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A fully worked example of decision-support-scale uncertainty quantification (UQ) and

parameter estimation (PE) is presented. The analyses are implemented for an existing

groundwater flow model of the Edwards aquifer, Texas, USA, and are completed in a

script-based workflow that strives to be transparent and reproducible. High-dimensional

PE is used to history-match simulated outputs to corresponding state observations of

spring flow and groundwater level. Then a hindcast of a historical drought is made. Using

available state observations recorded during drought conditions, the combined UQ and

PE analyses are shown to yield an ensemble of model results that bracket the observed

hydrologic responses. All files and scripts used for the analyses are placed in the public

domain to serve as a template for other practitioners who are interested in undertaking

these types of analyses.

Keywords: decision-support, groundwater modeling, uncertainty quantification, parameter estimation,

reproducible, scripting

1. INTRODUCTION

The importance of uncertainty quantification (UQ) in the context of environmental modeling
for decision support is widely recognized (e.g., Anderson et al., 2015; Doherty, 2015a). So too
is the importance of parameter estimation (PE), which, herein, we regard as the process of
reducing uncertainty through history matching the simulation outputs to their state observation
counterparts (a process often referred to as “calibration”). Together, UQ and PE represent critical
analyses for model-based resource management decision support as they provide estimates of
uncertainty in important simulated outcomes and reduce this uncertainty, respectively.

However, implementing high-dimensional UQ and PE in real-world modeling analyses can be
difficult, from both a theoretical understanding standpoint (related to the depth and breadth of
topical knowledge required), as well as from a mechanics/logistics standpoint arising from the
preparation, implementation, and post-processing of these analyses. In the authors’ experience,
the difficulties commonly encountered when implementing UQ and PE for decision-support-scale
modeling can preclude their application in many cases, especially when project time lines are short
and funding is limited.

There are also strong calls for modeling based analysis (including UQ and PE analyses) to
move toward more transparent, reproducible, and accountable processes. The reasons for this
push are self-evident; several groups have called for increased transparency and reproducibility
in computational science (Goecks et al., 2010; Stodden, 2010; Peng, 2011; Sandve et al., 2013;
Liu et al., 2019) and in environmental simulation specifically Fienen and Bakker (2016). Some
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authors have put forward examples of increasing the
reproducibility of the forward environmental model construction
process (e.g., Fisher et al., 2016). To that end, some script-based
tools have been developed for practitioners to increase the
reproducibility of the forward model construction process
(Olsthoorn, 2010; Fisher, 2014; Bakker et al., 2016). However,
these tools are focused on the forward model rather than the
UQ and PE process; in a decision-support setting, UQ and PE
analyses are critical to the robust deployment of a model, and are
therefore likely just as important as the forward model.

Ironically, the need for PE and UQ can be, in many
contexts, in competition with the need for reproducibility. This
is because the PE and UQ analyses require many additional
subjective conceptual choices and bring many more operations
and steps into the implementation of the modeling analysis,
and these additional complications can substantially decrease
the reproducibility of a modeling analyses. This decrease of
reproducibility, especially in the outcomes of the PE and UQ
analyses, can reduce the credibility of the model as a decision
support tool and may hamper resource management efforts.

Herein, we present a step toward reproducible UQ and PE
analysis through a script-based workflow. We use the term
“reproducible” to mean giving readers access to the datasets and
scripting tools needed to reproduce our results (e.g., figures,
Supplementary Material and associated data release; White
et al., 2020) and the findings based on them. Readers are referred
to Plesser (2018) and Kitzes et al. (2017) (and the references
cited therein) for a more nuanced and detailed discussion of what
“reproducibility” means in the context of computational science.

Several open-source software tools were used to implement
the UQ and PE workflow, including:

• The python package FloPy (Bakker et al., 2016) was used to
programmatically load, process, and manipulate an existing
groundwater flow model;

• The python package pyEMU (White et al., 2016) was used
to programmatically construct a high-dimensional PEST
interface (Doherty, 2015b) around the forward model and the
generate the prior parameter ensembles;

• The iterative ensemble smoother PESTPP-IES (White, 2018)
was used to evaluate the prior parameter ensembles (for UQ)
and to also perform formal, high-dimensional PE.

Within this scripted workflow, we programmatically construct

a high-dimensional truncated multi-variate (log-)Gaussian prior

parameter distribution (hereinafter referred to as the “Prior”)
and associated ensembles. The scripting is also used to define a
subjective, management-focused likelihood function for the PE
analysis. Additionally, we use scripting to post-process the results
into the figures and Supplementary Material presented herein.
In this way, we demonstrate that high-dimensional UQ and PE
in real-world environmental modeling settings are achievable
and can be both efficient and reproducible. Furthermore, given
the increased interest in UQ and PE analyses in environmental
simulation, the workflow presented herein provides the capability
to efficiently and repeatably apply UQ and PE analyses to models
that were previously constructed.

The rest of this manuscript is organized as follows.
First, we briefly present the existing model, then we discuss
the formulation of the Prior and the definition of the
likelihood function used for PE, followed by the reproducible
implementation and workflow presentation. Then the UQ
and PE analysis results are presented, and finally, we discuss
some nuances and implications of a script-driven UQ and
PE workflow.

2. THE EDWARDS AQUIFER MODEL AND
PURPOSE OF THE ANALYSIS

Herein, we use an existing model of the Edwards aquifer, Texas,
USA from the work of Liu et al. (2017), based on the model of
Lindgren et al. (2005). Briefly, the model is a MODFLOW-2005
(Harbaugh, 2005) model with 1 layer, 370 rows, and 700 columns
arranged on a regular grid with a spacing of 1,340 feet; the
geographic location of the model domain and features of interest
are shown in Figure 1. Water enters the model domain as diffuse,
areal recharge and as concentrated, stream-bed recharge—both
of these recharge processes are simulated with the Recharge
(RCH) package. Water leaves the model domain as spring flow
(simulated with the Drain (DRN) package) and as extraction
wells (simulated with the Well (WEL) package). Faults that are
thought to function as barriers to flow are represented with the
Horizontal Flow Barrier (HFB) package. Readers are referred
to Liu et al. (2017) for more details regarding the model and
specific simulations.

The model has been temporally discretized into two
simulation time periods:

• history-matching simulation: simulates the period 2001–2015
with monthly stress periods. This simulation is used for
PE (i.e., history matching) of observed spring flows and
groundwater levels;

• scenario simulation: simulates the period 1947–1958 (known
as the “drought of record”) with monthly stress periods. This
simulation is used to make a hindcast of simulated states of
primary interest to groundwater resource managers, namely
spring flow at Comal and SanMarcos springs and groundwater
level at index wells J-17 and J-27.

Both simulations use the same static (i.e., time-invariant)
properties of hydraulic conductivity, storage, HFB conductances,
and DRN boundary elements (stage and conductance). This is
the mechanism for PE to reduce uncertainty in the scenario-
simulation outputs of primary interest to groundwater resource
managers. If these outputs are sensitive to the static properties
and, through PE, the uncertainty in the static properties is
reduced, then the uncertainty in the scenario-simulation outputs
may also be reduced.

For the PE analysis, observations of spring flow and
groundwater level are used for history matching from
6 and 336 locations, respectively, with a total of 1,060
spring flow state observations and 6,809 groundwater-level
state observations.
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FIGURE 1 | The geographic extent of the active model domain (gray) and locations of springs and groundwater-level observation locations of primary interest to

groundwater resource managers. Modified from Brakefield et al. (2015).

2.1. Model Purpose
The flow from Comal and San Marcos springs and the
groundwater levels at index wells J-17 and J-27 during the
scenario (e.g., drought) simulation are of particular interest to
groundwater resource management and are the primary focus
of the UQ and PE analyses presented herein. Therefore, we
focus the PE analysis on reproducing the observed spring flow
and water levels listed above as robustly as possible during
the history-matching simulation. Logically, reproducing these
observed states during history-matching should improve the
ability to simulate these observed states during the scenario
simulation. We note that state observations of spring flow and
groundwater level are also available for the scenario hindcast
simulation at Comal and San Marcos springs and at index
wells J-17 and J-27, respectively. However, we use these state
observations only to verify the robustness (or otherwise) of
the various workflow components, and, more generally, of the
workflow itself; these scenario-period observations are not used
for history-matching purposes.

2.2. Parameterization and the Prior
Herein, we use a Bayesian uncertainty framework (Tarantola,
2005) to represent uncertainty in parameters and outputs of
primary interest to groundwater resource managers. A critical
part of any Bayesian uncertainty quantification (UQ) analysis is
definition of the Prior. We use a high-dimensional parameter
space (Doherty et al., 2011) with the aim of achieving robust
estimates for the hindcast of simulated states of primary interest
to groundwater resource managers, while also attempting to
avoid any ill-effects arising from under-parameterization (White
et al., 2014; Knowling et al., 2019). Specifically, we used 337,482
and 339,449 parameters to represent model input uncertainty
in the history-matching and scenario simulations, respectively
(including the shared static property parameters, outlined above).

In the high-dimensional parameter space, we defined a
truncated, multi-variate (log-)Gaussian distribution as the Prior;
we used the existing history-matching and scenario simulation
model inputs of Liu et al. (2017) as the first moment (e.g., mean
vector) of the Prior and a block-diagonal covariance matrix for

Frontiers in Earth Science | www.frontiersin.org 3 February 2020 | Volume 8 | Article 50

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


White et al. A Worked Example

the second moment. Parameter variances were defined using
expert knowledge and previousmodeling analyses of the Edwards
aquifer. The blocks in the prior parameter covariance matrix
represent spatially- and temporally-correlated parameters, such
as grid-scale and pilot-point (Doherty, 2003) parameters and
time-varying parameters associated with well extraction rates.
These correlations between spatially and temporally distributed
parameters were specified using exponential variograms with the
following ranges:

• 13,200 feet: grid-scale parameters, including hydraulic
conductivity, specific storage, specific yield, initial conditions,
HFB conductances; spatially-distributed well extraction
rate parameters;

• 180 days: time-varying well extraction rate parameters; and
• 39,600 feet: pilot-point parameters, including hydraulic

conductivity, specific storage, specific yield, initial conditions.

These ranges were selected so that the resulting spatially
distributed model inputs had sufficient stochastic character
in accordance with expert knowledge and previous modeling
analyses of the Edwards aquifer.

Using the previously history-matched model inputs as the
mean of the Prior is not standard practice in a purely Bayesian
context because the same state observations will be used for
conditioning herein. However, using the existing model inputs
in this way allows us to take advantage of expert and institutional
knowledge that has previously been assimilated into the model.
Furthermore, using a very high-dimensional parameter space
in combination with an ensemble framework allows us to
account for the null-space contribution to uncertainty (Moore
and Doherty, 2005) surrounding this history-matched location in
parameter space.

We use a multi-scale parameterization strategy (McKenna
et al., 2019) to explicitly represent different spatial scales of
uncertainty and also to help understand how information is
transferred from observed states to parameters (at different
scales) in the PE analysis. For hydraulic conductivity, specific
storage, specific yield, and initial conditions, three spatial scales
of parameterization were used:

• a single, domain-wide (“global”) multiplier parameter;
• pilot point multiplier parameters (Doherty, 2003) at a spacing

of 39,600 feet; and
• grid-scale multiplier parameters (one parameter per active

computational cell).

Recharge was parameterized using time-varying domain-
wide multiplier parameters in conjunction with time-varying
multiplier parameters for each of the 25 unique recharge
“zones”—for each stress period, a domain-wide multiplier
parameter and a multiplier parameter for each zone was
specified. In this way, we attempt to account for spatial
uncertainty as well as temporal uncertainty in the recharge
estimates. See Brakefield et al. (2015; Figure 15) for an example
of the recharge zonation and Puente (1978) for a description
of the Edwards aquifer recharge estimation process. Readers
are referred to the Supplementary Material for a graphically
summary of the multi-scale parameterization.

Well extraction rates were also parameterized to account
for spatial and temporal uncertainty in the well extraction rate
estimates. A single set of extraction rate multiplier parameters
(one per well) was applied across all stress periods. This set
of spatially distributed multiplier parameters were used with
a set of temporally-distributed multiplier parameters (one for
each stress period). We note that, while groundwater extraction
rates were metered during the history-matching period, the
simulated groundwater extraction in the model is nevertheless
still uncertain as these metered rates may not capture all of the
groundwater extraction that occurred and because of uncertainty
(e.g., error) induced through spatial and temporal discretization.

Because the exact hydrologic disposition and function of the
simulated HFBs is unknown, these were also parameterized at
the grid scale. The conductance of each HFB cell was treated
as uncertain but was spatially correlated with nearby HFB cells
using a geostatistical variogram with a range of 13,200 feet.

A summary of the parameterization and prior parameter
variances is presented in the Supplementary Material.

Note that separate temporal parameters (recharge, well
extraction and initial conditions) are used for the history-
matching and scenario simulations. All other parameters are
shared between the two simulations.

2.3. The Likelihood
Given the intended management purposes(s) of this modeling
analysis, we focused the PE analysis on reproducing the observed
states from the history-matching period that most resemble
the outputs from the scenario period of primary interest
to groundwater resource managers (Beven and Binley, 1992;
Doherty and Welter, 2010; White et al., 2014). Specifically, we
defined a subjective L2 norm likelihood function—expressed
through observation weights—to focus the PE analysis on
reproducing observed states from the following four locations:

• Comal springs flow;
• San Marcos springs flow;
• index well J-17 groundwater levels;
• index well J-27 groundwater levels.

The model outputs of primary interest to groundwater resource
managers during the scenario simulation are of the same
character (i.e., observed hydrologic state types, spatial locations)
as the state observations used in the focused likelihood function.
We therefore expect that reproducing the observed states at these
four locations during the history-matching simulation should
improve the model’s ability to simulate these observed states
during the scenario simulation (e.g., Doherty and Christensen,
2011; White et al., 2014).

The focused likelihood function was implemented by
subjectively specifying weights (e.g., the inverse of observation
variance) on these four state observation series that are two
orders of magnitude higher than the weights on the other
state observation series. In this way, we focus the PE analysis
toward preferentially reproducing these four state observation
series, with the expectation that better reproduction of these
observed states in the history-matching simulation will lead to
reduced uncertainty in the hindcast of simulated states at these
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locations. Including the remaining state observations into the
likelihood function with a lower weight (e.g., focus) helps to
ensure physically plausible simulation results in the posterior
history-matching ensemble. This subjective weighting scheme
was applied using the mean residuals from the initial, prior
Monte Carlo analysis (discussed below).

3. IMPLEMENTATION AND WORKFLOW

The UQ and PE analyses outlined above were implemented
within a python-based scripting workflow; the workflow is
contained entirely within the python script eaa.py and is
implemented as functions within this script. We note the
initial history-matching and scenario simulation model input
files are preserved “as-is”—the scripting process does the only
file handling.

At the highest-level, the workflow follows these steps
(function names shown in parentheses):

1. (setup_models_parallel): Process the model input
files for both history-matching and scenario simulations and
generate high-dimensional PEST interface (Doherty, 2015b).
Tasks include programmatically switching the MODFLOW
model input formats to support free-format and external
files, as well as rectifying the WEL files so that the same
number of well entries are present in each stress period,
which is important for parameterizing well extraction rates.
This means including additional extraction well entries with
extraction rate equal to zero for consistency. Define the
geostatistical prior parameter covariance matrix and generate
the prior parameter ensembles of 100 realizations for each
simulation using the Prior distribution.

2. (prep_for_parallel, run_condor): Evaluate prior
ensembles (with parallel computation) for both simulations.

3. (reweight_ensemble): Use the history-matching
simulation prior ensemble mean residuals to define the
focused likelihood function. Eliminate realizations that yield
implausible outputs.

4. (build_localizer, prep_for_parallel,
run_condor): Construct a localizing matrix for temporal
parameters (discussed later). Perform the PE analysis using
PESTPP-IES (White, 2018).

5. (transfer_hist_pars_to_scenario): Transfer the
static (time-invariant) final (i.e., posterior) history-matching
ensemble values to the scenario prior parameter ensemble,
effectively forming the scenario posterior ensemble.

6. (prep_for_parallel, run_condor): Evaluate the
scenario posterior ensemble.

7. (plot_parallel): Post-process the results of the UQ and
PE analyses into figures and Supplementary Material.

We chose 100 realizations for the UQ and PE analyses as a trade-
off between the need to express uncertainty and the need to
minimize the computational burden both during these analyses
and during follow-on scenario analyses to support resource
management decision making.

The PEST interface construction is the most complex portion
of the workflow as it involves setting up a multi-scale multiplier

parameter process, the PEST control file, as well as template files
and instruction files to interface with the model. Furthermore,
because we are working in an ensemble framework, it is
important to record all possible model outputs of interest within
the PEST interface given that acquiring new model outputs
requires a re-evaluation of the entire ensemble (as opposed to a
deterministic setting where only a single model run is needed).
To achieve this goal, we used the python modules FloPy (Bakker
et al., 2016) and pyEMU (White et al., 2016) to automate the
PEST interface construction process. These two python modules,
when used together, can reduce (or eliminate as is the case here)
instances where a practitioner must create or modify files in
a manual fashion (e.g., “by hand”) (Barchard and Pace, 2011).
Furthermore, using pyEMU to automate the PEST interface
construction and geostatistical-prior ensemble generation can
greatly reduce the cognitive burden on practitioners and also
facilitate UQ and PE analyses at earlier stages within the larger
modeling analysis.

The prior parameter ensembles were evaluated in parallel
using the iterative ensemble smoother PESTPP-IES (White,
2018); this code was also used to perform the PE for the
history-matching simulation. The results of each PESTPP-IES
analysis were post processed using the above-referenced plotting
functions to produce the figures presented in the Results section.
Two iterations of PESTPP-IES were used to history-match the
prior parameter ensemble to the observed states from history-
matching simulation.

The high-throughput run manager HTCondor (Thain
et al., 2005; Fienen and Hunt, 2015) was used to coordinate
starting the PESTPP-IES parallel “agents” on a distributed
computing cluster, as well as the “master” instance (through
the function run_condor). However, the analyses
presented herein can also be completed using the function
run_local, which starts parallel agents and the master
instance using only locally available (on a single machine)
computational resources.

Localization was used in PESTPP-IES to mitigate for the
effects of spurious correlation issues that can accompany the use
of ensemble (smoother) methods (Chen and Oliver, 2016). Here,
we localize temporal parameters—using an 18-month window
between temporal parameters and state observations such that
only apparent cross-correlations between observations that occur
within the 18 months following the application of a temporal
parameter are allowed in the PESTPP-IES solution scheme. In
short, temporal localization effectively prevents non-physical
(i.e., backward in time) cross-correlations and also eliminates
long-term cross-correlations that are not expected in the Edwards
aquifer, which is a karst system that responds rapidly to changes
in forcing conditions. The localization matrix was constructed by
the function build_localizer.

We note that the algorithm encoded in PESTPP-IES
implements a “regularized” parameter adjustment equation (e.g.,
Hanke, 1997; Chen and Oliver, 2013, 2016) that enforces
regularization penalties individually for each realization to prefer
each realization remain close to the prior-generated initial
values. This regularization, used in conjunction with localization,
attempts to retain maximum parameter variance in the posterior
parameter ensemble.
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FIGURE 2 | Observed vs. simulated plots for the four locations of primary interest to groundwater resource managers for the history-matching simulation. Red trace is

the observed series, dashed black trace is the simulation results from the existing model from Liu et al. (2017), thick blue trace is the maximum a posteriori simulation

result (the posterior realization corresponding to the existing model inputs), light blue traces are the posterior ensemble simulation results. In general terms, the

posterior ensemble closely reproduces the observed series.

4. RESULTS

During evaluation of the history-matching simulation prior

parameter ensemble, 13 realizations were removed due to

excessive run times and 5 realizations were removed for yielding
“dry” model cells for locations where groundwater level have

been measured, leaving 82 realizations for use in the PE

analysis—these 82 realizations were used to evaluate prior and

posterior scenario simulation uncertainty. In total, the history-
matching simulation was evaluated 310 times; the scenario
simulation was evaluated 182 times.

In general terms, the prior and posterior ensembles bracket
the observed states behavior both for the history-matching and
scenario simulations at the four locations of primary interest
to groundwater resource managers (Figures 2, 3). The posterior
ensemble is tightly clustered around the observed states at

Frontiers in Earth Science | www.frontiersin.org 6 February 2020 | Volume 8 | Article 50

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


White et al. A Worked Example

FIGURE 3 | Observed vs. simulated plots for the four locations of primary interest to groundwater resource managers for the scenario simulation. Red trace is the

observed series, dashed black trace is the existing simulation results from Liu et al. (2017), thick blue trace is the maximum a posteriori simulation result, light blue

traces are the posterior ensemble simulation results. The posterior ensemble brackets the observed series, however, some uncertainty remains, which we attribute to

the scenario simulation forcing parameters.

the four locations of primary interest to groundwater resource
managers during the history-matching simulation (Figure 2),
as expected, due to these particular observed states being
the dominant components of the likelihood function used in
the PE analysis. The scenario simulation posterior ensemble
(Figure 3) does not result in the same level of reproduction
at the four locations. We attribute this to the inclusion

of scenario-simulation-specific recharge and well-extraction
uncertainty, expressed as parameters that only occur in the
scenario simulation. That is, no matter how much the static
properties are conditioned during history-matching simulation
PE analysis, these scenario-only parameters remain at their prior
uncertainty, and subsequently induce uncertainty in the scenario
posterior simulated outputs.
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FIGURE 4 | Prior (gray) and posterior (blue) unweighted sum of squared residual (i.e., 8) histograms for both history-matching and scenario simulations at the four

locations of primary interest to groundwater resource managers. The vertical dashed gray line marks the 8 yielded by the existing model of Liu et al. (2017). Several

posterior realizations better reproduce the observed series than the existing model; the history-matching simulation ensemble is more tightly clustered around the

minimum 8.

The fact that the posterior scenario simulation ensemble
brackets the observed low spring-flow rates and low water levels
at the springs and index wells of primary interest to groundwater
resource managers (Figure 3) indicates that the combined UQ
and PE analyses are likely to be robust at hindcasting (in a
stochastic sense) the hydrologic response to drought at these four
locations. This is an encouraging outcome and indicates that the
automated workflow is functioning as expected. We attribute
this success to the use of a high-dimensional parameter space
(which helps to avoid under-estimation of uncertainty and limits
the potential ill-effects of model error; Doherty and Christensen,
2011; White et al., 2014; Knowling et al., 2019), as well as the use
of a likelihood function that was focused on outcomes of primary
interest to groundwater resource managers (Doherty andWelter,
2010).

We also compared the residual L2 norm (8) at the
four locations of primary interest to groundwater resource
managers for both the history-matching and scenario simulations
(Figure 4). In this light, we see that the PE analysis was able to
reduce 8 for both the history-matching and scenario simulation
ensembles, even though the scenario simulation outputs were not
used in the PE analysis. We also note that for several realizations,
the posterior 8 values are less than that of the existing Liu et al.
(2017) models. The reduction in 8 across the ensemble under
scenario conditions is attributable to the learning through PE

about the static properties in the history-matching simulation
and the subsequent transfer of these static properties to the
scenario simulation.

An important aspect of PE is maintaining physically-plausible
parameters (and corresponding simulation inputs). We have
included several prior and posterior parameter realizations in
the Supplementary Material. In general, the parameter changes
resulting from the PE analysis are in agreement with the
expected spatial and temporal patterns and are within the range
of expectation.

The primary interest of groundwater resource managers is the
number of low-flow/no-flow months at Comal springs during
the scenario period. Figure 5 shows the prior and posterior
statistical distribution of simulated months with flow at Comal
Springs less than 30

ft3

s . The PE process has substantially reduced
the uncertainty in this important simulated output. Specifically,
the information in the state observations used for PE appears
incompatible with prior realizations that yield more than 30 low-
flow months. Or, put another way, parameter realizations that
yield large values for Comal springs low-flow months during the
scenario simulation do not fit the history-simulation observed
states. Because of this incompatibility, the process of PE through
history matching appears to be a valuable analysis to reduce
uncertainty in the estimated Comal springs low-flow months. It
is also important to note that while the posterior distributions
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FIGURE 5 | Prior (gray) and posterior (blue) ensemble results for (A) the consecutive months below 30 ft3

s
and (B) the total months below 30 ft3

s
at Comal springs

during the scenario simulation. The red vertical line marks the observed values (7 months for both). The PE analyses has reduced the number of extreme cases and

has moved the ensemble closer to the observed values, however, considerable uncertainty remains. Note the X-axis scale was selected to focus on the posterior

realizations; 37 prior realizations yielded greater than 40 consecutive months below 30 ft3

s
and 44 prior realizations yielded greater than 40 total months below 30 ft3

s
;

these prior realizations are not shown.

of both of these outputs bracket their respective observed values,
both consecutive months and total months of low flow contain
some posterior uncertainty and could range as high as 20 and 30
months, respectively.

5. DISCUSSION AND CONCLUSION

We have presented a demonstration of an approach to increase
the reproducibility of UQ and PE for decision-support-scale
groundwater modeling. This approach is predicated on the use
of scripting to “drive” the modeling workflow. We recognize
that not all environmental simulation practitioners will be
proficient with scripting to the point that the approach we
have demonstrated will be efficient. However, this approach
offers many benefits, mostly toward increased transparency
and reproducibility of the decision-support analyses—analyses
that are typically at the center of the decision-making process.
Furthermore, a script-based workflow affords increased efficiency
when unforeseen factors arise that necessitate completing the
analysis repeatedly. These “redos” are inevitable given the
“ubiquity of errors” in computational science (e.g., Donoho et al.,
2008) and occur, for example, when input errors are discovered
or when the scope/purpose of the analysis changes). Greater
reproducibility also makes the analysis more transferable to other
projects and easier for third parties to evaluate or review the work
(Kitzes et al., 2017).

To be clear, we are not stating that script-based analyses
such as the one presented herein, will be free from input
errors. While we have worked to implement the analyses herein
as robustly and accurately as possible, the sheer number of
operations and decisions required indicates that, in a statistical
sense, there are faults or “bugs” in the script (and underlying
modules) used to implement these analyses—the typical fault
rate even in production-level software is between 15 and 50
faults per 1,000 lines (McConnell, 2004). However, in contrast to
non-scripted modeling workflows, these “faults” can be identified

and investigated by others practitioners long after the analysis has
been completed—all the assumptions, decisions, and operations
needed to implement our analysis are encoded transparently
in the scripting workflow. This level of transparency and
reproducibility has become a requirement in other fields—
such as some omics cancer research—where the ramifications
of decisions made in data processing can have life or death
consequences (see e.g., Fienen and Bakker, 2016). Furthermore,
as faults are discovered, they can be rectified programmatically in
the script and the UQ and PE analyses can easily then be re-run,
from beginning to end, without the complication of introducing
new faults. In this way, while there is an initial “investment” to
develop the scripting workflow, the returns on investment, as
measured by efficiency and fidelity, are considerable.

The efficiency of the PE algorithm in PESTPP-IES has been
shown to facilitate very high-dimensional (>300,000 parameters)
history matching at a relatively low computational cost—the PE
analysis required approximately 300 model evaluations, while
the scenario prior and posterior Monte Carlo runs required
approximately 100 model evaluations each. This efficiency
allows practitioners to focus less on how model inputs are
parameterized in the context of a computational trade-off and
instead focus on expressing model input uncertainty as robustly
as possible.

We realize that given the interest of groundwater resource
managers in the hydrologic response to drought and the
availability of state observations for PE during the scenario
simulation, the scenario simulation could have also been
subjected to PE (which could have easily been undertaken
using our workflow and PESTPP-IES)—this would likely further
reduce the posterior uncertainty in the outputs of primary
interest to groundwater resource managers. However, in this
study we are interested in evaluating the ability of UQ and
PE to provide robust answers to management questions for
which observations are not available (the more common use of
environmental modeling).
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