initiation of asthenospheric upwelling and hot corner
flow caused by slab rollback likely began during the Berriasian
as the tonalites have the most radiogenic Sr and Nd isotopic
values [87Sr/86Sri = 0.70430 to 0.70450; εNd(t) = + 0.5 to + 3.1;
Figures 9A,B]. The magmatic source is likely juvenile or at
least the rocks were derived from a radiogenic source under the
lower continental crust or from subducted oceanic crust. Once
slab rollback began, it is possible that the dip of the subducted
slab increased and more sediments were transported along the
subducted plate interface into the mantle wedge, likely causing
a magma source to become more isotopically enriched. This is
consistent with the increase of 87Sr/86Sri ratios and decrease
of εNd(t) values of granitic rocks during Beriasian to Albian
(Figures 9A,B). The maximum temperatures experienced by the
granitic rocks (TApt) also increased over time, indicating that
there may be higher heat flow or melting conditions due to the
input of upwelling asthenosphere into the mantle wedge and
development of hot corner flow (Figures 9C,D).
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FIGURE 12 | (A–G) Results of equilibrium partial melting showing the liquid evolution paths of the Nishisonogi chlorite-actinolite schist with models represented by
different colored dots (i.e., white dots = FMQ –1; black dots = FMQ + 1; gray dots = FMQ + 3). Each dot represents a 10◦C interval of melting.
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During the Albian and the Valanginian to Coniacian, the
granitic rocks have similar 87Sr/86Sri ratios and εNd(t) values
independent of rock type (Figures 9A,B) as described above,
although some granites at ∼95 Ma have higher 87Sr/86Sri ratios
and lower εNd(t) values, which might be explained by crustal
contamination during emplacement or they were derived by
partial melting of the crust as discussed above. The peak of
maximum temperatures (TApt) occurred during the Albian,
but the rate of temperature changes decreased in this period
(Figures 9C,D). These lines of evidence suggest the inputs of
heat and sediments into the mantle wedge may be close to ‘steady
state,’ probably due to the subducted slab reaching a stable angle.
The stable subduction angle was likely the key development
that enabled the generation of melts from a relatively uniform
source for the granodiorites, tonalites, and possibly the least
evolved granitic rocks.

The magmatic source during the Albian could be similar
to mélange rocks, such as chlorite-actinolite schists, which are
intensely mixed and metasomatised rocks on the subducting plate
interface, and contain the chemical components characteristic
for the generation of arc magma at subduction zone settings
(Marschall and Schumacher, 2012). The mélange rocks may be
transported as a diapir or plume into the hot corner of the mantle
wedge where the dehydration and partial melting of the mélange
rocks could generate a range of fluid and melt compositions
(Marschall and Schumacher, 2012). Equilibrium partial melting
modeling of chlorite-actinolite schists suggests that it is possible
that they could produce magma similar to the Albian rocks at
moderate depth and variable redox conditions, indicating that
this may be a viable process that produced some of the Kyushu
granitic rocks (Figure 12).

CONCLUSION

The Early Cretaceous granitic rocks from Kyushu, SW Japan,
formed in a volcanic-arc setting. Important geodynamic changes
in the heat supply and magmatic sources occurred during the
Berriasian to Albian. Upwelling of the asthenosphere and hot
corner flow into the mantle wedge caused by slab rollback,

following a shallowing of the subduction angle and subsequent
flat-slab subduction during the Late Jurassic, likely supplied the
heat for partial melting of upper plate mélange rocks or the
initiation of diapirs that formed on the subducted plate-mantle
interface. This process was likely responsible for dehydration
and partial melting of the subducted slab. The partial melting of
the mélange rocks such as chlorite-actinolite schists at high to
moderate pressure can yield melts that are similar to the bulk
compositions observed in the Albian granitic rocks including
the adakitic rocks of the Shiraishino granodiorites. Melting of
the same source could also explain the relative Sr–Nd isotopic
homogeneity of the Albian rocks.
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