AUTHOR=Campozano Lenin , Ballari Daniela , Montenegro Martin , Avilés Alex TITLE=Future Meteorological Droughts in Ecuador: Decreasing Trends and Associated Spatio-Temporal Features Derived From CMIP5 Models JOURNAL=Frontiers in Earth Science VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2020.00017 DOI=10.3389/feart.2020.00017 ISSN=2296-6463 ABSTRACT=
Droughts are one of the most spatially extensive disasters that are faced by societies. Despite the urgency to define mitigation strategies, little research has been done regarding droughts related to climate change. The challenges are due to the complexity of droughts and to future precipitation uncertainty from Global Climate Models (GCMs). It is well-known that climate change will have more impact on developing countries. This is the case for Ecuador, which also has the additional challenges of lacking meteorological drought studies covering its three main regions: Coast, Highlands, and Amazon, and of having an intricate orography. Thus, this study assesses the spatio-temporal characteristics of present and future droughts in Ecuador under Representative Concentrations Pathways (RCP) 4.5 and 8.5. The 10 km dynamically downscaled products (DGCMs) from Coupled Model Intercomparison Project 5 (CMIP5) was used. The Standardized Precipitation Index (SPI) for droughts was calculated pixel-wise for present time 1981–2005 and for future time 2041-2070. The results showed a slightly decreasing trend for future droughts for the whole country, with a larger reduction for moderate droughts, followed by severe and extreme drought events. In the Coast and Highland regions, the intra-annual analysis showed a reduction of moderate and severe future droughts for RCP 4.5 and for RCP 8.5 throughout the year. Extreme droughts showed small and statistically non-significant decreases. In the Amazon region, moderate droughts showed increases from May to October, and decreases for the rest of the year. Additionally, severe drought increases are expected from May to December, and decreases from January to April. Finally, extreme drought increases are expected from January to April, with larger increases in October and November. Thus, in the Amazon, the rainy period showed a decreasing trend of droughts, following the wetter in wet- and drier in dry paradigm. Climate change causes decision-making process and calls for adaptation strategies being more challenging. In this context, our study has contributed to better mapping the space-time evolution of future drought risk in Ecuador, thus providing valuable information for water management and decision making as Ecuador faces climate change.