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Tropical montane cloud forests (TMCFs) in the Andes, with mild temperatures and plenty of water,
boast prodigious biocultural diversity. Runoff from these slopes supports local communities by
supplying drinking water and irrigation to growing lowland cities. However, precipitation in the
region is sensitive to human environmental impacts and effective conservation planning requires
assessing past and future climate changes in local cultural, historical, and political contexts. In
particular, Earth System Models (ESMs) suggest a reduction in precipitation over most tropical
land, including TMCFs in the Andes during the twentieth century, has been driven largely by
increases in aerosol emissions (Wang, 2015). With the exception of the Amazon rainforest, this
trend reverses in the twenty first century, with increases in precipitation over Asia, Central Africa,
and the tropical Andes, as greenhouse gas-driven changes become the dominant response (Stocker
et al., 2013; Kooperman et al., 2018a). Although multi-model mean changes are large, many
ESMs show opposing trends on regional scales, and historical observations are limited, leading
to uncertainties for past and future changes.

Focusing on TMCFs in the Andes, we survey how this reversal of precipitation change in the
twenty first century, and its associated uncertainties, may impact the complex interplay of cultural
ecosystem services (CES) that TMCFs provide. We seek to highlight the need for transdisciplinary
perspectives to understand how recent and future precipitation changes interact with the
socioecological systems of Tropandean mountainscapes. We present results from widely-used
climate models, which have contributed to the Coupled Model Intercomparison Project Phase
Five (CMIP5, Taylor et al., 2012), to highlight the large but uncertain changes in this region. We
then assess single forcing experiments, provided by the Community Earth SystemModel (CESM1)
Large Ensemble project (Hurrell et al., 2013; Kay et al., 2015), to identify the anthropogenic
drivers of precipitation change over the Andes. These results serve to illustrate a global modeling
perspective and communicate the need to consider local CES in the development of effective
adaptation measures. We argue that understanding societal implications of climate change on
TMCF hydroclimates should include past and future considerations of the socio-hydrological
dimension as well as the physical climate.

In this opinion, we discuss the historic role of fire in cultural practices, the influence of
present-day biomass burning aerosol on precipitation, future drivers of precipitation change and
local water resource use, to highlight the need for new research at the intersection of these areas.

TROPANDEAN ECOREGION

Neotropical landscapes harbor globally important hotspots of biodiversity (Myers, 2003; Lovejoy
and Hanna, 2019) and bolster ancestral cultures that have developed a manufactured landscape
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(White, 2013; Scarborough et al., 2019) depending on rain
water for irrigation and dry-slope agriculture. To illustrate
the complexity of socio-hydrological coupling and change in
mountainous areas with humans dating back thousands of
years, we selected the Tropandean region of Central America
and Northern South America. The equatorial mountains of the
Andean crescent (Chinchaysuyu), reportedly the wettest part of
the planet (Bush, 2002), exhibit the largest number of species
per unit area in any terrestrial ecosystem, with predominant taxa
including birds, reptiles, amphibians, and insects. This is also the
place where most bryophytes are found, along with the largest
diversity of broad-leaf species, mainly Lauracea and Areacacea
families. In recent history, the landscape has been transformed
by the pressures of modernity (e.g., monoculture, urbanization,
invasive species, and biodiversity loss) and exhibits significant
climate changes in historic and future ESM simulations (Stocker
et al., 2013). But the influence of humans on the local
mountainscape dates back much further—indigenous cultures
have domesticated cloud forests and opened highland terrains
of this region for hunting, gathering, planting, livestock rearing,
and other more consumptive activities such as mining and
handcrafting metals and fibers. Many of these activities involve
the use of fire, the most important tool for Andean treeline
ecotone region (ATER) transformation (Sarmiento and Frolich,
2002), which has reshaped local mountainscapes over centuries.

The long history of fire use in TMCFs is evident in records
of charcoal cairns and in the generalized management to
maintain and expand grasslands in the mountains (Luteyn
and Balslev, 1992). This explains the mythology associated
with burning and its connection with rain—in the Andean
pantheon, fire has been used to placate the gods’ wrath
with their dry spell, and to bring back the rains to restore
mountain harmony (Urku kawsay) (Steele and Allen, 2004).
Inka mythology identifies the supreme deity Wirakucha who
brought winds and rains to themountains (Urton, 1999). Andean
cultures follow practices of respect and reciprocity (Ayni) to
promote a balanced subsistence for people, animals, plants,
and mountains (Sumak kawsay). Thus, culturally appropriate
to the Andean philosophy, burning of highland grasslands (or
paramo) and TCMFs are daily occurrences in ATERs (Carrillo-
Rojas et al., 2019; Knapp, 2019) producing heavy loads of
atmospheric black carbon in the soils. At the same time, aerosol
emissions from biomass burning can be pernicious sources of air
pollution, with significant impacts on human health (Reddington
et al., 2015). These emissions can be transported over long
distances (Bourgeois et al., 2015) and impact remote ecosystems
(Boy et al., 2008). Aerosol also influences the climate by
modifying the atmospheric thermodynamic state and circulation
patterns (Thornhill et al., 2018), as well as cloud microphysical
properties, all of which can modulate precipitation patterns
(Tao et al., 2012).

Precipitation is critical to the maintenance of CES and
the overall availability of freshwater, which incorporate the
intangibles to mountainscape (Urkumanta) conservation
(Sarmiento, 2016). However, regional precipitation changes
are driven by not only local pyroecology influences on the
environment, but also non-local influences, such as biomass

burning aerosol from the Amazon and global-scale climate
change (Stocker et al., 2013). Additionally, it is challenging
for conservation planning to bring ESM scale projections
into the context of local cultural, historical, and political
perspectives. Particularly in the tropical Andes, where large
future changes in precipitation are projected (Figure 1B), but
with significant uncertainty, in part because the fine-scale
topographic features of the region are not resolved in global-
scale models. Progress toward understanding regional climate
changes and impacts thus requires ecological modeling across
global to local scales, including paleoecological parameters
in hindcasting and forecasting extreme scenarios of change
(Cheddadi et al., 2019), and taking into account historical
socioecological perspectives.

Below we separately present global modeling and political
ecological perspectives in order to emphasize the need
for research that connects across these disparate scales
and disciplines.

GLOBAL MODELING PERSPECTIVE

Over the last decade, global climate models have evolved into
fully capable representations of the Earth system, including
interactive treatments of the atmosphere, ocean, land, and
sea-ice. The atmospheric component of many ESMs includes
aerosol particles that are advected from source regions and
can influence cloud droplet number, radiative properties
of the atmosphere and precipitation (Neale et al., 2010).
The land component includes a variety of plant types
with physiological properties that depend on temperature,
moisture and CO2 concentration (Lawrence et al., 2011).
All of these processes are critical for capturing the complex
coupled responses that govern changes in precipitation over
the Andes, which undoubtedly will affect the distribution,
community composition and structure of TMCFs in the
Andean crescent.

The CMIP5 multi-model mean precipitation change over the
twentieth century, from a subset of advanced models in which
aerosol concentrations directly affect cloud droplet formation
(i.e., CanESM2, von Salzen et al., 2013; CESM1-CAM5, Hurrell
et al., 2013; CSIRO-Mk3-6-0, Rotstayn et al., 2012; GFDL-CM3,
Donner et al., 2011; HadGEM2-ES, Martin et al., 2011; MIROC-
ESM-CHEM, Watanabe et al., 2011; MIROC-ESM, Watanabe
et al., 2011; MRI-CGCM3, Yukimoto et al., 2012; NorESM1-
M, Iversen et al., 2013; FGOALS-g2, Li et al., 2013), shows
drying across the tropics, particularly over Asia, northern South
America, and Central America (Figure 1A). This pattern emerges
even in simulations without changes in greenhouse gases and
is linked instead to anthropogenic aerosol emissions (Wang,
2015). In a set of single forcing experiments, which isolate the
contribution from different anthropogenic forcing agents (e.g.,
greenhouse gases, aerosol from industry and transportation,
aerosol from biomass burning, and land-cover change), we find
the historical drying pattern in CESM1 over the equatorial Andes
(and Indonesia) results primarily from biomass burning aerosol
emissions (Figures 1C–G).
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FIGURE 1 | Annual mean precipitation changes from (A) CMIP5 historical simulations (1971–2000 to 1871–1900), (B) CMIP5 RCP8.5 simulations (2071–2100 to

1971–2000), (C) CESM ensemble mean historical simulations (1971–2000 to 1850), and (D–G) contributions from single forcings as described in the text. Stippling in

(A,B) indicates where 8 of 10 models have the same sign of change. Stippling in (C) indicates where changes are statistically significant at 95% confidence across 35

ensemble members. Stippling in (D–G) indicates where a single forcing contributes to at least 50% of the full historical change.

In the twenty first century, under the Representative
Concentration Pathway 8.5 scenario, the same set of CMIP5
models show that this signal reverses over most tropical land,
leading to increases over Asia, Central Africa, and the Andes
(Figure 1B). Future changes over South America include a
decrease over the Amazon and an increase over the Andes, which
has been associated with both an atmospheric-radiative response
to higher greenhouse gases and a plant-physiological response to
higher CO2 concentrations (i.e., reduced stomatal conductance
and transpiration) (Figure 1 from Kooperman et al., 2018a).
The plant-physiological response leads to suppressed convection
over the Amazon forest and circulation pathways that enhance
moisture flow up the eastern slopes of the Andes (Langenbrunner
et al., 2019). Reductions in transpiration due to plant responses to
higher CO2 also leave more moisture in the soil column, which

can contribute to increases runoff and flooding in the Andes
(Kooperman et al., 2018b).

These ESM results reveal a reversing trend in precipitation
changes over the equatorial Andes from the twentieth to
twenty first centuries. Historical simulations, and indigenous
knowledge, suggest that fires have played an important role in
the climate of Andes over the last hundred and thousands of
years, respectively. As Amazon fires continue in the present-
day, the long ranging impacts of their emissions are likely
to remain a strong influence on the near-term climate of
the Andes. But as the concentrations of greenhouse gases
rise, global-scale warming and circulation changes may drive
an opposing response that increases precipitation. However,
despite the large magnitude of change in the multi-model
mean, many individual models can disagree on the sign of
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the change (i.e., lack of stippling in Figures 1A,B). These
competing drivers of environmental change and uncertainty
across model simulations in the region, in combination with
local socio-cultural pressures, present a major challenge for
conservation efforts.

POLITICAL ECOLOGICAL PERSPECTIVE

As dynamic constructs, press and pulse disturbances drive
change in the socio-ecological landscapes of the Tropical Andes,
which continues to ignite scholarly debate on whether forests
or grasslands (Appenzeller, 2019). Amidst ancestral customary
law and ritualized practices in relation to mountain fires,
political decisions on resource use and nature conservation
have overlooked the anthropogenic proxy for climate and land-
use transformation (Chepstow-Lusty et al., 1996; Varela, 2008;
Sarmiento, 2012). Historical accounts and other geocritical
literature have been used to develop a critical discourse analysis
of water-fire interactions (Garreaud, 2007; Sarmiento et al.,
2019), but difficulties remain in bringing together multimethod
approaches for the study of deforestation (Delabre et al., 2019).
Of special note is the extensive impact of colonial timber use
for construction and heating in growing Andean cities. Much
of the regional deforestation has been driven by procuring
cheap fuelwood and charcoal. In fact, charcoal production and
commercialization became the most important activity of a
growing domestic energy source (Wunder, 1996) often associated
with impoverished populations (Garofalo, 2019).

Old approaches, favoring exotic plantations, increasing the
agricultural frontier and establishing payments for ecosystem
services, are beginning to shift toward new considerations
of CES. These include reforestation with native species,
agroecological practices, community-based conservation,
and nature benefits to people, with value of spirituality,
myths, traditions, and landscape memory of decolonial
thinking of the sacred transition (Sarmiento et al., 2017;
Oslender, 2019). This is a transitional phase where the
multiple values of nature approach incorporates factors of
local cosmological views as well as the intangibles (i.e., heirloom
flavors, textile designs, rituals) and incommensurables (i.e.,
national identity, rootedness, spirituality) of CES (Alimonda,
2016). Most conservation programs from either governments
or NGOs are required to include social science into the
fabric of research for climate effects and sustainability, as
Rousseau’s (2017) manifesto claiming for transdisciplinary
understanding of Earth systems. The political ecology of ice
and water in the Andes remains an academic concern to
secure climate adaptation measures (Nüsser, 2017; Hock et al.,
2019) and adequate representation of mountain development
priorities (Sarmiento, 2016).

Because of the shifting paradigm of decolonial histories, a
new transdisciplinary effort is needed to fully grasp the water-
climate conundrum (Fonstead, 2017). We must understand not
only the changes to the physical climate system (e.g., observing
and simulating river flow and discharge, horizontal precipitation,
glacial mass, and snow pack), but develop a holistic portrait

of environmental-societal interactions and impacts (Sarmiento,
2008) for a more comprehensive view of future adaptations to
climate change in the ATER.

CONCLUSION

We emphasize that epistemes of climate changes in TMCFs of
the Tropandean landscapes may only be reached by bridging
the gap across the scales of ESM to the socio-hydrological
tenants of a local community’s perceptions. In the short-term
climate, the ATER may continue to be strongly influenced by
remote biomass burning emissions and forest fires at the fringes.
In the long-term climate, a trend of increasing precipitation
over the twenty first century due to rising CO2 and global
warming, may affect people of Andean communities with future
impacts on water management and overflow control, landslide
and rockslide (Wayku) management, and flooding. Coupled
modeling of the past and future co-dependency of physical and
human geographies in the mountainscape is needed to reduce
uncertainty in the application of adaptation measures toward
resilient, sustainable futures.
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