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Numerical weather prediction (NWP) systems at the convective scale are operated

to gain reliable forecasts for diverse atmospheric variables at high spatial resolution.

Especially for the prediction of small-scale weather phenomena such as deep convection

including the associated precipitation patterns and wind gusts the high-resolutionmodels

provide additional benefit over coarser scale models. In this context the distribution

of atmospheric humidity plays an important role, however conventional observations

of atmospheric humidity are sparse in space and time. The present work aims at the

assimilation of water vapor channel radiances of the satellite instrument SEVIRI in an

operational framework based on a Local Ensemble Transform Kalman Filter (LETKF)

and a convection permitting NWP model. This article describes all the essential elements

for a successful incorporation of this kind of data into the system, from the application

of a cloud filtering technique over bias correction and vertical localization of the radiance

observation. Data assimilation experiments over two 4-week periods show a neutral

to slightly positive impact of SEVIRI radiances on upper-air relative humidity and wind

speed forecasts.

Keywords: SEVIRI, satellite data, water vapor channel, vertical localization, data assimilation, Local Ensemble

Transform Kalman Filter, convection resolving model

1. INTRODUCTION

Weather forecasts around the world are based on numerical weather prediction (NWP). National
weather services operate different NWP systems with different data assimilation (DA) methods.
Widespread DA techniques in operational frameworks are variational techniques, i.e., 3DVar
and 4DVar (Rabier et al., 2000; Fischer et al., 2005) and, more recently, ensemble Kalman
filters (Bonavita et al., 2010; Schraff et al., 2016). These techniques merge short-range forecasts
from an atmospheric model (“first guess”) and a large number of different observations to gain an
optimal initial state for the atmospheric state variables of the forecast model.

The observations used are on the one hand in situ observations of pressure, temperature,
horizontal wind or humidity measured close to the surface, e.g., by weather stations or buoys, or
in the upper atmosphere by radiosondes and air planes. These observations have a specific spatial
location. They are complemented by radiances measured by satellite instruments. These are non-
local observations, since they depend on the meteorological conditions in the atmosphere and are
measured at the top of the atmosphere as an integral measure over the atmospheric column. Over
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the last two decades, the use of satellite data has evolved
significantly and nowadays they are a main contributor to the
quality of global forecasts (Bauer et al., 2010, 2011; Buehner et al.,
2015; Geer et al., 2018; In-Hyuk et al., 2018).

Limited area weather prediction systems for regional weather
forecast often make less use of satellite observations. Polar-
orbiting satellites provide a large set of observations on the
global scale whereas they visit each earth region twice a day
only (Montmerle et al., 2007). For this reason data from
geostationary satellites are of particular interest to operational
regional NWP (Szyndel et al., 2005; Stengel et al., 2009; Guedj
et al., 2011) as they provide observations at high spatial and
temporal resolution.

The aim of the present work is to introduce the assimilation
of geostationary satellite radiances from the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) instrument on Meteosat
Second Generation (MSG) into the operational convective scale
NWP system at Deutscher Wetterdienst (DWD). It is based on
an ensemble Kalman filter and covers Germany and neighboring
countries. With seamless prediction (Blahak et al., 2018) being
a main focus of current developments, the representation of
convective initiation and the positioning of convective cells
with the greatest possible accuracy from the initialization of the
forecast becomes increasingly important. The accurate analysis
of the pre-convective environment requires to capture the
large-scale moisture and temperature distribution from the
boundary layer to the upper troposphere. Hence the present
work focuses on the SEVIRI infrared water vapor channels
providing a high horizontal and temporal density allowing for
a better high-resolution constraint of the mid- and upper-
tropospheric moisture distribution in addition to the rather
sparsely distributed radiosonde humidity information used
up to now.

An important issue for radiance assimilation is the treatment
of cloudy areas. While advances are being made to incorporate
cloud information in the assimilation (Stengel et al., 2013;
Geer et al., 2018; Gustafsson et al., 2018) many issues remain,
especially in the infrared spectrum linked to inaccuracies and
biases which are caused by deficits in the model parameterization
and the representation of clouds in radiative transfer models.
These are known to lead to errors and biases in the model
equivalent radiances. To this end, in this work we follow a
clear-sky approach which neglects cloud-affected observations.
We have applied a new clear-sky method to screen out
cloud-affected observations (Harnisch et al., 2016). Several
previous studies have investigated the assimilation of cloud
information using satellite derived products (Schomburg et al.,
2015) or a bias correction scheme (Otkin and Potthast,
2019) in a similar data assimilation setting. While those
studies were done in a research context and run over a
short time period, the present study targets an operational
implementation involving longer periods covering variable
weather situations.

An additional issue investigated here is linked to the
fact that the implementation of the Local Ensemble
Transform Kalman Filter (LETKF) (Hunt et al., 2007)
requires the vertical localization of radiance observations,

which are integrals over the atmosphere and thus
inherently non-local. This problem is tackled using a
new localization approach with observation-dependent
localization radii.

To our best knowledge, the present work is the first to show
a successful satellite data assimilation within an LETKF in a
regional convective scale model over land in an operational
setting including experiments in variable weather situations
occurring during longer trial periods. The work points out
which steps are necessary to gain a positive impact on forecasts.
Section 2 provides an overview on the operational regional data
assimilation setup at DWD and describes the cloud screening
and bias correction of the satellite data. The results section 3
derives and applies an improved vertical localization method
and describes the results of the assimilation trials. The data
assimilation has been applied to clear-sky satellite data selected by
the new method. The final discussion in section 4 puts the gained
results into context and wraps up the work.

2. METHODS

This section introduces the data assimilation elements, such
as the data assimilation techniques, the NWP model, the
observations used and the weather situations under study.

2.1. Kilometre-Scale ENnsemble Data
Assimilation (KENDA) Framework
The KENDA system (Schraff et al., 2016) is operational at DWD
on a regional scale. It currently consists of the limited-area
model COSMO (COnsortium for Small-scale Modeling, Baldauf
et al., 2011), a 4D implementation of the Local Ensemble
Transform Kalman Filter (LETKF, Hunt et al., 2007) and
Latent Heat Nudging (LHN, Stephan et al., 2008) of radar-
derived precipitation. The present study employs KENDA with
the COSMO-DE configuration (code version 5.4d1) covering
Germany and parts of neighboring countries as depicted in
Figure 6. It has a 2.8 km horizontal grid spacing and 51 hybrid
vertical layers up to 22 km (at ∼40 hPa). Different to Schraff
et al. (2016), the COSMO-DE model is embedded by one-
way nesting into the larger-scale European ICOsahedral Non-
hydrostatic model (ICON-EU, Reinert et al., 2019) at 6.5 km
(deterministic run) and 20 km (ensemble run) grid spacing.
ICON-EU is two-way nested into the global ICONmodel and has
the double spatial resolution of the global model configuration.
At the top of the atmosphere the embedded COSMO-DE fields
relax to the ICON-EU fields in a sponge layer from the top down
to a height of 11 km (∼235 hPa).

The DWD runs operationally L = 40 ensemble members
together with a deterministic run at a regional and global
scale (Reinert et al., 2019). The COSMO-DE model receives the
hourly ensemble and the deterministic model fields from the
ICON-EU as lateral boundary conditions run every 3 h. The
LETKF data assimilation step with a 1-hourly cycle incorporates
in-situ observations from radiosondes (temperature, relative
humidity, wind direction and wind speed typically available at

1For more details, see documentation at http://www.cosmo-model.org.
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every 6 or 12 h), air planes (temperature, humidity and horizontal
wind frequently available), surface weather stations (pressure and
horizontal wind available hourly) and wind profiler (horizontal
wind available every 15–30min). During the COSMOmodel runs
between the 1-hourly LETKF steps, LHN allows the assimilation
of radar-derived precipitation rates, which are available every 5
min. Spin-up time is estimated to ∼1 h but is not detrimental
to the forecasts. The data assimilation considers observations
from the surface to a maximum height at 300 hPa. Until today,
no satellite observations are assimilated operationally in the
KENDA system.

The LETKF estimates the background error covariance Pb ∈

R
N×N in the N−dimensional model space by background-

ensemble perturbations of number L, i.e.,

Pb =
1

L− 1
Xb

(

Xb
)t

(1)

where Xb ∈ R
N×L and the columns of Xb of number L are

the background ensemble member perturbations {xb,l − x̄b}.
Here x̄b is the background ensemble mean. After the coordinate
transformation from physical space to ensemble space x =

x̄b + Xbw the analysis minimizes the weighted distance to the
background and to observations in ensemble space

J(w) = (L− 1)wwt

+

(

y− ȳb − Ybw
)t

R−1
(

y− ȳb − Ybw
) (2)

in the new coordinate w ∈ R
L. Here denotes the observation

error covariance matrix with the number of observations S, y ∈

R
S are observations, ȳb ∈ R

S are the model equivalent mean
of the background ensemble members in observation space. The
matrix Yb ∈ R

S×L is the equivalent of Xb in observation space.
The model equivalents in observation space are computed from
the model field variables by applying the observation operator
H :R

N → R
S with

H
[

x̄b + Xbw
]

≈ ȳb + Ybw.

The minimization of the cost function (2) yields the analysis
ensemble mean w̄a and a square-root filter-ansatz yields
the analysis ensemble member perturbations {wa,l} (Hunt
et al., 2007). Then the analysis ensemble members in physical
space read

xa,l = x̄b + Xb(w̄a + wa,l), l = 1, . . . , L, (3)

see Hunt et al. (2007) and Schraff et al. (2016) for more details.
It is noted that the computation of the analysis in ensemble
space, i.e., the transform vectors w̄a and wa,l, requires only the
application of the full non-linear observation operators and not
of any tangent-linear and adjoint operators, and it makes use
of the 4-dimensional ensemble background error covariances in
observation space. The control vector, i.e., the model variables
finally updated by Equation (3), can be chosen to comprise
the complete set or only a sub-set of the prognostic variables.
Operationally and also in the present study, the control vector

consists of the 3-dimensional wind vector, temperature, pressure,
water vapor, cloud water, and cloud ice, but does not include rain,
snow, graupel, or surface and soil variables.

In addition to the computation of the ensemble, KENDA
computes an unperturbed deterministic atmospheric
analysis field

xadet = xbdet + TK
(

y−H[xbdet]
)

(4)

with the Kalman gain matrix K = XbP
(

Yb
)t

R−1 and P =
[

(L− 1)I +
(

Yb
)t

R−1Yb

]−1

. Since the Kalman gain matrix

depends on Xb the ensemble influences the evolution of the
deterministic run. The deterministic run can evolve on a grid
with higher spatial resolution by interpolation with an operator
T, see Equation (4), but this is not adopted in the present study.

In the ensemble Kalman filter, the background covariance
matrix Pb is rank-deficient due to L ≪ N in Equation (1) which
leads to spurious correlations in Pb. Spatial localization in the
ensemble Kalman filter has been found to be beneficial (Hamill
et al., 2001; Greybush et al., 2011; Perianez et al., 2014;
Houtekamer and Zhang, 2016; Necker et al., 2020). Since the
LETKF estimates the analysis in ensemble space and not in
physical space, it is necessary to perform the localization in
observation space. Hunt et al. (2007) proposed to localize by
increasing the observation error in the matrix R dependent
on the distance between analysis grid point and observation.
Our implementation follows this approach (Schraff et al.,
2016) and employs adaptive horizontal localization for in-
situ observations (Perianez et al., 2014). Since satellite data
outnumber by far the number of in-situ observations, they would
dominate the few in-situ observations. To avoid this effect, we
have fixed the radius of the horizontal localization for satellite
data to the relatively small value of 35 km, while the adaptive
localization for in-situ observations remains unchanged. The
vertical localization of satellite data obeys a different reasoning
and is discussed in section 2.4. We point out, that the analysis
update is computed in the localization box only. Hence only the
observations present in the box are considered in the analysis
update. This aspect is important to remember when extending
the vertical localization radius by a new method discussed in
section 3.1.

The SEVIRI water vapor channels exhibit an intrinsic signal-
to-noise ratio yielding a technical measurement error of ∼0.5 K.
The observation error covariance matrix R takes into account
such intrinsic measurement errors, but also comprises errors in
the radiation transfer model, i.e., the observation operator H,
and representativeness errors. These latter components are in fact
larger than the measurement error. Our various data assimilation
studies with KENDA have resulted in optimal observation error
settings of 2.0 K for channel 6.2µmand 3.0 K for channel 7.3µm.

2.2. Additive Covariance Inflation
The ensemble Kalman filter underestimates the forecast error
covariance matrix due to limited ensemble size or model
errors (Anderson and Anderson, 1999). This problem is often
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addressed by covariance inflation (Hamill and Whitaker, 2011;
Luo and Hoteit, 2013; Houtekamer and Zhang, 2016; Zeng
et al., 2019). In addition to the covariance inflation described in
Schraff et al. (2016), i.e., multiplicative covariance inflation and
relaxation to prior perturbations, the present work implements
additive covariance inflation (Mitchell and Houtekamer, 2000;
Zeng et al., 2019). The analysis ensemble xa in (3) is modified
by additive noise with covariance faddB. Here fadd > 0 is a
scalar inflation factor and B is the climatological error covariance
matrix used in the global operational data assimilation at DWD
and interpolated to the regional model grid. Consequently the
analysis ensemble reads

xaadd = xa +
√

faddB
1/2ξ .

The matrix B1/2 is the square root of B with B = B1/2(B1/2)t .
The vector ξ denotes random Gaussian-distributed noise
with vanishing mean and unity variance. In the employed
implementation, the inflation factor is fadd = 0.01 for an
assimilation cycle with hourly updates.

2.3. Weather Situation in Study Periods
The proposed assimilation improvements have been tested for
two different periods of several weeks representing a range of
weather conditions over Germany and neighboring regions. The
first is a summer period in the year 2016 from May 26, 2016 to
June 30, 2016. It exhibited extreme weather situations ranging
from highly convective situations with strong precipitation
events including flash floods and thunder storms primarily from
end of May for 3 weeks to hot and dry weather primarily toward
end of June 2016 (Piper et al., 2016; Necker et al., 2018). The cloud
mask analysis in Figure 7 gives further details on the occurrence
of cloud types during the summer period.

The second period is a winter period in 2016 fromDecember 1
to December 31 with primarily high-pressure areas with low-level
inversions yielding several days with fog and low stratus in local
areas. Most days were sunny but cold otherwise, and December
was the driest month in the year (Friedrich and Breyer, 2016;
Hoffmann, 2017).

2.4. SEVIRI Satellite Data and NWCSAF
Cloud Mask
We have employed data observed by the SEVIRI instrument on
the geostationary Meteosat-10MSG satellite. SEVIRI is a line-by-
line scanning radiometer and provides image data in 12 channels
in the visible, near-infrared and infrared spectral range. The
instrument has a baseline repeat cycle of 15 min and a spatial
imaging sampling distance of about 5 km over Germany (at nadir
3 km). The present work considers data from the two water vapor
channels at wavelengths 6.2 and 7.3µm at a 1-hourly temporal
resolution. In this spectral range water vapor distributed in the
atmosphere absorbs radiation and hence reduces radiation from
lower levels observed at the top of the atmosphere. The water
vapor channels are also highly sensitive to clouds.

Satellite observations at a small horizontal spatial scale
may not reflect well the model dynamics on a larger scale.
Bierdel et al. (2012) have shown that the COSMO-DE model
features an effective horizontal resolution of 11 − 14 km.

This stipulates observations on that scale. We have performed
superobbing (averaging) of the satellite data of 5 × 5 pixels.
This leads to averaged observations on the scale of ∼20 km
over central Europe. Moreover, our numerical implementation
of the LETKF currently assumes uncorrelated observation errors,
i.e., a diagonal observation error covariance matrix. To reduce
horizontal observation error correlations, we have applied an
additional thinning yielding a final spatial resolution of satellite
observations at a scale of 36− 48 km.

The LETKF and flavors of the ensemble Kalman filter applies
a localization scheme that diminishes spurious correlations in the
background error covariance, cf. section 2.1. In situ observations
are local since they have a single spatial location and their
distance to grid points is rather well defined. In contrast, satellite
observations are non-local since they are observed from outside
the atmosphere and represent the integral radiation along the
path through the atmosphere. At a first glance, their assimilation
in the ensemble Kalman filter seems not possible due to the
missing specific location. This problem has attracted much
attention in atmospheric research (Miyoshi and Yamane, 2007;
Bishop and Hodyss, 2009; Campbell et al., 2010; Leng et al., 2013;
Lei andWhitaker, 2015; Nadeem and Potthast, 2016; Bishop et al.,
2017; Farchi and Boquet, 2019).

A first good approximation for an atmospheric location of
a clear-sky radiance observation is the vertical location of the
maximum channel sensitivity to atmospheric temperature and
humidity (Houtekamer et al., 2005; Miyoshi and Sato, 2007).
However, it is known that sensitivity functions of channels may
exhibit multiple maxima and hence this choice may not be
optimal. To this end, we locate radiances at the expectation value
of a normalized sensitivity function w(p), which is a weighted
sum of two Jacobian functions of the radiance transfer model.
Our implementation applies the Radiative Transfer for TIROS
Operational Vertical sounders (RTTOV) observation operator
(version 12.0, Saunders et al., 2018) and the two Jacobians
Jq[q(p),T(p)] and JT(q(p),T(p)) with respect to the specific
humidity q and the temperatureT at pressure level p, respectively.
The Jacobians are computed for the deterministic run only since
their computation for each ensemble member currently would
be too time-consuming in an operational framework. Then the
normalized sensitivity function reads

w(pn) =
(

αq(pn)|Jq(pn)| + αT|JT(pn)|
)

/W, (5)

n = 1, . . . ,N with discrete pressure levels pn, N = 54 vertical
RTTOV-levels, the weight αT = 2 K and the normalization
constantW. The sensitivity is dimensionless with

∑N
n=1 w(pn) =

1. We mention that Equation (5) is heuristic and other
definitions are possible, cf. Mitchell et al. (2018). The COSMO-
model and the RTTOV operator use the specific humidity as
prognostic atmospheric variable, whereas our implementation of
the LETKF considers relative humidity. To utilize the RTTOV-
implementation of the Jacobian computation, we choose αq = q
which leads to a rough approximation of a weighting function
with respect to relative humidity. Then the vertical location of
the radiance is p0 =

∑N
n=1 pnw(pn).

The vertical localization function about this radiance location
is a Gaspari-Cohn function (Gaspari and Cohn, 1999) with
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radius1. Conventional implementations fix this radius to a flow-
independent and horizontally constant value that is proportional
to the pressure of the radiance p0. We choose 1 = 0.3p0. Section
3.1 shows the derivation of a novel flow- and space-dependent
localization radius.

The satellite sensitivity function describes how deep into
the atmosphere the satellite captures radiation. In clear-sky
conditions, the SEVIRI-channel 6.2µm peaks at about 300
hPa, i.e., high in the atmosphere, whereas channel 7.3µm
peaks at about 500 hPa with a vertical width of several
hundreds hPa. Hence, channel 7.3µm can be sensitive to
the Earth surface in high terrain. The surface emissivity and
skin temperature in the model can deviate considerably from
the truth and thus the model equivalents of the first guess
in these regions do contain information on the atmospheric
conditions and are contaminated by errors in the description
of the surface conditions. This can trigger spurious convective
cells (observed in own experiments, not shown). Hence the
current implementation excludes satellite data over regions with
orography exceeding 1000 m of altitude.

The SEVIRI-data allows to derive various cloud parameters,
e.g., by the Satellite Application Facility on Nowcasting (NWC-
SAF) (Derrien and Le Gléau, 2005). For validation purpose,
we employ the NWC-SAF cloud type (CT) product based on
SEVIRI observation data and model input from DWD global
model ICON2 The corresponding original classification of CT
comprises 21 cloud categories. For simplicity, we introduce 5
major classes that merge subsets of the original categories:

• clear: cloud free over land and over sea,
• low: very low and low cumuliform and stratiform clouds,
• medium: medium stratiform and cumuliform clouds,
• high: high cumuliform clouds and high stratiform clouds

(h.strat), very high cumuliform clouds and very high
stratiform clouds (vh. strat), High Semi-Transparent (HST)
very thin cirrus (vthin. cirr.), HST thin cirrus (thin cirr.), HST
thick cirrus (th. cirr.) and HST cirrus above low or medium
level clouds (cirr. alt.),

• all: sum of cloud classes low,medium and high.

2.5. Zero Cloud Impact
To use radiances in NWP, it is essential to employ a radiative
transfer model (RTM) as an observation operator H that
describes well the radiance transfer through the atmosphere.
Today powerful RTMs exist, however there are very few RTMs
that provide good estimates of radiances in the presence of
clouds (Aumann et al., 2018). This difficulty originates from the
fact that clouds affect radiative transfer and too little is known
about the micro-physical mechanisms in clouds. Hence clouds
make radiation measured at the top of the atmosphere by satellite
instruments much harder to interpret in terms of atmospheric
parameters (Kidder and Vonder Haar, 1995; Stephens and
Kummerow, 2007; Kurzrock et al., 2018).

To deal with this problem, typically one attempts to
detect clouds that are present in a certain Field of View
(FOV) of a satellite measurement. If a cloud is present,

2For more details, see http://www.nwcsaf.org/ct_description.

FIGURE 1 | Estimation method for limit brightness temperature BTlim. (A)

Illustration of distribution 1BT (Equation 6) with respect to brightness

temperature BT. (B) Examples of histograms for all data BTas (allsky) and

selected data for which 1BT(n) > −0.1 K (RTTOV clearsky in red color). The

panels show data for SEVIRI infrared channels 7.3µm and 6.2µm in the time

window June 6, 2016–June 10, 2016. Here, the estimated limit brightness

temperature is BTlim = 256.3 K (7.3µm) and BTlim = 234 K (6.2µm).

the measurement is discarded for the subsequent analysis of
atmospheric temperature and humidity. To this end, various
cloud detection techniques have been proposed (Kurzrock et al.,
2018) for various satellite instrument types. For instance, the
McNally-Watts method (McNally and Watts, 2003) is usually
applied to hyperspectral infrared sounders, while the NWC-SAF
cloud mask product is based on the measurements from the
MSG-SEVIRI instrument.

A recently developed symmetric technique (Harnisch
et al., 2016) estimates the impact of clouds on infrared
SEVIRI observations based on model and observations. The
corresponding cloud impact factor for a FOV quantifies the
impact of clouds on radiation in this FOV as a reduction of the
corresponding brightness temperature (BT) compared to a limit
brightness temperature BTlim. If BT in a FOV exceeds BTlim,
then the cloud impact factor is zero. The present work selects
FOVs with zero cloud impact (ZCI), i.e., FOVs where BT≥BTlim

for both RTM output and observations. This criterion implies
that neither the selected data in the corresponding FOV nor the
model profile are affected by clouds and may be interpreted to
be cloud-free.

To determine the limit brightness temperature BTlim,
we compare the brightness temperature computed from
RTTOV in clear sky-mode and all sky-mode BTcs and BTas,
respectively (Harnisch et al., 2016). To this end, we consider the
distribution of all values BTas in a data set and bin them with
bin size 1 K and N bins. Then, for each bin n the difference
1BTk(n) = BTas

k (n) − BTcs
k (n) quantifies the difference between

clear sky and all sky radiation at a certain FOV k. The mean
difference between clear sky and all sky brightness temperature
in bin n is

1BT(n) =
1

F

F
∑

k=1

1BTk(n), (6)
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FIGURE 2 | The limit brightness temperature BTlim as a function of time in a

short period in summer 2016. BTlim is computed for each ensemble member

(L = 40) every hour and for both water vapor channels. The panels show the

ensemble mean BTlim every hour with standard deviation ∼1 K (not shown).

The dashed horizontal lines denote the temporal average in the given

time period.

with number of FOVs F. This results in a distribution of
the type shown in Figure 1A. We observe an increasing
difference between clear-sky and all-sky RTTOV output with
lower brightness temperatures, whereas larger BTas exhibit more
similar brightness temperatures. For 1BTn = 0 K, all-sky and
clear-sky radiances are identical reflecting an absence of cloud
impact (if the RTTOVmodel is assumed to be correct). The limit
brightness temperature BTlim is set to the minimum BTas for
which 1BTn > −0.1 K. Figure 1B shows typical distributions
of RTTOV output under all sky conditions and for ZCI-data.

Figure 2 illustrates the temporal variation of BTlim in a short
time period in summer 2016. We observe a variation of ∼±2.5
K about the temporal mean in both water vapor channels. In the
present study, we define the final limit brightness temperature by
the temporal mean over the time period under study.

Summarizing, ZCI-data comprise observations at each FOV
for which

BTobs ≥ BTlim and BTmodel ≥ BTlim

holds with the observation BTobs and the model (all-sky)
equivalent BTmodel. In the present implementation, we use
the deterministic run for the model equivalent BTmodel. The
climatological values used for the limiting brightness temperature
are BTlim = 233 K (6.2µm) and BTlim = 256 K (7.3µm) for the
summer period and BTlim = 230 K (6.2µm) and BTlim = 255 K
(7.3µm) for the winter period.

It should be noted that the all-sky equivalents BTl of some of
the ensemble members lmay be cloud affected (i.e., BTl < BTlim)
even for ZCI FOVs since the definition of ZCI only considers
the deterministic model run. This tends to increase the ensemble
spread and hence the first guess error estimate used in the LETKF
may result in an increased weight given to the ZCI data in
such situations.

Furthermore we stress that the definition and occurrence of
clear sky as given here by ZCI differs in principle from the
traditional definition for clear sky. The latter implies the absence
of cloud in the atmospheric column and is adopted e.g., in the

NWC-SAF cloud type product. In contrast, clear-sky as given
by ZCI relates to a specific satellite channel, and various types
of clouds may be present in the atmospheric columns of ZCI
FOV’s as long as these clouds are low or thin enough to have
no or negligible influence on the brightness temperature for that
channel. Thus, clear-sky by ZCI is often cloudy by NWC-SAF,
as will be seen in section 3.2. The reverse is also not excluded
by definition, i.e., FOV’s diagnosed as clear-sky by NWC-SAF
may have a brightness temperature slightly smaller than BTlim.
However this should occur more rarely.

2.6. Bias Correction
Satellite instruments are imperfect and prone to errors, such
as intrinsic random fluctuations at the radiation detector.
Systematic measurement errors (including calibration errors),
biases in the radiative transfer, and biases in the numerical
model induce a bias between the observations and the
model. Assimilating observations, that are biased in this sense,
violates basic assumptions of the ensemble Kalman filter to
provide an optimal solution and thus degrades forecasts.
Satellite observations are used in most meteorological centers
and different observation bias correction schemes have been
developed, such as variational bias correction schemes or static
schemes (Eyre, 2016; Hashemi et al., 2017; Otkin and Potthast,
2019). We employ the latter type (Harris and Kelly, 2001) as a
temporally adaptive scheme (Auligné et al., 2007) and apply it
to ZCI-data.

We note that all these schemes are based on observationminus
model departures and hence correct for the relative bias between
observation and model state, rather than the observation bias
itself. Unless there is either priori knowledge about the model
bias, or there is (observation minus model statistics from) a
number of other satellite data (channels) with similar sensitivity
to the atmosphere available for cross-validation, it is difficult to
separate the observation from the model bias.

The subsequent description assumes satellite instrument
channels of number C and observations Z ∈ R

S×C at spatial
locations of number S. The bias-corrected observations

Zc = Z − Bc, Bc = Pβ

with the bias correction Bc ∈ R
S×C are estimated by linear

regression with predictors of number E, i.e., P ∈ R
S×E,

and corresponding coefficients β ∈ R
E×C. Previous studies

considered different predictors, such as the thickness between
two pressure levels, the integrated water vapor or surface skin
temperature (Montmerle et al., 2007). As predictors we have
chosen the model thickness between 50 and 250 hPa and between
300 and 850 hPa (E = 2). These predictors tend to result in robust
bias estimates, while includingmodel surface skin temperature or
integrated water vapor model may lead to model biases that are
detrimental to bias corrections applied to the observations. The
same predictors are applied to both SEVIRI channels (C = 2).
The optimal coefficients are

β̄ =
(

PtP
)−1

PtD,
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FIGURE 3 | RTTOV vertical pressure levels and their scaling. (A) Pressures in

the vertical grid as function of the level index for two example atmospheric

columns #30 (black) and #600 (red). (B) Width of the pressure layers as

function of the corresponding pressure for both atmospheric columns. (C)

Non-scaled vertical sensitivity function w(pn) (black lines) and scaled sensitivity

function w̄(pn) (orange line) for both channels and both atmospheric columns.

where D = Z − H(x) is the background departure, i.e., the
difference between observations and model equivalents of the
first guess state x.

In the case of an offline scheme, the coefficients β̄ are chosen
optimally for a certain time period, e.g., 1 month. Such a scheme
assumes that the systematic observation bias does not change
over time. The temporally adaptive online implementation
employed in the current work computes U(tn) =

(

PtP
)

and
V(tn) = PtD at a certain analysis time tn and averages
them with equivalent terms at previous analysis time tn−1

weighted by a scalar factor f ≥ 0. This yields the online bias
correction coefficient

β̄adap(tn) =
(

U(tn)+ fU(tn−1)
)−1

×
(

V(tn)+ fV(tn−1)
)

.
(7)

Choosing f = exp(−1t/τ ), Equation (7) represents a temporal
average over an exponentially decaying window of width τ . The
interval 1t is the time between two analyses. In the current
implementation, 1t = 1h. Several own preliminary numerical
studies (not shown) have indicated that the bias correction
time scale should be several times the typical synoptic time
scale and we choose τ = 30 days. Hence the correction
coefficients are time-dependent and adapt gradually to the
atmospheric dynamics. For analysis steps in situations with
many clouds and only very few ZCI data in the limited-area
domain, the update by Equation (7) will generally lead to very
small changes in the adaptive bias correction coefficients β̄adap.
This is because the weighted averaging between current and

previous values with factor f is applied to U and V separately
instead of β = U−1V . Each element in U(tn) and V(tn)
being a sum over observations will remain relatively small in
general if the number of observations is small. After an initial
spin-up phase (possibly over several weeks), this renders the
adaptive bias correction scheme robust and stable even for small
model domains.

In the online bias correction scheme, the initial bias correction
coefficient plays an important role due to the long time scale τ .
To gain a good choice for the initial coefficient β̄adap(t0), we start
with U(t0) = 0, V(t0) = 0 and run the data assimilation cycle
from the beginning of the time period (section 2.3) for 2 weeks.
Then the final bias correction terms are applied as initial terms
for a second iteration of data assimilation cycle over the same 2
weeks. Eventually, the last bias correction terms of this second
iteration are used as initial bias correction terms for our data
assimilation experiments. This procedure is performed separately
for the summer and winter period 2016.

3. RESULTS

3.1. Improved Vertical Localization of
Satellite Data
The vertical model pressure levels of RTTOV are not equidistant
and their layer widths depend on pressure. Figure 3A shows the
pressure values as a function of the level index for two example
profiles. Their corresponding pressure layer widths are defined
as the half-level distances between neighboring levels. They differ
slightly between two columns primarily at very small and large
pressures, i.e., close to the surface (Figure 3B). The RTTOV-
Jacobians with respect to T and q and subsequently the weighting
function w(pn) depend on the width of the pressure levels since
thicker layers may provide larger contributions to the radiance
thanmore narrow levels. To correct this intrinsic scaling, we scale
the sensitivity function w(pn) by the pressure level width 1pn

w̄(pn) =
w(pn)

1pn
/W̄ (8)

yielding a dimensionless quantity w̄ with
∑N

n=1 w̄(pn) = 1 and
normalization constant W̄. Figure 3C compares scaled and non-
scaled sensitivity functions w̄ and w, respectively, for both spatial
locations from Figures 3A,B for both SEVIRI-channels. While
the scaling decreases slightly the sensitivity between 300hPa
and 600hPa, the sensitivity is increased in lower and higher
layers. Interestingly, the sensitivity function in column #600 is
bi-modal illustrating that the conventional vertical location of the
radiance at the maximum peak does not reflect well the radiation
source distribution.

Since the pressure layer scaling affects the sensitivity
magnitude, we expect an effect on the vertical radiance location
p0. Figure 4A shows a typical distribution of level pressures p0.
The pressure layer scaling moves the radiances in channel 6.2µm
to lower pressures, i.e., moves them up in the atmosphere due to
the increased sensitivity at very high levels. Moreover, radiations
in channel 7.3µm are moved slightly to larger pressures and
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FIGURE 4 | Effect of pressure layer scaling on localization level p0 (A), on the standard deviation of the sensitivity function σ (B) and the relative level width l = σ/p0

(C). Top panel: channel 6.2µm. Bottom panel: channel 7.3µm. Data are taken over the COSMO-DE domain and the summer period from May 26, 00 UTC to May 31,

23 UTC in 2016.

FIGURE 5 | Histogram of NWC-SAF cloud types in zero-cloud impact (ZCI)

data in summer period 2016, see section 2.4 for definitions and abbreviations.

(A) All cloud types, (B) high clouds.

down in the atmosphere due to the increased sensitivity below
600 hPa.

As a second modification, we take up the approach of Miyoshi
and Sato (2007) and choose the vertical localization radius
adaptive to the vertical sensitivity function. To this end, we
consider the standard deviation σ of w̄(pn) as a reasonable
localization radius. Then the final choice is

1new = max(1, σ ) (9)

with the conventional radius 1, see section 2.4. This
guarantees that the localization radius is at least as low as
for local observations.

Figure 4B shows typical distributions of σ . We observe that
channel 6.2µm exhibits a much narrower sensitivity function
than channel 7.3µm. Since the conventional localization radius

is proportional to the pressure level, we introduce the relative
level width l = σ/p0. The distribution of l (Figure 4C) reveals
that most sensitivity functions are broader than assumed by the
conventional radius 1, especially for channel 7.3µm. Moreover,
Figures 4B,C reveal that pressure layer scaling renders the
sensitivity function wider for both channels and increases the
number of radiances with increased localization radii σ . Hence
we expect a prominent effect by both pressure layer scaling and
adaptive vertical localization.

3.2. Cloud Types in Summer Period 2016
To assess our cloud criterion (section 2.5), we evaluate our
results using the NWC-SAF cloud types. Here we present
results for the summer period in 2016 (Figure 5) for the
ZCI data. As expected the overall number of observations
fulfilling the ZCI-criterion is considerably larger for the higher-
peaking channel 6.2 µm and most of these observations are
either clear or over low clouds. Altogether, the number of
cloud-affected ZCI observations exceeds the number of clear-
sky observations in channel 6.2µm, while there are more
clear-sky observations in channel 7.3µm than cloud-affected
observations (Figure 5A). In both channels, the majority of
cloud-affected observations belong to low clouds with some
medium-level and high-level clouds. A more detailed look at
high clouds (Figure 5B) reveals that most ZCI-FOVs with high
clouds are semi-transparent thin cirrus clouds. Consequently,
this evaluation supports that either ZCI-observations are well-
classified as clear-sky or the clouds are too low or too thin to affect
the observed radiation.

Figure 6 compares the spatial distribution of ZCI data and
cloud types at a single date. Most ZCI-data are classified clear-
sky (yellow color) and some are located at low and high
cloud locations.

Figure 7 reveals how the number of ZCI-data varies over
time and how this number depends on the channel and
the cloud types. At first we observe that the high-peaking
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FIGURE 6 | Example ZCI-cloud distribution over COSMO-DE domain at June 23, 20 UTC. The color decodes the cloud types (see color bars at right hand side) for all

cloud types (top panel) and high clouds (bottom panel) for SEVIRI channels 6.2µm (left) and 7.3µm (right). The circles denote locations of ZCI-observations. The high

cloud distribution (bottom panel) is plotted on a smaller region for illustration reasons.

channel 6.2µm (Figure 7A) contributes, as expected, much
more ZCI-data to the data assimilation than the medium-
peaking channel 7.3µm (Figure 7B). This is consistent with
results shown in Figure 5A. Moreover, the plot distinguishes
cloudy from cloud-free days which agree with the weather
situation, cf. section 2.3. Large numbers of ZCI-data correlate
with large numbers of clear-sky observations. The mean
observation-minus-first guess departure, i.e., the radiance bias

after online bias correction, fluctuates around zero with
rare large spikes for medium and high cloud observations.
This low radiance bias indicates a good performance of the
online bias correction applied. Moreover, the fact that the
bias correction is very similar for all cloud types (bottom
rows in Figure 7) indicates that the cloud impact scheme
proposed in the current work indeed is not significantly affected
by clouds.
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FIGURE 7 | Time series of statistics. (A) channel 6.2µm, (B) channel 7.3µm. First row from top: number of all available (dashed line) and ZCI observations (solid line).

Second row: number of ZCI-observations for FOV’s diagnosed by NWC-SAF as clear-sky (black), low cloud (green), medium cloud (orange), and high cloud (blue).

Third row: mean satellite observation—first guess departure (after bias correction) for each cloud type. Bottom row: online bias correction of observations for each

cloud type. The date is given in format mmddhh with month mm, day dd and hour hh. Data shown from second to bottom row are based on ZCI-data.

3.3. Forecasts in Summer Period 2016
To study the proposed methods, we employ a data assimilation
cycle comprising the LETKF yielding the model analysis and
the COSMO-DE model evolution step. We employ an hourly
assimilation cycle. The NO-SEVIRI experiment considers in situ-
observations but no satellite data and represents the control
experiment. The SEVIRI-CONV experiment adds SEVIRI data
from both water vapor channels with conventional vertical
localization and the experiment SEVIRI-NEW extends SEVIRI-
CONV by the improved vertical localization. Figure 8 compares
the deterministic first guess departures for radiosonde relative
humidity (RH) and radiosonde wind speeds (WIND). We
observe that SEVIRI-CONV (red line) retains the number of
observations compared to NO-SEVIRI, increases slightly the RH-
bias and WIND-bias and yields standard deviations close to
NO-SEVIRI results (black line). Moreover, the improved vertical
localization in experiment SEVIRI-NEW retains the number
of radiosonde observations and reduces slightly the RH-bias.
This indicates that the model first guess fields are in better
correspondence with the radiosondes when the SEVIRI water
vapor radiances are assimilated with the improved localization.
However, the WIND-bias increases in magnitude. For both
RH and WIND, the standard deviations are close to the other
experiments. The radiosonde temperature first guess departure
does not show a prominent effect of satellite data (not shown).
Moreover, we point out that a sole application of either
the pressure layer width scaling or the adaptive localization
radius does yield worse results than the application of both
improvements (not shown). Since SEVIRI-NEW improves the

first guess departure of NO-SEVIRI, we focus on SEVIRI-NEW
forecasts in the following.

In the following, we consider deterministic forecasts with lead
time of 6h and 12h and initial times 00, 06, 12, and 18 UTC.
Figure 9 shows scores of 6 and 12 h-forecasts of upper-air relative
humidity, temperature and wind. Even though the humidity
mean error (ME) is slightly decreased around 400−500 hPa and
increased around 700 hPa (these heights are in the range of
enlarged sensitivity of channels 6.2µm and 7.3µm), the impact
on the bias of the forecast is generally very small. In terms of root
mean square error (RMSE), however, the humidity error is clearly
reduced at ∼400 hPa. The impact of SEVIRI assimilation with
improved localization on the temperature forecasts is neutral,
whereas wind speed is slightly improved between 600 hPa and
the surface.

The RMSE score differences in Figure 9 are small for most
pressure levels (except for upper-level humidity). To further
evaluate statistically the score differences of the humidity
forecasts, we choose single initial times, compute the RMSE
and estimate the statistical significance of experiment differences
from bootstrap confidence intervals (Efron and Tibshirani, 1993)
with 1000 bootstrap samples.We observe a prominent significant
positive impact on relative humidity of SEVIRI-NEW at ∼400
hPa (Figure 10), where sensitivity of the channel 6.2µm exhibits
its maximum.

As precipitation is a key forecast quantity for a high resolution
model, we also assess precipitation rate forecasts by Fraction
Skill Scores (FSS) (Roberts and Lean, 2008) against radar-derived
precipitation. The FSS ranges from 0 to 1 and the larger the FSS
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FIGURE 8 | Deterministic first guess departure statistics of upper-air radiosonde relative humidity [RH, panel (A)] and radiosonde wind speed [WIND, panel (B)] in

summer period 2016 for all used radiosonde observations. The left panels give the number of active observations; the bias is the mean difference between model

equivalent first guess and observations (center panel), the standard deviation (right panels) is defined accordingly. The colors decode the NO-SEVIRI run (black), the

SEVIRI-CONV run (red) and the SEVIRI-NEW run (green).

FIGURE 9 | Forecast verification statistics for relative humidity (RH), temperature (T) and wind speed (WIND) vs. radiosonde observations for the summer period 2016

with lead times 6 h (black) and 12 h (red). Results of the experiment NO-SEVIRI are shown by dashed lines and SEVIRI-NEW results by solid lines. The statistic ME is

the forecast-observation bias, RMSE is the root-mean square error of forecasts to observations. The forecast statistics are averages over all initial times and considers

the same observations to verify both experiments.

the better is the forecast. Figure 11 shows fractional skill scores
for two initial times. The corresponding statistical significance
is estimated from bootstrap confidence intervals for differences

between experiments based on 104 bootstrapped samples. One
observes significantly improved precipitation forecasts for lead
times between 7h and 11h both in 0UTC and 6UTC forecast runs,
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FIGURE 10 | Forecast verification of radiosonde relative humidity for the summer period 2016 for different initial times and lead times. Results are subject to initial

times (06 and 00 UTC shown in left panel and 018 and 12 UTC shown in right panel) with lead times 6 h (black) and 12 h (red) for the experiments SEVIRI-NEW (solid

line) and NO-SEVIRI (dashed). Observations are present at 00 h and 12 h. The stars denote statistically significant differences in the scores between experiments

(significance level is α = 0.05). All forecast statistics consider the same observations.

FIGURE 11 | Fraction skill scores (FSS) of hourly precipitation forecasts

against radar-derived precipitation as a function of time of day for summer

period 2016. The plot shows forecasts of experiments NO-SEVIRI (dashed)

and SEVIRI-NEW (solid) for lead times from 1 to 12 h, colors encode initial time

00UTC (black) and 06UTC (green). The stars denote significantly different

scores between experiments (significance level is α = 0.10) based on

bootstrap confidence interval. The precipitation threshold is 1.0 mm and scale

diameter is chosen to 11 grid points (∼30 km).

while most shorter SEVIRI-NEW forecasts are not significantly
better. FSS for initial times 12UTC and 18UTC are not
statistically different between NO-SEVIRI and SEVIRI-NEW.

The verification for forecasts of near surface parameters vs.
SYNOP observations (not shown) shows heterogeneous scores.
For instance, relative humidity and temperature at 2 m height
exhibit a neutral/slightly negative impact on bias and root-mean
square error, whereas the dew point shows improved scores. Such
a heterogeneous impact may result from the complex response
of boundary layer physics with strong vertical mixing and
turbulent dynamics to changes in the analysis. These preliminary
results demand closer investigations and we refer the reader to
future work.

3.4. Cloud Types and Forecasts Winter
Period 2016
The question arises whether the gained results are specific
to the summer period. To this end, we evaluate a winter
period in addition, cf. section 2.3. Figure 12 presents the cloud
classification of the ZCI data in this winter period. We observe

FIGURE 12 | Histogram of NWC-SAF cloud types in zero-cloud impact (ZCI)

data in winter period 2016, see section 2.4 for definitions. (A) All cloud types,

(B) high clouds.

that the largemajority of ZCI data are either clear-sky, exhibit low
clouds or high semi-transparent cirrus clouds, what is consistent
with the results obtained for the summer period. Since we do not
expect strong cloud effects on radiances in any of these classes,
ZCI-data are well-suited for data assimilation.

Forecasts of relative humidity exhibit a minor bias increase
from 300 − 700 hPa but clear reduction of RMSE around
400 hPa and near the surface (Figure 13). Temperature scores
are hardly affected by our current ZCI SEVIRI satellite data
assimilation. For wind speed there is an overall small but
encouraging reduction of the RMSE, whereas the wind bias is
slightly increased (not shown).

The findings for relative humidity are confirmed in Figure 14

for single initial times. We observe statistically significantly
reduced RMSE in forecasts at the top of the atmosphere and
close to the surface, cf. Figure 14. Precipitation forecasts exhibit
statistically significant improved fraction skill scores against
radar-derived precipitation rates for very short lead times, but
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significantly worse or neutral impact for larger lead times
(Figure 15).

The corresponding scores for SYNOP observations (not
shown) are heterogeneous with slightly negative impact on
relative humidity and temperature and a slightly better dew point.
This result is difficult to interpret, similar to the summer period
and requires further attention in future studies.

4. DISCUSSION

The present work introduces a novel combination of techniques
which allows to exploit infrared water vapor channel satellite
radiances at the convective scale in an operational NWP setting
using an ensemble Kalman filter. Convective-scale regional
models are subject to the difficulties of radiance assimilation
over land and in cloudy regions. Moreover short-range forecast
models at the convective scale are prone to many small-scale
nonlinear processes and feedback processes, which can lead easily
to a negative impact of a sub-optimal setup when trying to
assimilate formerly unused observations. Hence it is essential to
show that no harm is done to the system when introducing new
observations. In general it can be difficult to prove a beneficial
impact of new observations in a limited area model as upper
air verification is based mainly on a few radiosonde sites, and
standard scores are often unsuitable for cloud and precipitation
verification due to the double penalty effect.

This implementation adresses several technical and physical
issues, such as the question of cloud effects, bias correction
and localization in the Ensemble Kalman Filter. The impact
achieved with the current first implementation indicates that
the SEVIRI water vapor channels can be beneficially used as
an additional constraint for upper tropospheric moisture to
complement the sparse radiosonde information in the LETKF
assimilation. However, further analysis over longer time periods
and additional tuning will likely allow to achieve a more
consistent positive impact across all variables.

4.1. Cloud Detection
We have implemented the idea of a cloud impact on
radiances (Harnisch et al., 2016) and interpreted the cloud-free
case as a filter criterion for radiances. A comparison of the ZCI-
data to the cloud classification from the independent NWC-
SAF cloud product affirms the good quality of the data and
hence of the criterion. For the large majority of data, the cloud
classification is consistent with the assumption that the (possibly
cloud-affected) observations selected have zero or small impact
from clouds on the radiances, cf. Figures 5, 6, 12. This is affirmed,
inter alia, by the similar bias correction and the resulting quasi-
zero bias of the ZCI data for all cloud types present in ZCI-data
selection (Figure 7).

Although the ZCI classification and the NWC-SAF cloud
mask are consistent, the former appears to be better suited
for data assimilation purposes than the latter. The NWC-SAF
product utilizes the background state of the global ICON-model
and data in all SEVIRI-channels. In the operational framework,
the cloud mask computation represents an additional time-
consuming processing step after the computation of the global

model computation step. In addition, ZCI classifies observations
for each channel separately and in general allows for excluding
data from active use only for those channels that are affected by
clouds. This is not possible with the NWC-SAF cloud mask that
does not distinguish channels. Hence ZCI is channel-dependent
and possibly increases the number of assimilated radiances
compared to the NWC-SAF product.

In sum, the cloud impact classification is a useful tool to select
SEVIRI observation data for use in a clear-sky assimilation. It also
permits to then extend gradually the definition of cloud impact
from ZCI to non-zero cloud impact (Harnisch et al., 2016). The
corresponding average cloud impact factorCa (ZCI forCa = 0 K)
gives the average deviation of observation and first guess model
equivalent to the limiting brightness temperature. Future work
may consider different classes of data up to a certain value of Ca.
Then this degree of cloud impact is a tuning parameter filtering
out certain cloud classes. In this context, it will be necessary
to take a closer look at the observation bias correction scheme
applied. Our online observation bias correction scheme based
on the method of Harris and Kelly (2001) assumes that the
bias is independent of the satellite observations and assumes
model variables as predictors. It is under debate whether the
satellite observation bias diagnosed as average deviation between
observation and model values represents a model error or an
observation error (Auligné et al., 2007), but it is likely to include
both components. Since the bias correction scheme applied is
valid for cloud-free observations only, occurring clouds are likely
to introduce a cloud-dependent bias and may demand new
cloud-dependent predictors (Otkin and Potthast, 2019).

4.2. Vertical Localization of Satellite
Observations
The proposed scaling of the sensitivity function by the pressure
layer width and the adaption of the vertical localization radius
to the sensitivity function (section 3.1) distinctly improves short-
time forecasts. Only the combination of both improvements
yields the best results. This improvement may result from the
increased width of the vertical sensitivity by pressure layer
scaling and the accompanying enlarged vertical localization
radius. Previous studies have indicated that a larger vertical
localization radius may be beneficial (Lei and Whitaker, 2015;
Houtekamer and Zhang, 2016). Motivated by this successful
extension, future work will focus on further improved vertical
localization. Our approach estimates a single vertical location for
the radiance and the vertical localization function is a Gaspari-
Cohn function with radius parameter partially derived from
the satellite sensitivity function, cf. section 3.1. Fertig et al.
(2007) have shown that it may be beneficial not to choose
a single vertical location but a set of vertical regions where
the satellite sensitivity function exceeds a certain threshold.
Other ensemble Kalman filter methods estimate the localization
function from the correlations of a radiance and a state variable
at each grid point (Anderson, 2007; Lei and Anderson, 2014).
Relaxing the condition to localize in observation space, a model
space localization of non-local satellite radiances may improve
forecasts (Lei et al., 2018; Farchi and Boquet, 2019). However
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FIGURE 13 | Forecast mean error (ME) of relative humidity and root-mean square error (RMSE) of relative humidity, temperature and wind speed vs. radiosondes for

different lead times, all initial times and experiments in winter period 2016. Black and red lines denote forecast lead time 6 and 12 h, respectively; dashed lines and

solid lines represent NO-SEVIRI and SEVIRI-NEW experiment, respectively. All forecast statistics consider the same observations distributed over the model domain.

FIGURE 14 | Forecast root-mean square error of radiosonde relative humidity for different initial times and correspondingly different lead times in the winter period

2016. Black and red lines denote lead time 6 and 12 h, respectively; dashed lines and solid lines represent NO-SEVIRI and SEVIRI-NEW experiment, respectively. The

results represent average results over the region and the full time period. All forecast statistics consider the same observations. The star denotes statistically significant

differences between experiments.
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FIGURE 15 | Fraction skill scores (FSS) of precipitation rate forecasts against

radar-derived precipitation in winter period 2016 as a function of time of day.

The plot shows forecasts of experiments NO-SEVIRI (dashed) and

SEVIRI-NEW (solid) for lead times from 1 to 12 h, colors encode initial

time 00 h (black) and 06 h (green). FSS for initial times 12 and 18 h are not

statistically different between NO-SEVIRI and SEVIRI-NEW. The stars denote

statistically significant different scores between experiments (significance level

is α = 0.10). Bootstrap method identical to the method applied in Figure 11.

The precipitation threshold is 1.0 mm and scale diameter is chosen to 11

grid points.

the approach’s superiority to observation space localization is still
under debate (Lei and Whitaker, 2015).

4.3. Major Insights
To determine the optimal combination of model and data
assimilation parameters, we have run a large number of
data assimilation experiments. In the following, we report on
the major insights from these experiments indicating future
perspectives of research.

First of all, we point out that verification results depend
heavily on the length of time window in the time period under
study. We have explored parameters and techniques primarily
in the heterogeneous summer period 2016. For experimental
periods longer than 3 weeks, statistical verification results have
been rather stable. We have also found that the brightness
temperature limit BTlim necessary to define ZCI-data should
represent a climatological estimate gained from a time period
of at least 3 weeks. Shorter adaptive estimations of BTlim are
possible in principle, but preliminary studies have indicated a
detrimental effect on short-time forecasts. Similar effects have
been observed for the observation bias correction. An online
time scale shorter than 21 days yields worse bias correction and
worse first guess estimates.

Major influencing factors are the satellite observation
selection of ZCI-data, together with the improved vertical
localization, the online observation bias correction and the
additive covariance inflation. A neglect of one of these elements
worsens the first guess departure error clearly.

In addition to these essential elements, the optimal choice of
the observation error for each channel contributes significantly to
forecast error reductions. We have found in tuning experiments
that the observation error of the lower channel 7.3µm should
exceed the observation error of the upper channel 6.2µm. A
possible reason might be that there are many rather cloudy days
in the experiment period and only rather few data for the lower-
peaking channel e.g., to base the determination of BTlim and the

bias correction on. Given a larger uncertainty in BTlim and in the
bias correction, larger (remaining) observation errors should be
expected. In general, the optimal choice of the observation error
matrix R is a topic of major research interest (Zhang et al., 2016;
Zhu et al., 2016; Minamide and Zhang, 2017).

The SEVIRI-instrument provides observations of high
resolution in space and time. The data cover atmospheric
columns at a resolution of ∼5 km over the heterogeneous
landscape of Germany and neighboring countries. The surface
exhibits strong variability in orography, from mostly flat regions
close to the sea in the north to the Alps in the south in
France, Switzerland and Austria. Since the surface in the Alps
is much closer to the satellite and the water vapor channel
7.3µm may observe surface-affected radiation, it has been
beneficial to limit the observation data to a low orography.
Moreover, it has been shown to be beneficial to limit the spatial
sampling by superobbing and thinning. This down-sampling
reduces the spatial correlations between used observations which
is motivated by our data assimilation implementation with a
diagonal observation error matrix. In addition to the spatial
sub-sampling, it has turned out that temporal sub-sampling of
the radiance observations provides better short-time forecasts.
Instead of using data available every 15 min, we found that
the radiation observed closest to the analysis time (every hour)
yields the best impact. Similar results with the KENDA system
have been found recently (Bick et al., 2016) for the assimilation
of radar reflectivity data. This is possibly due to unaccounted
temporal observation error correlations between the data sets at
15 min intervals, or due to the ratio of conventional to satellite
(or radar) data becoming too small for an effective assimilation
of the conventional data. Furthermore, the first guess departures
for the observations valid 15 min after the previous analysis time
might be affected by spin-up effects in the 15-min forecast.

At last, the large number of satellite data may cause
problems when considering adaptive localization techniques.
For instance, choosing the horizontal localization radius by
fixing the number of observations to be considered may
reduce strongly the localization radius if large numbers of
radiance observations are present. Then the satellite data
would strongly reduce the influence of the few in situ-
observations in the vicinity of a grid point. To circumvent
this, we have fixed the horizontal localization radius for
the radiance data without changing the adaptive localization
for the in-situ observations. This yields a better impact on
short-time forecasts.

4.4. Limitations and Outlook
The aim of our study has been the implementation of satellite
data assimilation in the existing regional NWP framework
at DWD. This framework has put constraints to possible
methodological extensions. For instance, the current regional
data assimilation implementation at DWD considers a diagonal
radiance observation error matrix assuming uncorrelated errors
between both water vapor channels and between spatial locations.
Since the two water vapor channels overlap spectrally and their
radiance errors correlate strongly (Waller et al., 2016), future
work will implement non-diagonal radiance observation error
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matrices. This will likely permit to increase the number of
used observations. A corresponding implementation has become
operational recently in the data assimilation of DWD’s global
NWP system.

Moreover the ZCI classification of observations is
instantaneous at each analysis step, whereas the underlying
limit brightness temperature BTlim is a climatological estimate
and has to be determined offline. We have seen in section 2.5
that the limiting brightness temperature BTlim differs in the
summer and winter period. In order to apply this approach
to an operational context in the future, seasonal or monthly
climatological values can be derived beforehand and applied,
or preferably, BTlim can be estimated adaptively from a sliding
window in a similar way as is done for the bias correction in
section 2.6.

The ZCI-data include quite a few observations that are
diagnosed as cloudy by the NWC-SAF cloud product,
cf. Figures 5, 12. This may appear to be contradictory to
the application of a clear-sky bias correction in the presence of
cloudy FOVs, cf. Figure 7. In fact this apparent contradiction
results from the definition of clear-sky. The NWC-SAF product
defines cloud classes and thus serves for a definition of clear-sky
and all-sky, whereas not all cloud types affect the radiance
observations. For instance, low clouds are below the vertical
range of the sensitivity of the 6.2µm channel and often even of
channel 7.3µm. Hence, observations from FOVs classified as
low clouds can be considered to be unaffected by clouds and may
represent clear-sky observations. In this sense, the NWC-SAF
and the ZCI classification are consistent in most cases. The
fact, that the bias correction attains very similar values for the
different NWC-SAF cloud types in Figure 7 indicates that the
ZCI data are not affected by cloud for all these cloud types (or
they would need to be affected by cloud in exactly the same way
which is extremely unlikely).

The ZCI data represent a reasonable data subset for weather
situations without clouds or weather situations with low clouds

or high cirrus clouds. For some weather situations, like the
highly convective regime present in the summer period used
for the current work, ZCI data may include very few radiance
observations for prolonged periods of time resulting in limited
impact. This strong reduction in the number of observations
is caused by frequent thick clouds causing low satellite
brightness temperatures and consequently a high rejection rate
in observations. Future work will extend the ZCI criterion to
more cloud-affected observations by a non-zero cloud impact
classification (cf. Harnisch et al., 2016) and at the same time
adjusting e.g., the observation errors associated to these cloudy
observations. In this way, the data classification approach studied
here could lead to the assimilation of cloudy radiances, the so-
called all-sky approach which is under development at several
centers (Geer et al., 2019).
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