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The increasing frequency and severity of flood events demand improved accuracy of
hydrodynamic models to better mitigate the societal and economic consequences of
these disasters. Ideally, these models derive elevation data from high-accuracy LiDAR,
which often captures the subtle variations in elevation and microtopography – elements
that are critical to high-resolution hydrodynamic modeling. Due largely to the cost of
acquisitions, these data, however, are not widely available at high spatial resolutions
for large-scale areas, i.e., floodplains and coastal regions, especially outside of the
United States and Western Europe, where flood-prone communities already lack the
infrastructure and resources to manage these disasters. High-resolution interferometric
synthetic aperture radar (InSAR) systems may offer a viable and cost-effective alternative
to LiDAR, with comparable spatial resolutions and vertical accuracies. Like any swath
mapping sensor, systematic errors in calibration knowledge increase as the lever-
arm increases when viewing further off vertical. InSAR-derived digital elevation models
(DEMs) are often corrected using LiDAR or ground control points, although this limits the
application of InSAR to those areas where these data exist. In this paper, we present a
novel approach for using near-range InSAR data to correct inherent systematic bias that
propagates across adjacent, overlapping swaths for the same airborne acquisition. This
eliminates the need for LiDAR in generating InSAR DEMs, while maintaining a vertical
error of approximately 0.26 m relative to LiDAR, at a spatial resolution of 30 m. Data
was acquired using the NASA/JPL airborne, single-pass, Ka-band GLISTIN-A (Glacier
and Ice Surface Topography Interferometer) InSAR over the Red River Basin (RRB), ND.
The accuracy of the final DEM is evaluated using National Geodetic Survey (NGS) GPS
and a high-resolution LiDAR DEM.

Keywords: digital elevation model, floodplain mapping, InSAR, remote sensing, flood hazard

INTRODUCTION

GLISTIN-A (Airborne Glacier and Land Ice Surface Topography Interferometer) is a Ka-band
(35.66 GHz), single-pass interferometric synthetic aperture radar (SPInSAR), inspired by the
Shuttle Radar Topography Mission (SRTM) heritage (Rabus et al., 2003) and developed to provide
all-weather, high-resolution swath ice surface topography (Moller et al., 2011) not available through
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existing spaceborne LiDAR or radar sensors. During engineering
flights, GLISTIN-A also mapped parts of the Central Valley
region of California and it became clear that the sensor’s
capability to map land heights and water areas should be
exploited. To this end, Schumann et al. (2016) undertook a
feasibility study to examine this in detail. Indeed, their DEM
case study over the California Central Valley confirmed for the
first time that GLISTIN-A’s Ka-band technology can be used
for floodplain mapping and flood studies on small to regional
scales, as it generates floodplain DEMs with similar accuracies
to that of state-of-the-art airborne LiDAR (mean bias of 5.6 cm,
with a standard deviation of ±30 cm), therefore, furthering the
international agenda of a high-accuracy, open-access global DEM
(Schumann et al., 2014).

Digital elevation models (DEMs) are essential data sets for
disaster risk management and humanitarian relief services,
as well as many environmental process models. While in
some countries, such as the United States, United Kingdom,
Australia, and several others, there are available LiDAR DEMs,
free global DEMs do not currently meet basic hydrodynamic
requirements (Schumann and Bates, 2018). Thus, in many
regions of the world, where flooding and other hazards are
a major concern, we are limited in modeling and mapping
primarily due to the lack of LiDAR-quality DEMs, which in
turn limits our ability to unlock the full potential of these
models in support of flood applications. As demonstrated by
Schumann et al. (2016), however, the GLISTIN-A NASA airborne
mission offers a novel single-pass InSAR technology that is
cost-effective and can generate floodplain DEMs with a RMSE
of approximately 0.3 m for an average spatial resolution of
30 m. While Schumann et al. (2016) study demonstrated the
capability of GLISTIN-A to generate a LiDAR-quality DEM, a
more targeted flood use case is required to evaluate how this
DEM performs when used to condition a 2-D hydrodynamic
model and simulate an actual out-of-bank flood event. In
their study, Schumann et al. (2016) stated in conclusion that
“in order to more fully assess the suitability of the Ka-band
InSAR instrument to acquire high-accuracy land elevation
data, we suggest to repeat this type of analysis over a more
natural floodplain and a larger river, and for an area more
prone to regular flooding.” This study addresses this type
of analysis by acquiring land elevation data over the Red
River of the North wide-area floodplain using the GLISTIN-A
airborne SPInSAR.

MATERIALS AND METHODS

Test Site
As a test location, we chose the Red River of the North (RRN)
basin (Figure 1), located in North Dakota and Minnesota in the
United States, and in southern Manitoba, Canada. The Red River
of the North flows north through Winnipeg, Manitoba, and is
a tributary of the Nelson River basin, which carries runoff into
Hudson Bay from much of southern Canada, from the Great
Lakes to the Continental Divide. Due to its extremely low relief,
the region of the RRN depicted in Figure 1 is prone to flooding.

According to NOAA’s Spring Outlook released mid-March
2017, Northern North Dakota (the Souris River, Devils Lake,
and the northernmost reaches of the Red River) was predicted
to have the greatest risk of major flooding last spring. Snowpack
was heavy in the northern plains (containing up to four inches
of liquid water that could have increased with additional storms
through April), and if long term warm-up had coincided with
spring rains, already-saturated soils would not have been able
to absorb the increased water, which may have led to increased
runoff and potential flooding. Apart from the flood-prone
nature of this region, the choice of this test site was also
governed by the fact that (i) GLISTIN-A on its March/April 2016
Greenland mission presented a unique overpass opportunity that
we leveraged in full by acquiring InSAR data over the area
depicted in Figure 1 and (ii) flood hazard prediction during the
snow-melt season in this region is a known challenge for the
NOAA National Weather Service (NWS) North Central River
Forecast Center (see e.g., Tuttle et al., 2017).

GLISTIN-A InSAR Data
InSAR is able to retrieve surface topography by displacing two
antennas in the cross-track direction to view the same surface.
The interferometric combination of data, received on the two
antennas, allows one to resolve the path-length difference from
the illuminated area to a fraction of a wavelength. From the
interferometric phase, the height of the target (or phase center)
can be estimated; therefore, an InSAR system such as GLISTIN-A
is capable of providing not only the position of each image point
in along-track and slant-range, as with a traditional SAR, but also
the height of that point through the use of the interferometric
phase (Rodriguez and Martin, 1992; Rosen et al., 2000).

GLISTIN-A (Table 1) is a Ka-Band (8 mm wavelength),
cross-track, single-pass InSAR, developed for high-precision,
high-resolution ice-surface topography mapping, with a swath-
width greater than 10 km (Moller et al., 2017). Using standard
processing, the imagery maintains a spatial posting of 3 m.
The short-wavelength minimizes interferometric penetration of
the electromagnetic wave into surface media. While airborne
laser altimetry has negligible penetration into surface media,
it is limited in swath width (up to 500 m) and therefore, in
spatial coverage.

SAR Data Calibration
Instrument calibration and the InSAR processing was performed
at the Jet Propulsion Laboratory (JPL). Range pixel location
can be determined to better than a tenth of a pixel by over-
sampling the slant-plane imagery. Because range measurements
to the two interferometric channels may differ, a differential
range correction is computed, by measuring range offsets
between the two channels. Differential range measurements are
accurate to better than a hundredth of a range pixel and insure
proper range registration of the channels during interferogram
formation. After determining the common and differential range
corrections, the data are reprocessed, and strip map DEMs and
orthorectified imagery are generated.

However, once the initial instrument calibration is complete,
residual imperfect knowledge or instrumental drift can affect the
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FIGURE 1 | Map of the study area, with the Red River of the North flowing toward the United States-Canada border.

interferometric height measurement and introduce a systematic
trend in the data. Rodriguez and Martin (1992) provide a
generalized summary of such error sources for a single-pass
interferometer and their impact of the topographic measurement.
To first order the impact of calibration uncertainty can be lumped
into three categories:

1. Linear height tilt across track: Sources are geometric
knowledge error (baseline angle) and residual differential
phase;

2. Direct positional shift: Sources are platform position
errors; and

3. Height shift and quadratic height distortion across-track:
Sources are baseline knowledge error and range-timing
errors.

Moller et al. (2019) predicts that quadratic height
error sources (number 3 above) are negligible based on
system design and measurement and this is borne out
by a comprehensive validation of 2 years of GLISTIN-A
data (2016 and 2017) over coastal Greenland. Validation
with overlapping lidar data verify that residual systematic
trends manifest as a small linear height characteristic
propagating across the swath. Specifically, Moller et al.
(2019) observed up to meter-scale nadir biases and evenly
distributed residual slopes with a standard deviation of ∼8
millidegrees or 0.18 mm/m).

Figure 2 shows the interferometric geometry where for
simplicity the baseline, B is horizontal, the platform is at altitude
hp above a reference surface, and it is imaging a point of height

h0 above that reference, located at incidence angle θ0, and at
slant range ρ. The cross-track distance of that point is therefore
x0 = ρsin(θ0). It is well known that for (non-interferometric)
SAR imagery terrain features can be displaced across-track due
to layover or foreshortening, but the additional information
provided using interferometry allows features to be correctly
geolocated. However, any errors in the calibration knowledge
will introduce an error in reconstructing the surface location
of the interfered return. Figure 2 illustrates this whereby the
rotated dashed triangle shows how a baseline angle error, 1θ,
will introduce a positional error in both the cross-track, 1x,
and height. 1h, of the reconstructed scene. With perfect system
knowledge (the solid triangle):

ht =
ρ

cos(θ0)
=

x0

tan(θ0)
.

TABLE 1 | Summary of key GLISTIN-A operating parameters.

Frequency 35,620–35,700 MHz

Bandwidth 80 MHz

Polarization Horizontal

Peak transmit power 55 W

Look angle range 15–50
◦

Nominal swath 10 km

One look slant-range resolution 1.8 m

One look azimuth resolution 0.25 m

Height precision (3 × 3 posting) 0.3–3 m
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FIGURE 2 | Interferometric geometry illustrating how a slope can be
introduced in the measured surface due to imperfect geometry knowledge of
the baseline angle (roll).

But with residual errors manifesting as a baseline angle error
estimate,1θ, the resulting height estimate is:

h
′

t =
x0 +1x

tan (θ+1θ)
.

The vertical and horizontal geolocation error is a result of
imperfect geometrical knowledge. This illustrates the mechanism
by which a slope is introduced: that is a systematic height change
that is a function of cross-track distance, x, and where the slope
1h/1x = ht-h

′

t/1x. For generating a DEM of large floodplain
areas, the impact of 1x can be considered negligible at high
incidence angles and tolerable for small incidence angles.

For the RRN acquisitions, the flight plan was configured to
have near/far overlaps in successive passes. Figure 3 shows the
iterative methodology applied to generate the area DEM. A linear
trend, or an effective tilt of the swath can be characterized
with two parameters: a constant offset and a slope. To enforce
consistency without external control we iteratively correct for
slope only by forcing the overlapping extent of the far-range of
one swath to equal the near range of another. This is done by
correcting the slope difference for the overlapping extent (∼2 km
across track overlap) calculated as the mean for the entire line
extent (>50 km). The resultant domain may have a mean vertical
offset with respect to the vertical reference datum but represents
a self-consistent digital surface model (DSM) with which to
conduct image classification and subsequently, move toward a
SAR-derived, self-consistent bare-earth DEM.

InSAR Image Classification and DEM
Generation
The accuracy of any hydrodynamic model is largely governed
by the accuracy of the underlying DEM (Bates, 2004; Schumann
et al., 2016). The presence of vegetation, especially in regions
along river channels, may obscure or distort bank heights
and microtopography, which diminishes height accuracies along

the channel and in turn, the overall accuracy of the model
(Baugh et al., 2013). These elements play an integral role in
hydrodynamic modeling and estimates of bank overtopping.
It is therefore imperative that tall features, such as trees and
buildings, are successfully classified and removed from the DSM.
Information available from the processed InSAR imagery include
the measured surface height, the relative power (a function
of the backscatter “brightness” of the scene and the radar’s
illumination geometry), and the interferometric correlation, γ.
The interferometric correlation, γ, is a measure of the similarity
of the signal received at the two antennas. For a single-pass
system, such as GLISTIN, it can be written as the product of a
number of factors:

γ = γβγnγv

where γβ is the geometric decorrelation due to the cross-track
separation, B, of the antennas; γn is the decorrelation due to
thermal noise and γv is the decorrelation due to the interaction
of the electromagnetic wave within the scattering volume. Since
the wavelength of GLISTIN is just 8.4 mm, it is dominated by
surface scatter for bare terrain; however, γv and thus γ decreases
significantly with the presence of trees or vegetation. Buildings,
on the other hand, are expected to exhibit a discernible height
relative to the ground, while maintaining a high correlation when
compared with trees. Indeed, using the same SPInSAR sensor in
a snow depth study, Moller et al. (2017) show that the correlation
image data alone is robust enough to successfully classify trees.

Following the reasoning above, we used the SPInSAR height
image as well as the SPInSAR correlation image for developing
the SPInSAR classification algorithm (see flowchart in Figure 3).
Prior to conducting image classification, noise reduction was
performed using an average filter, with a 7 × 7 moving
window on the 3 m posted imagery. Note that analysis was
conducted for imagery that is ground projected relative to
the aircraft flight track (the “sch” coordinate system (Zebker
et al., 2010), as opposed a geographic map projection) so
that range and incidence-angle dependent behavior is reflected
in the classification thresholds for robustness. Vegetated areas
and buildings were classified using both height and correlation
image data. Mean heights were first calculated for 300 × 300
tiles within the larger swath to both capture local variation
and to minimize errors introduced by large groves of trees or
buildings. A classification algorithm was initiated for any pixels
that exhibited a height greater than 2σ of the mean height for a
tile. While the success of this initial criteria is likely owed to the
exceedingly low relief of the Red River Basin (RRB), this attribute
is not unique to this area, and is often a defining characteristic of
flood-prone regions.

Feature classification was performed in a 3 × 3 moving
window using the coefficient of variation (CV), or relative
standard deviation (RSD), to distinguish between vegetation and
built structures:

Cv =
σ

µ

where σ is the standard deviation of correlation and µ is
equal to the mean correlation value for the 3 × 3 window.
If Cv > 0.01 for a 3 × 3 window, pixels are classified as
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FIGURE 3 | Schematic of InSAR data calibration and de-trending methodology.

trees; otherwise, they are broadly classified as buildings. High-
resolution, Google Earth imagery was used to identify areas of
buildings, forests and patches of trees to evaluate the relative
accuracy of the proposed classifier and its parameterization in
identifying these features. The classification scheme performed
particularly well at identifying tall structures for near and mid-
range look angles, however, delineation of trees from buildings
presented a challenge (Figure 4). Here, it is important to note
that the main aim of the classification procedure is not to classify
tall objects in order to retrieve or count the number of trees
or built structures, but rather to create a bare-earth surface,
hence classification error may actually be less important. It should
be noted though that the threshold value attributed to Cv for
identifying and classifying features should be adjusted for areas of
different topographic characteristics and for other feature types
for which SAR correlation will be different. For instance, in the
case presented here, uniform roofs of large farming structures
(abundant in the study region) exhibit high SAR correlation
values and thus have a very low coefficient of variation, the value
of which was determined using a trial-and-error iterative process.
In the present effort, the goal is to derive a bare-earth DEM and
so the need to accurately distinguish between different land cover
types is certainly less important; however, for other applications
this may be the actual objective and thus a sensitivity analysis
of SAR correlation statistics for various land cover types may be
necessary to conduct in a region of more diverse land cover.

Classified pixels were finally lowered to the minimum height
of a 15 × 15 neighborhood. Spatial averaging may be used
to further improve the height precision in the InSAR DEM,
however, at the cost of resolution (Rodriguez and Martin, 1992;
Schumann et al., 2016). As discussed, inundation models are

highly sensitive to noise variation in topography, therefore,
to improve DEM height precision for applications in flood
modeling, the resulting gridded DEM was aggregated to a
30 × 30 m resolution; however, in order to get a better
understanding of the influence of topographic complexity on the
performance of the proposed classification scheme, a sensitivity
analysis ought to be conducted, in which the size of the spatial
kernel used to compute local height minima needs to be tied
to the degree of topographic complexity (variation), particularly
when moving into higher relief terrain. In fact, in Moller et al.
(2017) a similar tree classification methodology was found to
be very effective in extremely high relief terrain. The sensitivity
of the classifier to the terrain relief will be a function of the
window size over which height statistics are assessed and this
evaluation/sensitivity study has not been done (yet). While there
is a great deal of high-relief data already acquired and available,
little is over populated areas.

RESULTS

Accuracy Assessment
In order to derive a bare-earth DEM, we first removed any
residual systematic cross-track tilts using the methodology
discussed in see Section “GLISTIN-A InSAR Data” and illustrated
by Figure 3. At a spatially aggregated DEM resolution of 30 m,
this resulted in an overall negligible bias of – 2.5 cm. Convergence
of this methodology validates our assumptions with respect to
system stability over relevant acquisition time-frames (hours).

Next, an intelligent classifier based on informed relationships
between InSAR height and correlation data was used to
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FIGURE 4 | Flowchart and results of classifier based on informed relationships between InSAR height and correlation image data. Results: (A) Original SAR height
image; (B) SAR signal correlation image; (C) SAR height image in (A) with pixels identified by the classifier in red; (D) Resulting SAR height image at 3 × 3 m before
spatial aggregation to a bare-earth DEM, with tall vegetation (trees, etc.) and built structures successfully removed. The Google satellite image shown for visual
comparison highlights classified groves of trees along the meandering Red River of the North. Note that shorter vegetation and the state of agricultural fields on the
satellite image are not directly comparable to the SAR data that were acquired at a different time and during late winter.

distinguish between bare-earth, buildings, and tall vegetation
(Figure 4). Based on our evaluation of the classified SAR image
using high-resolution satellite imagery, the classifier appeared
to perform well at identifying tall features, however, it was not
successful at distinguishing vegetation from built structures.

We derived a mosaiced, consistent, large-scale bare-earth
DEM, which was collected as a series of five flight lines. When
assessed at the more typical large-scale DEM resolution of
30 m, we concluded an overall negligible bias of −2.5 cm.
Noted that this bias can be readily improved if required by
increasing the signal-to-noise ratio of the data. Instrument
customization, operational customization, and trade-offs enable
this analogous-to-acquisition of LiDAR design, where point
density and resolution are traded against acquisition cost. Using
LiDAR terrain data and GPS ground control points from the
National Geodetic Survey (NGS, Figure 5), we demonstrate
suitability to a wide range of applications, particularly flood
mapping, by achieving a RMSE of approximately 0.5 m (Table 2).

The height errors between SPInSAR and LiDAR reported in
Table 2 are all computed at the location of the GPS network
points, so as to avoid using LiDAR as a “truth” reference but
instead as a direct comparison to the SPInSAR technology.
It is, however, worth noting that in terms of overall height
performance across the study region, LiDAR may be expected
to perform better on average given the inherent noise level in
the raw SAR data; although performance discrepancies between
the two technologies may be acceptable depending, of course, on
the application.

DISCUSSION

LiDAR vs. GLISTIN-A
For obvious reasons, obtaining a high-resolution, high-accuracy
LiDAR terrain (i.e., bare earth) model over floodplains and low-
lying coastal areas is preferable – in particular, where such areas
have very shallow gradients, such as the RRN floodplain. With
a high signal pulse density per unit area and almost no random
noise component, airborne LiDAR technology is capable of
resolving minimal topographic variations and microtopographic
features that define and control non-trivial floodplain flow
pathways. In fact, LiDAR, with a typical vertical RMSE of 15–
20 cm, helped shift the flood modeling community from a
traditionally data-poor environment to a data-rich environment,
which led to a large number of model advances and a rethinking
of model design (Bates, 2004). However, as already argued by
Schumann et al. (2016), over large, wide floodplains, LiDAR can
quickly become prohibitively expensive due to its typically small
swath width and thus, requires many overlapping flight lines
to cover the total area of interest at high resolution. For large
area coverage, wide-swath, single-pass airborne InSAR, therefore,
presents notable advantages and has the potential to become
much more cost-effective.

In this context, an airborne campaign with overpasses at
different times (e.g., at different seasons) using a GLISTIN-A
type sensor can be easily envisaged and becomes indeed very
competitive in resource allocation and cost. A GLISTIN-A
flight pass was repeated over the same study site in snow

Frontiers in Earth Science | www.frontiersin.org 6 February 2020 | Volume 8 | Article 27

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00027 February 18, 2020 Time: 17:52 # 7

Faherty et al. DEM Generation Using SPInSAR

FIGURE 5 | GPS network points overlain digital terrain models from (A) LiDAR and (B) GLISTIN-A InSAR. Height color scales for each DTM are equivalent
(210–230 m).

and ice conditions. This data set, coupled with the dry
baseline DTM, allows identification of river ice jams as well
as volumetric estimation of the floodplain snowpack. While
examining the latter capability for this site is outside the scope
of this study, snowpack volume estimation with GLISTIN-A
has been successfully demonstrated over the Sierra Nevada (CA,
United States) by Moller et al. (2017).

Flood Mapping Potential
The above-mentioned attributes make GLISTIN-A type
technology highly relevant and applicable to flood mapping and
modeling. It is well known that while variations of in-channel
water levels (determined by local flow conditions) drive the

TABLE 2 | Calculated errors for the SAR-derived DEM and LiDAR relative to GPS
ground-control points, as well as SAR vs. LiDAR.

Evaluation Mean error (m) Mean absolute error (m) RMSE (m)

LiDAR vs. GPS −0.134 0.319 0.407

SAR vs. GPS 0.116 0.421 0.537

SAR vs. LiDAR 0.258 0.463 0.56

timing and amount of river bank overtopping and subsequent
flooding of adjacent low-lying land, it is variations in floodplain
topography that control floodplain flow paths and the inundated
area during a flood event; thus, microtopography and floodplain
features, such as buildings, walls, trees, etc., become significant,
particularly when interested in localized flow conditions and
associated floodplain inundation at the small scale (Mason
et al., 2003). Microtopographic features and variations in
microtopography are only included in flood inundation (i.e.,
2-D hydrodynamic) models when high-resolution, high-
precision data on floodplain heights are available. In most
cases, however, their effects are parameterized in models of grid
resolutions that are typically orders of magnitude larger than the
microtopographic controls (Dottori et al., 2013).

Within this context, Mason et al. (2003) state that the typical
vertical accuracy of floodplain heights from airborne LiDAR (10
to 20 cm RMSE) provides a realistic lower limit for DEM quality
as beyond this, the sensor signal becomes indistinguishable from
“noise” generated by background microtopographic features. In
line with this reasoning, it is fair to assume that a vertical
error of 2σ of the lower limit (∼40 cm) sets an adequate upper
limit target value.
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In the case study presented here, the DTM generated from the
GLISTIN-A InSAR data had a mean absolute error of 0.421 m and
a RMSE of 0.537 compared to geodetic ground control points.
This makes it suitable for flood mapping and modeling, with
much better accuracy than can be obtained with conventional
wide-swath, imagery-derived DTMs, such as from satellite InSAR
technology or commercial multi-pair optical imagery, which
typically exhibit much larger vertical errors.

CONCLUSION

In this study, we demonstrate the success of a new InSAR
calibration technique that removes the need for ground control
points and LiDAR by leveraging areas of swath overlap in
the same airborne acquisition. Furthermore, we showcase the
potential of InSAR image classifiers to generate floodplain
DEMs with vertical accuracies suitable for high-resolution
hydrodynamic modeling. Averaging to a spatial resolution of
30 m after classification, a mean error in the vertical as low as
12 cm was obtained. More research on classification algorithms
is indeed required to automate the DEM-generation process
and to make such classifiers readily available in commercial
software. The results of this case study, however, demonstrate
the potential of airborne InSAR as a cost-effective alternative to
LiDAR for large-scale flood mapping, thus diminishing barriers

to acquisition in the developing world and furthering the
prospect of a free, global, high-resolution DEM. The InSAR DEM
presented here will be examined in a follow-on study in the
RRN floodplain, where its performance will be evaluated using
a real-case, 2D flood model application.
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