AUTHOR=Wen Yongli , Xiao Jian , Goodman Bernard A. , He Xinhua TITLE=Effects of Organic Amendments on the Transformation of Fe (Oxyhydr)Oxides and Soil Organic Carbon Storage JOURNAL=Frontiers in Earth Science VOLUME=7 YEAR=2019 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2019.00257 DOI=10.3389/feart.2019.00257 ISSN=2296-6463 ABSTRACT=
Organic amendments from animal production are commonly used for promoting soil fertility, and their impacts on the residual soil organic carbon (SOC) are of both agricultural and environmental interest. Iron (Fe) in the form of (oxyhydr)oxides has been proposed to play a critical role in long-term SOC preservation by forming Fe-organic associations, though currently a comprehensive understanding of how these Fe-organic associations are regulated by long-term organic amendments is limited. Here, we synthesize information to link Fe (oxyhydr)oxides, SOC sequestration, and long-term organic inputs from both field and laboratory studies. The results show that vigorous Fe mobilization can be regulated by long-term application of organic amendments, and these organically amended soils contained significantly higher concentrations of poorly crystalline Fe that was closely related to SOC storage in both upland and paddy soils. Potential mechanisms are proposed as follows: (1) DOM from the organically amended soils is more likely to co-precipitate with poorly crystalline Fe, and DOM from the inorganically fertilized soils is to a larger extent adsorbed on poorly crystalline Fe. The co-precipitated Fe-OM complexes are more resistant to desorption than the adsorbed OM. (2) DOM extracts from soils treated with organic amendments exhibit a stronger inhibitory effect on the crystallization of poorly crystalline Fe than DOM from inorganically fertilized soils, which may be the consequence of increased numbers of aromatic functional groups. Organic acids in root exudates increased soil mineral availability and the formation of poorly crystalline minerals. Compared to inorganic fertilizers, organic amendments significantly increase (>20%,