
ORIGINAL RESEARCH
published: 02 April 2020

doi: 10.3389/feart.2020.00076

Frontiers in Earth Science | www.frontiersin.org 1 April 2020 | Volume 8 | Article 76

Edited by:

Xingcai Liu,

Institute of Geographic Sciences and

Natural Resources Research

(CAS), China

Reviewed by:

Ahmed Kenawy,

Mansoura University, Egypt

Zengliang Luo,

Peking University, China

*Correspondence:

Zhanling Li

zhanling.li@cugb.edu.cn

Specialty section:

This article was submitted to

Hydrosphere,

a section of the journal

Frontiers in Earth Science

Received: 21 November 2019

Accepted: 02 March 2020

Published: 02 April 2020

Citation:

Zhang Y and Li Z (2020) Uncertainty

Analysis of Standardized Precipitation

Index Due to the Effects of Probability

Distributions and Parameter Errors.

Front. Earth Sci. 8:76.

doi: 10.3389/feart.2020.00076

Uncertainty Analysis of Standardized
Precipitation Index Due to the Effects
of Probability Distributions and
Parameter Errors
Ying Zhang and Zhanling Li*

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment,

China University of Geosciences (Beijing), Beijing, China

The standardized precipitation index (SPI) is widely used in drought assessments due

to its simple data requirement and multiscale characteristics. However, there are some

uncertainties in the process of its calculation. This study, taking the Heihe River basin

in northwest of China as the study area, mainly focuses on the uncertainty issues

both in SPI calculation and in drought characteristics associated with the probability

distributions and parameter estimation errors. Ten probability distributions (two- and

three-parameter log-logistic and log-normal, generalized extreme value, Pearson type III,

burr, gamma, inverse Gaussian, andWeibull) are employed to estimate the SPI. Maximum

likelihood estimation is used to estimate distribution parameters. Randomly generating

parameters based on the normality assumption is applied to quantify the uncertainty of

parameter estimations. Results show that log-logistic–type distribution presents quite

close performance with the benchmark gamma distribution and thus is recommended

as an alternative in fitting the precipitation data over the study area. Effects of both

uncertainty sources (probability distribution functions and parameter estimation errors)

are more reflected on extreme droughts (extremely dry or wet). The more extreme the

SPI value, the greater uncertainties caused by both sources. Furthermore, the drought

characteristics vary a lot from different distributions and parameter errors. These findings

highlight the importance of uncertainty analysis of drought assessments, given that most

studies in climatology focus on extreme values for drought analysis.

Keywords: standardized precipitation index, uncertainty, probability distribution, drought assessment, Heihe River

basin, China

INTRODUCTION

Drought is one of the most common natural disasters usually with a high degree of damage and
a wide range of influences (Xu et al., 2005; Mishra and Singh, 2010; Wang et al., 2012), which has
become a hot topic in the fields of ecology, meteorology, and hydrology (Lynch et al., 2018; Zhou
and Liu, 2018). Drought index is a useful tool in drought researches and drought assessments.
Among the drought indices, standardized precipitation index (SPI) is widely used (Moreira, 2015;
Zhang et al., 2017; Merabti et al., 2018; Oliveira-Júnior et al., 2018; Tirivarombo et al., 2018)
because it can determine drought at different time scales and only requires precipitation data (Ma
et al., 2013). However, some uncertainties exist in its calculation due to the probability distribution
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functions in fitting the precipitation data, parameter estimation
methods and errors, time scales and data length, and so on (e.g.,
Wu et al., 2005; Stagge et al., 2015; Vergni et al., 2017; Beyaztas
et al., 2018). McKee et al. (1993), the proposers of SPI, suggested
using gamma distribution to fit the cumulative precipitation
in calculating this index, whereas many scholars such as like
Cindrić et al. (2012), Hong et al. (2013), Gabriel and Monica
(2015), Wu et al. (2016), and Vergni et al. (2017) indicated
that the applicability of theoretical distributions in describing
the cumulative precipitation was inconsistent across different
regions. Specifically, Guttman (1999) verified that the Pearson
type III distribution is a better universal model in America; Sienz
et al. (2012) concluded that the Weibull-type distributions give
distinctly improved fits compared to gamma in Europe; Angelidis
et al. (2012) found that the log-normal distribution gives almost
the same results as gamma in the calculation of SPI at 12- and 24-
month scales in Guadiana (Portugal); Gabriel and Monica (2015)
demonstrated that the generalized normal distribution presents
the best performance in fitting precipitation series in Brazil.

In estimating the distribution parameters, some literatures
preferred to investigate the validity of different parameter
estimation methods (e.g., Thai et al., 2013; Beguería et al.,
2014). Thai et al. (2013) compared maximum likelihood
estimation (MLE) and restricted MLE (RMLE) in estimating the
parameters in linear mixed-effects model and found that RMLE
is advantageous when data are limited. Beguería et al. (2014)
contrasted MLE and unbiased probability weighted moments
method in estimating parameters in three-parameter log-logistic
distribution and concluded that these two methods yield similar
results, whereas the calculation of MLE is ∼2-fold more time
consuming. Carbone et al. (2018) discussed the relationship
between the stability of parameter estimation and data record
length and found that the stability in parameter estimation
increases non-linearly as record length increases.

As to the input data, a large number of studies have concerned
about the uncertainties associated with input data sources, data
length, and sampling uncertainty in the calculation of drought
index (e.g., Hao et al., 2014, 2016; Liu et al., 2014; Hu et al., 2015;
Katiraie-Boroujerdy et al., 2016; Vergni et al., 2017; Zambrano
et al., 2017; Beyaztas et al., 2018; Carbone et al., 2018). Vu
et al. (2018) compared the performance of rain-gauge data and
gridded precipitation data in the calculation of SPI over Vietnam.
Carbone et al. (2018) demonstrated that the SPI estimates derived
from 30-year record have considerably more uncertainty than
those from the 60-year record. Liu et al. (2014), Hu et al. (2015),
Vergni et al. (2017), and Beyaztas et al. (2018) quantified the
sampling uncertainties and their effects on the estimation of
drought index.

All the above studies have made great contributions in
enriching the uncertainty analysis in drought assessments,
whereas most of them were concerned about the influences of
uncertainty sources on the drought index itself and lack of the
consideration of their effects on drought events and drought
characteristics. Therefore, this study aims to investigate the
effects of uncertainty sources on both SPI values and drought
characteristics, specifically drought intensity, peak, number,
duration, and frequency. Two uncertainty sources are mainly

considered; one is the different probability distribution functions,
and the other is parameter estimation errors, which would also
cause the uncertainty in drought assessments, while it was seldom
concerned in literatures.

To be specific, as many as 10 probability distribution functions
are employed here, including five three-parameter distributions
and five two-parameter distributions. Maximum likelihood
estimation approach is used to estimate the distribution
parameters, and a large set of randomly generated parameters,
which are based on the normality assumption, is used to quantify
the uncertainties of parameter estimations. These methods will
be described in the next section, preceded by a brief description
of the case study area and data sets. The results and discussion
will then be presented, and the conclusions from this study will
be given in the last section.

MATERIALS AND METHODS

Study Area and Data Description
The Heihe River basin (97◦ 37′-102◦ 06′ E, 37◦ 44′-42◦40’N) is
the second largest inland river basin in northwest of China, with
a drainage area of nearly 1.429× 105 km2. The Heihe River flows
through Qinghai, Gansu, and Inner Mongolia provinces from
south to north, spanning three different geographical regions:
semiarid to semi-humid, semiarid, and extreme arid desert (Feng
et al., 2001). The annual mean precipitation amounts to 400 to
500mm in the southern mountainous area of the upper reach,
100 to 150 mm in the middle reach, and <50mm in the lower
reach, whereas the evaporation rate is much higher, ranging from
1,000 to 2,200mm from the upper reach to the lower reach (Li,
2010). In recent years, temperatures show upward trends for the
whole basin (Liu et al., 2017). Droughts have great effects on the
local economic and social development and also on the fragile
ecological environment over the basin.

There are nine national meteorological stations in the basin,
Tuole (TL), Yeniugou (YNG), and Qilian (QL) stations in the
upper reach; Sandan (SD), Zhangye (ZY), Jiuquan (JQ), Gaotai
(GT), and Dingxin (DX) in the middle reach; and Ejinaqi
(EJNQ) station in the lower reach (Figure 1). The name in the
parentheses is the abbreviated name of each station. Precipitation
data covering the period of 1960–2015 at these nine stations are
used for the drought analysis, without missing or outliers and
with good quality. All data used in the study is available from
China Meteorological Data Network (http://data.cma.cn/).

The Standardized Precipitation Index
The SPI requires only precipitation data and can be used for
drought assessments on different time scales (e.g., 3, 6, 12-
months). It is calculated by fitting the cumulative precipitation
with an appropriate probability density function to characterize
the deficit of precipitation. As recommended by McKee et al.
(1993), the two-parameter gamma distribution is used as a
probability function to fit the cumulative precipitation for each
month. The calculation process is as follows (McKee et al., 1993;
Angelidis et al., 2012):
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FIGURE 1 | Meteorological stations in Heihe River basin.

Establishing cumulative precipitation sequences at different
time scales:

Xk
i,j =

k−1
∑

t=0

(xi,j−t) (1)

where xi,j is the precipitation, i is the specified year, j is themonth,

and Xk
i,j is the cumulative precipitation when the time scale is k.

The time scales vary from 1 to 48-months (generally include1,
3, 6, 12, 24, or 48-months). Shorter time scales (3 or 6-months)
can best represent soil moisture and are more conducive to the
discovery of agricultural drought (Komuscu, 1999; Sims et al.,
2002). Longer time scales are considered to better monitor the
surface water resources (12-month) or the aquifer water state
with slow response to drought (24 or 48-months) (Hayes et al.,
1999). The time scale of 12-months is selected in this study.

The probability density function of gamma distribution is
formulated as

g (x) =
1

βαŴ(α)
xα−1e

−x
β (2)

where α and β are the shape and scale parameters, respectively, x
is the cumulative precipitation, and Ŵ(α) is a gamma function.

The cumulative probability for a given length of time can be
calculated as

G (x) =
∫ x

0
g(x)dx (3)

It is possible to have several zero values in a precipitation data, so
the cumulative probability function of gamma distribution with
the x = 0 case is modified to

H (x) = q+
(

1− q
)

G(x) (4)

where q is the probability of zero precipitation.
Finally, the cumulative probability distribution is normalized

to produce an SPI:

SPI =































−
(

t − c0+c1t+c2t
2

1+d1t+d2t2+d3t3

)

, t =
√

ln
(

1
(H(x))2

)

for 0 < H (x) < 0.5

t − c0+c1t+c2t
2

1+d1t+d2t2+d3t3
, t =

√

ln
(

1

(1.0−H(x))2

)

for 0.5 < H (x) < 1.0

(5)

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 =
1.432788, d2 = 0.189269, and d3 = 0.001308.

The SPI values are classified into seven grades following
the classification criteria in the SPI User Guide (http://www.
wamis.org/agm/pubs/SPI/WMO_1090_EN.pdf) and are given in
Table 1.

Probability Distributions in Fitting SPI
As illustrated above, SPI requires a theoretical probability
distribution to fit the cumulative precipitation process. McKee
et al. (1993) suggested using a two-parameter gamma distribution
when they first proposed this index. However, this distribution is
not always the optimal choice when considering practical reasons
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TABLE 1 | Drought classification according to SPI values.

SPI value Classification

≥2.0 Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal

−1.0 to −1.49 Moderately dry

−1.5 to −1.99 Severely dry

≤-2.0 Extremely dry

such as different research areas or research needs (Guttman, 1999;
Angelidis et al., 2012; Sienz et al., 2012; Gabriel and Monica,
2015).

In this study, as many as 10 distributions are selected
for comparative analysis, including three-parameter log-logistic
(LL3), three-parameter log-normal (LN3), generalized extreme
value (GEV), Pearson type III (PE3), Burr, gamma, two-
parameter log-logistic (LL2), two-parameter log-normal (LN2),
inverse Gaussian (IG), andWeibull. The name in the parentheses
is the abbreviated name of each distribution. The former five-
are three-parameter distributions and the latter five are two-
parameter distributions. The probability density function of each
distribution is shown in Table 2.

Method for Quantifying the Effects of
Parameter Estimation Errors
Maximum likelihood estimation is one of the most commonly
used approaches to estimate parameters in probability
distribution functions and has been verified to be preferable
when the sample size is more than 50 (Madsen et al., 1997). Thus,
it is employed to estimate the parameters of gamma distribution
in this research. The theory of MLE states that for large sample
sizes n and a k-dimensional parameter vector, MLE estimators
are approximately distributed as a multivariate normal. Thus,
the uncertainties of distribution parameters are then quantified
by randomly generating parameters based on the multivariate
asymptotic normality assumption (Nixon et al., 2010; Degeling
et al., 2017). The detailed process is as follows:

• fitting the original cumulative precipitation data set X =
(x1, x2, ..., xn) (n is the length of the data set) with gamma
distribution and obtaining the optimal parameter sets (α∗, β∗)
and the variance–covariance matrix;

• randomly generating N sets of parameters [(α1, β1), (α2,
β2),..., (αN, βN)] based on the optimal parameter sets and
the variance–covariance matrix under the assumption of
asymptotic normality (N can be set, in this study N = 1000);

• calculating N sets of SPI values according to Equations (2) to
(5) with N sets of parameters; and

• identifying the (a/2)th and (1- a/2)th percentiles based on N
sets of SPI values, which are assumed to be the lower and
upper bounds of SPI confidence intervals (CIs). a is set to be
0.05 herein.

TABLE 2 | Probability density function of each distribution.

Distribution Probability density function

3-Parameter LL3 f (x) = α
β
( x−γ

β
)
α−1

(1+ ( x−γ

β
)
α
)
−2

LN3 f (x) = 1

(x−γ )β
√
2π
e
(− 1

2 (
ln(x−γ )−α

β
)
2
)

GEV f (x) =











1
β
e
(−

(

1+α
x−γ
β

)− 1
α (

1+ α
x−γ

β

)−1− 1
α
α 6= 0

1
β
e
(− x−γ

β
−e−

x−γ
β )

α = 0

PE3 f (x) = 1
βαΓ (α) (x − γ )α−1e

− (x−γ )
β

Burr f (x) =
µα( x

β
)
µ−1

β(1+
(

x
β

)µ
)
α+1

2-Parameter Gamma f (x) = 1
βαΓ (α) x

α−1e
−x
β

LL2 f (x) = α
β
( x
β
)
α−1

(1+ ( x
β
)
α
)
−2

LN2 f (x) = 1

xβ
√
2π
e
(− 1

2 (
lnx−α

β
)
2
)

IG f (x) =
√

β

2πx3
e
− β(x−γ )2

2γ2x

Weibull f (x) = α
β
( x
β
)
α−1

e
−( x

β
)
α

α, β, γ , and µ are shape, scale, location, and inequality parameters, respectively.

Drought Characteristics
Drought event can be characterized by multiple variables, for
example, drought event number, intensity, peak, duration, and
frequency. All these characteristics are often suggested to be
used for drought assessments (e.g., Loukas and Vasiliades, 2004;
Sheffield and Wood, 2008; He et al., 2018) and thus selected
in this analysis. According to the Run theory (Yevjevich, 1967),
when SPI is below the threshold value, for example,−1, a drought
event is considered to have occurred. The intensity of a drought
event is defined as the mean value of a drought index below the
threshold level. The peak is the minimum value of a drought
index below the threshold value. Duration is the amount of
time that a drought index is continuously below the threshold
level. Drought frequency is defined as the ratio of drought event
number to the total length of the time series. It is calculated with
the formula of P = n

N × 100%, in which N means the total
number of SPI values, and nmeans the total number of SPI values
belonging to each grade.

RESULTS

Effects of Probability Distributions
Performance of Different Probability Distributions
Figure 2, taking the 12-month cumulative precipitation in
January at Tuole station as an example, shows the comparison
of the empirical cumulative probability distribution and the 10
theoretical ones. Note that the abbreviated names of stations and
distributions are used in all figures for convenience. No clear
differences are observed from Figure 2, and all the alternative
distributions seem to give satisfactory fits to the series. For
evaluating the performance of different probability distributions
in more details, goodness-of-fit tests including the Kolmogorov–
Smirnov (K-S) and Anderson–Darling (A-D) tests are carried
out (Svensson et al., 2017; Vergni et al., 2017). Also taking
the cumulative precipitation data in January as an example, the
calculated statistic values for both tests are given in Table 3. The
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FIGURE 2 | Cumulative probability for 12-month cumulative precipitation in January at Tuole station (LL3, LL2, LN3, LN2, GEV, PE3, and IG represent the three- and

two-parameter log-logistic and log-normal, generalized extreme value, Pearson-III, and inverse Gaussian distributions, respectively). (A) The cumulative probability of

empirical and three-parameter theoretical distributions. (B) The cumulative probability of empirical and two-parameter theoretical distributions.

TABLE 3 | The statistic values of Kolmogorov–Smirnov and Anderson–Darling tests for January cumulative precipitation series at a of 0.05.

Kolmogorov–Smirnov

Distribution Tuole Yeniugou Qilian Sandan Zhangye Jiuquan Gaotai Dingxin Ejinaqi

3-Parameter LL3 0.067 0.076 0.064 0.079 0.071 0.073 0.055 0.070 0.054

LN3 0.062 0.059 0.054 0.095 0.093 0.074 0.063 0.066 0.064

GEV 0.064 0.060 0.056 0.097 0.095 0.079 0.061 0.062 0.060

PE3 0.062 0.060 0.056 0.096 0.096 0.068 0.069 0.069 0.076

Burr 0.075 0.072 0.063 0.079 0.076 0.080 0.052 0.059 0.059

2-Parameter Gamma 0.055 0.058 0.097 0.088 0.094 0.084 0.074 0.052 0.086

LL2 0.059 0.076 0.069 0.075 0.083 0.084 0.052 0.069 0.052

LN2 0.054 0.063 0.090 0.081 0.111 0.080 0.065 0.068 0.074

IG 0.056 0.063 0.091 0.083 0.113 0.078 0.068 0.069 0.090

Weibull 0.085 0.099 0.138 0.133 0.107 0.116 0.115 0.074 0.115

Anderson–Darling

3-Parameter LL3 0.228 0.175 0.150 0.302 0.398 0.264 0.230 0.332 0.187

LN3 0.180 0.195 0.167 0.460 0.525 0.213 0.291 0.248 0.226

GEV 0.182 0.210 0.150 0.495 0.555 0.253 0.275 0.251 0.207

PE3 0.179 0.199 0.222 0.473 0.550 0.197 0.338 0.244 0.289

Burr 0.245 0.18 0.172 0.307 0.404 0.311 0.205 0.268 0.208

2-Parameter Gamma 0.173 0.197 0.706 0.444 0.535 0.483 0.368 0.219 0.326

LL2 0.229 0.171 0.393 0.279 0.575 0.343 0.205 0.324 0.193

LN2 0.207 0.196 0.558 0.440 0.695 0.297 0.273 0.257 0.274

IG 0.210 0.200 0.564 0.458 0.715 0.281 0.284 0.254 0.375

Weibull 0.424 0.761 2.121 1.077 0.788 0.987 1.181 0.422 0.682

The bold numbers correspond to the smallest statistical values of Kolmogorov–Smirnov and Anderson–Darling tests for each station.

critical values equal 0.18 and 2.50 at 0.05 significance level for
K-S and A-D tests, respectively. If the statistic value is lower
than the critical value, it indicates that the data set passes the
corresponding test at 0.05 significance level; otherwise, it fails.

According to Table 3, all the statistic values are lower
than the critical values, indicating that all the alternative

distributions can provide satisfactory performance in
fitting the cumulative precipitations. Comparatively, the
three-parameter distributions show better than those two-
parameter ones. Among the three-parameter distributions,
three-parameter log-logistic performs the best, with 9 of 18
critical values being the smallest (in bold in Table 3). Among
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the two-parameter distributions, two-parameter log-logistic
performs the best, with 10 of 18 critical values being the
smallest, and Weibull performs the worst, with the highest
statistic values.

The same work is done for the precipitation data of other
months. The results still demonstrate that three- and two-
parameter log-logistics perform best among the three-parameter
and two-parameter distributions, respectively, with 67 and 95
smallest critical values of the total, accounting for 31 and 44%.
By contrast, three-parameter log-logistic performs better than
the two-parameter one owing to the smaller critical values of
K-S and A-D tests. That is, log-logistic–type distribution can
be used as alternatives in fitting the cumulative precipitation
across the study area. In contrast, gamma performs moderately,
with 25% of the critical values being the smallest in this
case. Note that among all the precipitation data and all the
distributions only Burr fails to fit the data in August at
Jiuquan station.

Effects of Probability Distributions to SPI
Figure 3 shows the SPI values derived from the 10 different
probability distributions. The blue line is from the benchmark
gamma distribution, and other colored lines are from the other
nine alternative distributions. Most of the lines coincide with
each other as a whole, and the differences are generally observed

at the lower and upper limits of SPI values (extremely dry and
extremely wet conditions). For example, more wet conditions
(higher SPI values) are detected from Weibull distribution at
Qilian station in 1999, and more dry conditions (smaller SPI
values) are detected from Pearson type III at Qilian station
in 1971.

In order to further analyze the inconsistency of SPI
values obtained from the various probability distributions, the
differences calculated from SPIalternative minus SPIgamma are
presented in Figure 4 (SPIalternative and SPIgamma mean the SPI
values derived from the nine alternative distributions and from
the benchmark gamma distribution, respectively). Clearly, the
differences are minimal for normal and moderate classifications
(corresponding to −1.5 < SPI < 1.5), conditions nearly within
the range of ± 0.1. As the SPI values vary to the extremes,
the differences become lager. The more extreme (dry or wet)
the events, the greater the differences, and the more dispersed
the scatter points (Figure 4). These indicate that although little
effects are on the normal and moderate classifications, greater
effects are on the extreme classifications (extremely dry or wet)
from the different probability distributions in SPI calculation.
Note that the differences derived from Burr distribution vary
greatly for Jiuquan station (in cyan in Figure 4) due to the fact
that Burr fails to pass the tests in fitting the August cumulative
precipitation at this station.

FIGURE 3 | SPI values modeled by different probability distributions (LL3, LL2, LN3, LN2, GEV, PE3, and IG represent the three- and two-parameter log-logistic and

log-normal, generalized extreme value, Pearson-III, and inverse Gaussian distributions, respectively; TL, YNG, QL, SD, ZY, JQ, GT, DX, and EJNQ are Tuole, Yeniugou,

Qilian, Sandan, Zhangye, Jiuquan, Gaotai, Dingxin, and Ejinaqi stations, respectively).

Frontiers in Earth Science | www.frontiersin.org 6 April 2020 | Volume 8 | Article 76

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Zhang and Li Uncertainty Analysis of SPI Calculation

FIGURE 4 | The differences of SPI modeled by gamma and alternative distributions (the abbreviations are the same as in Figure 3).

FIGURE 5 | Drought characteristics derived from different probability distributions (the abbreviations are the same as in Figure 3).
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Effects of Probability Distribution to Drought

Characteristics
The drought assessment based on drought characteristics is
more informative than the numerical value itself for most
practical applications (Guttman, 1999). Five characteristics of
drought events are considered here: intensity, peak, event
number, the maximum and total duration, and frequency. As
observed in Figure 5, the drought characteristics derived from
the different probability distributions differ greatly. Inverse
Gaussian distribution tends to derive the droughts with higher
drought intensity and peak, two-parameter log-logistic derives
more droughts with longer drought duration, whereas Weibull
derives more droughts with lower intensity, lower peak, and

shorter duration. As to the maximum drought duration, most
distributions detect longer duration than gamma. As to the
drought event number, the performance of different distributions
at different stations is inconsistent.

Figure 6 presents the drought frequency of each drought
grade. As observed, differences can be found in drought
frequency derived from different probability distributions,
especially at the extremely wet and extremely dry levels. When
SPI ≥2.0 (extremely wet), for example, the occurrence frequency
is 2.3% from gamma for Jiuquan station, whereas 0% from
three-parameter log-logistic and 4.4% from Weibull. When SPI
≤-2.0 (extremely dry), the occurrence frequency is 0.6% from
gamma for Jiuquan station and 3.0% from Pearson type III.

FIGURE 6 | Drought frequency of SPI modeled by different probability distributions (the abbreviations are the same as in Figure 3).
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Comparatively, Weibull distribution detected more extreme wet
and almost no extreme dry in this study. The findings of
great effects on extreme droughts from different probability
distributions highlight the importance of the selection of suitable
probability distribution in the calculation of SPI, because
extremes (rather than the moderate) are usually the main focuses
of many meteorological and disaster researches.

Effects of Parameter Estimation Errors
Parameter Estimation and Its Uncertainty
The shape and scale parameters in gamma distribution are
estimated by the MLE method, with the results shown in
Figure 7. The optimal shape parameters vary greatly at different
stations, whereas the scale parameters are relatively close.
Method of L moment is used as well for comparison. Clearly,

these two methods give quite close parameter estimations as
a whole.

Figure 7 also shows the 95% CIs of each parameter derived
from the standard errors, with the normality assumption
according to MLE. The width of 95% CIs of a given variable

is usually used as a measure of its uncertainty (Liu et al.,
2014; Hu et al., 2015; Vergni et al., 2017). From the figure, the
uncertainties range from 16.93 to 47.40, 21.70 to 61.90, 33.71 to
92.64, 12.12 to 30.42, 8.51 to 22.43, 3.92 to 11.79, 6.04 to 18.10,
4.36 to 18.10, and 2.18 to 5.09 for shape parameters at Tuole,
Yeniugou, Qilian, Sandan, Zhangye, Jiuquan, Gaotai, Dingxin,
and Ejinaqi stations and range from 6.36 to 18.23, 6.81 to 19.24,
4.35 to 12.50, 6.63 to 17.15, 5.56 to 16.67, 7.14 to 25.00, 5.91 to
18.51, 4.98 to 13.25, and 6.67 to 16.67 for scale parameters at
each station.

FIGURE 7 | The optimal values and 95% CIs for shape and scale parameters in gamma distribution (the gray shade represents the 95% CIs; the blue and green

points represent the optimal parameters from MLE and L moment methods, respectively; the abbreviated names of stations are the same as in Figure 3).
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Effects of Parameter Estimation Errors to SPI
Figure 8 gives the SPI estimations, and their 95% CIs resulted
from the parameter estimation errors. It is observed that the
95% CIs are wider for extreme events than for other cases, no
matter extremely wet or extremely dry. In order to investigate the
uncertainty of SPI values originating from parameter estimation
errors in more details, the widths of 95% CIs of SPI are
presented in Figure 9, together with the mean absolute error
(MAE) values, which are derived from the equation of MAE =
1
n

∑n
i=1 |Xi− Yi|, where n is the total sample size, Xi is the ith

original SPI value, and Yi is the ith SPI value considering the
parameter estimation errors. For making Figure 9 more clearly,
we fix the widths of 95% CIs andMAE facing down when the SPI
values are negative, and vice versa.

It can be seen that the fluctuations of the curves for 95%
CIs width (in pink) are close to those of SPI values, showing
increasing (getting larger) with SPI values changing to the
extremes. For example, the average widths of 95% CIs vary from
0.58 to 0.87 for Qilian station when −1.99 ≤ SPI ≤ 1.99 and
increase to 1.10 when SPI ≥2.0 and 0.95 when SPI ≤-2.0. The
more extreme the SPI value, the larger the average width. The
widest 95%CIs (1.24, 1.24, 1.24, 1.59, 1.13, 1.11, 1.31, 1.21, and
1.29 for Tuole, Yeniugou, Qilian, Sandan, Zhangye, Jiuquan,
Gaotai, Dingxin, and Ejinaqi stations) are nearly twice of the
average widths of 95% CIs (0.65, 0.65, 0.65, 0.64, 0.65, 0.54, 0.65,
0.66, and 0.64, respectively) at each station. The fluctuations of
the curves for MAE (in green) also show similar tendency with
the 95% CIs curves, getting larger with the SPI increasing or
decreasing to the extremes.

Effects of Parameter Estimation Errors to Drought

Characteristics
The intervals of each drought characteristic caused by parameter
estimation uncertainty are shown in Table 4. Consistent with
the results caused by different probability distributions, drought
peak, event number, and drought duration are greatly affected.
The deviation amounts to 0.10 to 0.29 for drought intensity, 0.93
to 1.60 for drought peak, 8 to 18 times for drought event number,
4 to 15-months for the maximum drought duration, and 68 to
123-months for the total duration. Specifically, Jiuquan station
experienced the largest difference in drought event number (18
times), Sandan station experienced the largest difference in both
drought peak (1.60) and the maximum drought duration (15-
months), and Qilian station experienced the largest difference
in the total drought duration (123-months). In addition, the
intervals of drought event number and the maximum drought
duration caused by parameter estimation errors are larger than
those caused by different probability distributions.

Figure 10 displays the frequency of seven drought grades
associated with the uncertainty of parameter estimations. As
expected, the classification results for the upper and lower
limits of 95%CIs are different. For instance, when SPI ≥2.0,
the extremely wet frequency is 6.5% from the upper limit for
Jiuquan station, and it is 0 from the lower limit. When SPI
≤-2.0, the extremely dry frequency is 0.2% from the upper
limit for Zhangye station and increases to 6.1% from the lower
limit. This difference occurs not only in extremes, but also in
other cases. For example, the frequency of moderate drought
(corresponding to −1.5 < SPI ≤ −1.0) is 5.3% from the

FIGURE 8 | SPI values and their 95% CIs estimations considering the parameter estimation errors (the abbreviated names of stations are the same as in Figure 3).
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FIGURE 9 | SPI 95% CIs width of and the MAE value considering the parameter estimation errors (the black dotted lines correspond to SPI value of ± 0.99; the

abbreviated names of stations are the same as in Figure 3).

TABLE 4 | The intervals of drought characteristics considering parameter estimation errors.

Station Drought intensity Drought peak Drought number Maximum drought duration Drought duration

Tuole [−1.49, −1.22] [−3.46, −2.22] [12, 22] [13, 24] [49, 147]

Yeniugou [−1.41, −1.28] [−3.51, −2.27] [9, 22] [15, 23] [47, 148]

Qilian [−1.36, −1.26] [−2.56, −1.63] [15, 32] [12, 19] [41, 164]

Sandan [−1.40, −1.26] [−4.46, −2.86] [16, 27] [14, 29] [51, 143]

Zhangye [−1.54, −1.27] [−3.70, −2.57] [19, 25] [12, 16] [85, 153]

Jiuquan [−1.38, −1.20] [−2.76, −1.74] [12, 30] [14, 21] [52, 158]

Gaotai [−1.47, −1.28] [−3.58, −2.27] [13, 24] [11, 20] [57, 144]

Dingxin [−1.41, −1.30] [−3.35, −2.13] [13, 30] [11, 17] [54, 160]

Ejinaqi [−1.52, −1.23] [−3.07, −1.99] [12, 20] [11, 24] [56, 132]

upper limit and reaching 15.5% from the lower limit at Qilian
station. This reminds us that we should not ignore the effects
of parameter estimation errors on drought index calculation,
because they probably affect the classifications of drought grades,
which associates closely to the decision-making of the local
drought management.

DISCUSSION

Drought index is an important indicator for drought
researches. However, uncertainties exist in its calculation.

This study discusses the effects of probability distributions
and parameter estimation errors on both SPI values and
drought characteristics.

It is found that the three-parameter distributions show
better performance in fitting the precipitation data than those
two-parameter distributions. This result keeps consistent
with the finding of Vergni et al. (2017), who concluded
that the two-parameter gamma distribution provides less
reliable estimates of the precipitation probability than
the three-parameter Pearson type III and the generalized
normal distribution in their study case. Cindrić et al. (2012)
suggested that as to the choice of the most appropriate
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FIGURE 10 | Drought classification frequency based on SPI values considering parameter estimation errors (LL and UL are the lower and upper limits of 95% CIs,

respectively; the abbreviated names of stations are the same as in Figure 3).

distribution for a particular region the ratio of skewness
and the coefficient of variation for the precipitation data
can be used as an indicator. Angelidis et al. (2012) and
Stagge et al. (2015) deemed that the suitable probability
distribution is related with the time scale of precipitation
data to be fitted. Angelidis et al. (2012) found that the
log-normal distribution can produce almost the same
results with gamma for 12- or 24-months SPI. Stagge et al.
(2015) compared the seven probability distributions and
concluded that the gamma distribution produces the most
consistently good fit for the long-accumulation precipitation
(>6-months), whereas Weibull is consistently the best for the
short accumulation (1–3-months). In our case, log-logistic–
type distribution can be used as alternatives in fitting the
cumulative precipitation across the study area. Even though for

avoiding the interpretability issues and potential extrapolation
issues with complex distributions that may be overfit, to
use a single and simple distribution may be a good choice
(Stagge et al., 2015).

Considering the effects of different probability distributions
on SPI and drought characteristics, less influence is found for
normal and moderate classifications, while as the SPI values vary
to the extremes, the influence becomes lager. This conclusion
keeps in line with those from Angelidis et al. (2012) and Vergni
et al. (2017), who concluded that the consistency of the SPI
calculated with different distributions is good for normal periods,
while becoming poor for very dry or very wet periods. It is also
found in our case that different probability distributions lead
to great differences in drought peak, event number, duration,
and frequency.
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With regard to the effects of parameter estimation errors
on SPI values and drought characteristics, the resulted 95%
CIs are becoming larger with the SPI value increasing or
decreasing to the extremes. Furthermore, the intervals of drought
event number and the maximum drought duration caused by
parameter estimation errors are even larger than those caused by
different probability distributions. As stated by Wu et al. (2005),
the parameter estimates with little confidence would result in
the SPI values with little confidence. To ensure the parameter
estimates with high confidence, a long record of precipitation
data is usually required for the analysis, because MLE presents
unstable behavior for small samples (Martins and Stedinger,
2000), and preferable performance when the sample size becomes
larger (more than 50) (Beguería et al., 2014). McKee et al. (1993)
regarded that a continuous period of at least 30-years seems ideal
in the SPI calculation, while Guttman (1994) found that ∼40 to
60-years of record is needed for parameter estimation stability
in the central part of the distribution and ∼70 to 80-years of
record for stability in the tails. Carbone et al. (2018) suggested
that record lengths of 60-years are basically enough in general,
which typically results in stable parameters and representative
SPI values. In addition, the minimum length of record also
depends on whether the precipitation pattern changes (Wu et al.,
2005). Carbone et al. (2018) found that extreme events also
have a significant influence on SPI estimates, even over 60-years
of records.

CONCLUSIONS

The estimation of SPI involves uncertainties originated from
many aspects. This article mainly focuses on the effects of
two uncertainty sources (probability distribution functions and
parameter estimation errors) on both the calculation of SPI of
12-months and drought characteristics.

Five three-parameter and five two-parameter distributions
were employed. Results indicate that the log-logistic–type
distribution (2-parameter and 3-parameter) presents the best
performance in fitting the cumulative precipitation series over
the Heihe River basin, better than the suggested gamma
distribution, whereas Burr andWeibull present the worst. Results
also show that the influences of different probability distributions
on SPI values and on droughts are mainly manifested in
the extreme classifications (extremely dry and extremely wet
conditions with SPI ≤-2.0 and SPI ≥2.0), rather than in the
normal and moderate classifications (corresponding to −1.5 <

SPI< 1.5). This finding highlights the importance of selecting the
suitable probability distribution in the calculation of SPI, because
extremes are usually the primary focuses of many meteorological
and disaster researches.

The effects of parameter estimation errors illustrate that
the more extreme the SPI value (more drought or the more

wet), the wider the 95% CIs, and the greater the uncertainty
caused by parameter estimation errors. The parameter estimation
errors also result in different drought characteristics. It indicates
that the effects of parameter estimation errors should not
be ignored because it probably affects the decision-making
on drought analysis. A long record of precipitation data is
essential to ensure that the parameter error is small. As to
how long the records are sufficient over the study area will
be discussed in the future analysis. Noted that, because all
the findings here are in the context of the SPI at 12-month
scale and limited stations, more works should be extended
over further scales and regions, to define the most appropriate
statistical distribution to fit precipitation data and properly
characterize drought.

To sum up, both the probability distribution functions and
parameter errors lead to the uncertainties in the estimation of SPI
values and drought assessments, especially in the extreme values,
which is just the focus of many extreme studies. Consequently,
we should be vigilant about the uncertainty issues in drought
assessment and strengthen the researches on quantifying and
reducing such uncertainties, which will help decision-making
becoming more confident.
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