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With the increasing use of detrital geochronology data for provenance analyses, we

have also developed new constraints on the age of otherwise undateable sedimentary

deposits. Because a deposit can be no older than its youngest mineral constituent,

the youngest defensible detrital mineral age defines the maximum depositional age of

the sampled bed. Defining the youngest “defensible” age in the face of uncertainty

(e.g., analytical and geological uncertainty, or sample contamination) is challenging. The

current standard practice of finding multiple detrital minerals with indistinguishable ages

provides confidence that a given age is not an artifact; however, we show how requiring

this overlap reduces the probability of identifying the true youngest component age.

Barring unusual complications, the principle of superposition dictates that sedimentary

deposits must get younger upsection. This fundamental constraint can be incorporated

into the analysis of depositional ages in sedimentary sections through the use of Bayesian

statistics, allowing for the inference of bounded estimates of true depositional ages and

uncertainties from detrital geochronology so long as some minimum age constraints

are present. We present two approaches for constructing a Bayesian model of deposit

ages, first solving directly for the ages of deposits with the prior constraint that the ages

of units must obey stratigraphic ordering, and second describing the evolution of ages

with a curve that represents the sediment accumulation rate. Using synthetic examples

we highlight how this method preforms in less-than-ideal circumstances. In an example

from the Magallanes Basin of Patagonia, we demonstrate how introducing other age

information from the stratigraphic section (e.g., fossil assemblages or radiometric dates)

and formalizing the stratigraphic context of samples provides additional constraints

on and information regarding depositional ages or derived quantities (e.g., sediment

accumulation rates) compared to isolated analysis of individual samples.

Keywords: detrital age, geochronolgy, detrital zircon, maximum depositional age, Bayesian statistics

1. INTRODUCTION

The age of a sedimentary deposit is no older than its youngest constituent. This fact, and the recent
proliferation of detrital geochronology data to understand sedimentary provenance, have expanded
the use of maximum depositional ages (MDAs) to constrain the ages of sedimentary deposits. With
MDAs, researchers seek to limit the age of an otherwise undateable sedimentary deposit (e.g.,
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a sandstone) using the ages of individual mineral grains, most
commonly U-Pb ages of zircons determined by Laser Ablation-
Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS).
The challenge to this approach is transforming the many
individual dates of a detrital zircon study (tens to hundreds of
grains are often dated per sample, see Sharman et al., 2018;
Coutts et al., 2019) to a single measure of the maximum age
of the deposit. Analytical and geologic uncertainty in dating
methods cause variability about the “true” age of crystallization,
such that any given measured age may be scattered about the
true age of the rock. Repeated processing of samples in mineral
separation facilities also introduces the possibility of potential
contamination, as a single misplaced grain of sand could skew
results. The imperfection of geologic chronometers means that in
the case of radiometric dates, parent or daughter isotopes may be
lost, resulting in an incorrect or inaccurate calculation of an age.
In response to these challenges, a variety of methods have been
developed to aggregate a suite of measured ages from a single
detrital sample into a single estimate of the maximum age of the
deposit (Dickinson and Gehrels, 2009; Coutts et al., 2019).

In addition to being no older than its youngest constituent,
the age of a sedimentary deposit is bracketed by the ages of
deposits above and below it in a stratigraphic succession. A
Geologist would refer to this as the principle of superposition. A
Bayesian Statistician would call this valuable prior information.
Superposition and Bayesian statistics have long been used
to refine inferences about deposit ages that are based on
geochronology (Naylor and Smith, 1988; Buck et al., 1992;
Christen et al., 1995). The utility of these methods has resulted
in the development of a number of computational tools to enable
routine Bayesian analysis of suites of (primarily) radiocarbon
ages (e.g., Blaauw and Christen, 2005; Haslett and Parnell, 2008;
Parnell et al., 2008; Bronk Ramsey, 2009; Blaauw, 2010; Blaauw
and Christeny, 2011). Most commonly these tools are employed
to make probabilistic assessments of the age of sedimentary
intervals between dated horizons that record environmental
changes of interest (Parnell et al., 2011). Radiocarbon calibration
results in complicated probabilities of age, which is perhaps
part of the reason for the popularity of Bayesian methods
(Parnell et al., 2011). Inferring depositional ages from detrital
geochronology data provides a similar challenge. While some
methods of calculatingMDAs predict a gaussian uncertainty, that
uncertainty is still only describing the limiting age and hence
we cannot use observed detrital mineral ages alone to describe
a normally-distributed probability of a true depositional age.

Here, we demonstrate the application of Bayesian statistics
to the analysis of detrital geochronology data. Specifically,
we attempt to formalize the existing, relative age constraints
provided by superposition or cross-cutting relationships into
the analysis of deposit ages in stratigraphic sections containing
detrital geochronologic and other diverse age constraints.
It is common practice to informally place the constraints
provided by superposition into interpretations of deposit ages
in order to bridge the divide between what we can infer
from detrital geochronology samples (a maximum age) and
the true age of deposition. However, formalizing this approach
in a statistical model allows for the direct estimation of true

depositional ages and their uncertainties from collections of
diverse geochronologic constraints.

We begin by summarizing our general approach and thenwith
a discussion that follows from Andersen (2005) on how likely it
is to observe the youngest detrital mineral grains in a sample,
and thus the likelihood of calculating the best possible MDA
constraint available from the analysis of a single deposit. Then,
we introduce a general model for the probability of a depositional
age given an observed suite of detrital geochronology ages
within a deposit. We use synthetic examples to demonstrate
how Bayesian statistics allow for the incorporation of the
principle of superposition into the analysis of depositional ages,
specifically allowing for the calculation of depositional ages and
uncertainty estimates from diverse geochronologic constraints
(including limiting ages such as those provided by detrital
geochronology). We follow this with a real example from the
Magallanes basin of Patagonia (after Schwartz et al., 2017). In
this example we demonstrate that the observed chronology of
stratigraphy in the Magallanes basin is consistent with the self-
similar progradation of a continental shelf-slope system with a
topography that is consistent with observations from analagous
modern depositional systems. Thus, we show how added geologic
context can refine our interpretations of geochronology-based
depositional ages.

2. THEORY

2.1. Enforcing Superposition in the
Inference of True Depositional Ages
Detrital geochronology samples are commonly collected
alongside suites of other observations (e.g., Figure 1A):
information regarding stratigraphic position, notable fossil
assemblages, and (often sparse) age constraints from units
that can be directly dated (e.g., ashes) within a sedimentary
succession. There are two strategies for incorporating the
principle of superposition into age determinations, directly
modeling the ages of depositional events (e.g., Naylor and Smith,
1988; Bronk Ramsey, 2009) and using observations that constrain
the ages of units to model a curve describing the stratigraphic
accumulation through time (e.g., Blaauw and Christen, 2005;
Haslett and Parnell, 2008; Parnell et al., 2008, 2011; Bronk
Ramsey, 2009; Blaauw, 2010; Blaauw and Christeny, 2011).

Directly modeling the credible ages of units based on the
geochronologic constraints available and their stratigraphic
relationship to one another is the simplest approach
conceptually. The premise of this approach (that the observed
geology provides a strict relative ordering to deposits) is easily
transferable to other geologic scenarios where context provides
constraints on the relative age of samples (i.e., any cross-cutting
relationship). Given n units in a sedimentary section that contain
age information, we seek to describe the probability of the age,
ti, of the geologic unit Ui, based on a series of observations,
O (Figure 1B). Here, our “observations” are those data that
we collect that pertain to the age of a deposit. We refer to
the probability of a set of ages for those units, t, given a set
of j observations, as p(t|O), the posterior probability. Bayes
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FIGURE 1 | Cartoon illustrating the use of sets of variable observations to constrain the timing of deposition. (A) shows a stratigraphic column where a series of

observations, shown in (B), were made that pertain to the ages of units within the section. (C) highlights the constraint on depositional age provided by each individual

observation and the cumulative constraints provided by all observations in the section (shown in gray). In (D), all of the individual observations are linked through a

curve describing a constant-rate of uninterrupted sediment accumulation.

rule gives:

p(t|O) ∝ p(t)p(O|t) = p(t)

j
∏

i=0

p(Oi|ti). (1)

Here, p(t) is our prior understanding of the probability of
a set of n ages of stratigraphic units, information we had
before collecting our observations of unit ages. The likelihood
of our observations given a suite of modeled deposit ages
is p(O|t), as shown in Figure 1C. Conceptually, the posterior
probability of t reflects the probability of depositional ages after
we have accounted for our observations. The prior probability
is what we understood of the ages of units before analyzing our
geochronologic data.

Some geologic units are directly dateable (e.g., ash deposits)
and may result in normally distributed likelihoods (e.g., Units 0
and 6, Figure 1). Here, we consider fossil assemblages to limit
the age of deposition to a range of ages (e.g., Unit 3, Figure 1)
with strict bounds based on the geologic timescale (Walker et al.,
2018). While this provides a useful starting point, in reality the
likelihood of observing a fossil at a particular time period is not a
simple step function as depicted for Unit 3 of Figure 1, as our
knowledge of the timing of extinctions is not perfect and the
preservation of fossils is not constant through time. We discuss
the likelihood of a depositional age given a suite of detrital mineral
ages more below, but the general form of the likelihood function
is highlighted by Unit 2 and Unit 8 of Figure 1C: probabilities
are uniform for every age we are confident is younger than the
youngest grain age, and then decline according to the mean ages,
uncertainties, and overlap of young grains.

The simplest way to enforce the stratigraphic ordering of our
samples is the statement that a sample cannot be older than the
units below it (Figure 1C) (e.g., Naylor and Smith, 1988; Bronk
Ramsey, 2009),

p(t) =

{

1, if t0 > t1 > t2 . . . tn−1 > tn

0, otherwise.
(2)

When combined with age constraints from our observations, this
stratigraphic, prior constraint on the “stacking” of ages explicitly
disallows those ages that would violate an age constraint from
under- or overlying material (Figure 1C). It is worth noting
here that we are assuming that a single point in time, ti, can
characterize the age of a deposit from which a geochronologic
constraint was established and that all the dated units represent
distinct events; in other words deposition of the sampled unit was
instantaneous. This is a reasonable assumption when the time it
takes to form a deposit is much smaller than the precision of the
chronometers used to date that deposit, but shorter timescales
of deposition than the millions-of-year histories we consider
here and more precise dating methods require more detailed
consideration of events and the constraints within them (Bronk
Ramsey, 2009).

Markov-chain Monte Carlo methods (MCMC) allow us to
model depositional ages according to Equation 1 given a set of
observations with differing descriptions of the probability of a
given age (e.g., the different shapes to the curves in Figure 1C).

Alternatively, rather than model a suite of depositional
ages directly, observations throughout the stratigraphic column
can be linked through a sediment accumulation rate curve
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(Figure 1D). Here we use the phrase “stratigraphic accumulation
rate” rather than “deposition rate” because we intend to
characterize the time difference between measured intervals in
a stratigraphic section, which may integrate variable deposition
rates, small and unrecognized unconformities, and the effects of
compaction. Modeling a stratigraphic accumulation rate curve
has the distinct advantage of allowing for the assessment of ages
and uncertainties of depths in the stratigraphic column that are
undated, but may record important events (Parnell et al., 2011).
As a result, tools such as such as BChron (Haslett and Parnell,
2008; Parnell et al., 2008), OxCal (Bronk Ramsey, 2009), and
Bacon (Blaauw and Christeny, 2011) have been developed to
enable routine incorporation of this analysis into investigations
of sedimentary successions.

As an example, consider a constant sediment accumulation
rate, R [Lt−1], that begins at the time of the lowest stratigraphic
interval t0; the age of unit i at the height Hi [L] above the lowest
stratigraphic unit is:

Hi = R(t0 − ti). (3)

Because Hi can be measured from the stratigraphic section,
this limits the model of depositional ages to two parameters,
the sediment accumulation rate, R, and the timing of initial
deposition, t0, such that ti = t0 − Hi

R . In this framework, we
modify the parameters of interest in Equation (1),

p(t0,R|O) ∝ p(t0,R)p(O|t0,R). (4)

In Equation (4), our prior probability, p(t0,R), would be assigned
so that ages decrease upsection.

The choice of a linear sediment accumulation rate is arbitrary,
and it is easy to see from Figure 1 how this can cause problems.
For example, a period of non-deposition between Unit 1 and
Unit 0 in Figure 1A seems to best describe the observed
ages of these units. It is impossible to fit a linear sediment
accumulation rate through all the constraints in the column
with deposition beginning at 831 Ma, the measured age of
Unit 0 (Figure 1). Different forms to the sediment accumulation
rate curve could be specified based on additional geologic
context, and features such as unconformities could even be
considered directly (e.g., Blaauw, 2010). Many existing age-depth
models simulate stratigraphic accumulation rate curves in ways
that allow a great deal of flexibility in the determination of
accumulation rates and how they fluctuate through time (see
Parnell et al., 2011, for a more detailed discussion of these
approaches). For example, Bacon (Blaauw and Christeny, 2011)
allows for variations in deposition rates through time as dictated
by the observed age constraints (while enforcing monotonic
accumulation of sediment) but can introduce smoothness
to stratigraphic accumulation rate curves by simulating and
assigning a prior probability to a term that governs a time period’s
“memory” of previous accumulation rates.

2.2. The Search for the Youngest Grain
To incorporate detrital geochronology and the Bayesian
approach in our characterization of depositional ages, we must

characterize the likelihood of a true depositional age given a
set of detrital mineral ages (Equation 1). One of the most
common methods for characterizing the formation age of the
youngest mineral grains is to compute the weightedmean (and its
uncertainty) of the youngest cluster of grains that overlaps within
uncertainty (Dickinson and Gehrels, 2009; Coutts et al., 2019).
Typically, the youngest cluster is only considered if it contains a
minimum number of individual dates, kc, where kc is commonly
three or more (Dickinson and Gehrels, 2009; Coutts et al., 2019).
The theory behind this approach is that a set of overlapping
ages suggests that there is a real age component present, rather
than a single age being a fluke of the analysis or the result of
contamination. However, a concern with this approach is that
requiring a certain number of grains potentially ignores ages that
are providing real depositional information, but may be fairly
uncommon and therefore rarely analyzed in a given sample. A
question naturally follows from this: how likely are we to actually
observe kc grains that came from the youngest unit when we date
n total grains? In other words, if we require kc grains to calculate
an MDA, how likely are we to observe the true youngest age of a
deposit’s detrital components?

To address this, we conceptualize each of our detrital
geochronometer dates as representing a lottery with one of
two possible outcomes; a success or a failure. A success occurs
when we date a grain from that youngest unit, a failure occurs
when we do not. As was previously recognized by Andersen
(2005), the question of how likely we are to identify a particular
component age can be characterized as a binomial experiment.
Given that the youngest geologic unit contributed a fraction of
the total dateable grains deposited in a unit, f , the probability
of any one date being a “success” is f and the probability
of a “failure” is 1 − f . In most, if not all, ancient geologic
settings, it is impossible to know what f is before conducting a
detrital geochronology study. The relative contribution of detrital
minerals from a young geologic source will depend on the average
erosion rate, concentration of minerals of interest in that unit
(i.e., its “fertility”), the areal extent of the youngest unit, and the
mixing and transport of detrital sediments prior to deposition
(Amidon et al., 2005). Understanding any one of these important
controls on f is difficult in an ancient setting, let alone all of them.
Nevertheless, we find it useful to define the quantity f as a means
of exploring MDAs. The probability of dating exactly k grains
from the youngest unit out of a total of n grains is given by the
binomial distribution

p(k) =
(

n
k

)

f k(1− f )n−k. (5)

Here
(

n
k

)

(read “n choose k”) is the binomial coefficient, which
accounts for the number of ways that k “successes” and n − k
“failures” could be organized in a series of n dates,

(

n
k

)

=
n!

k!(n− k)!
. (6)

A more appropriate question for the purpose of determining an
MDA from a detrital sample is how likely are we to undersample
the youngest age population, given that we set a criterion of
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FIGURE 2 | Probabilities of dating enough grains from the youngest constituent to compute an MDA, given that kc grains are required to compute an MDA and that

the grains belonging to the youngest age component constituents a fraction f of all dateable grains (Equation 7). The three panels show probability contours for

kc = 1, 2, and 3.

dating kc grains?We can consider the odds of sampling “enough”
young grains to calculate an MDA [e.g., p(k >= kc)] by
characterizing the sum of the odds of sampling too few grains.
That is, if we decide we need three grains to calculate an MDA,
the odds of not dating all three is the sum of the odds of dating
only two grains from the youngest unit, dating one grain from
the youngest unit, and dating no grains from the youngest unit.
Specifically, the odds of dating enough grains for anMDA is given
as one less the probability of not dating enough,

p(k >= kc) = 1−
kc−1
∑

i=0

(

n
i

)

f i(1− f )n−i. (7)

If we require using at least three grains to determine an MDA,
then we lower the probability that we will actually resolve the
youngest MDA (e.g., Figure 2, Dickinson and Gehrels, 2009).
Rather than viewing the probability field of Figure 2, we can
directly ask howmany grains are needed such that in 95% of cases
we would date at least kc grains from the youngest age component
(Figure 3). In cases where these youngest grains make up 1% or
less of all dateable minerals, we would only expect to date three
of the same grains 95% of the time if we were to date around
630 grains (Figures 2 and 3). If the youngest detrital minerals
only make up 1% of all dateable minerals, analyses of ∼100
grains would only resolve the youngest MDA ∼10% of the time.
Even if we only require two dates from the same youngest unit
(Figure 2, kc = 2), it is only in cases where those youngest grains
represent ∼5% of all grains that we would expect to observe
two of them in 95% of experiments where we dated 100 grains.
While a simplification, Equation (5) reflects results from previous
work that large numbers of analyses are essential for confidently
resolving the youngest population of grains through repeated
analyses (e.g., Coutts et al., 2019).

Equation (5) and Figure 2 highlight another concern with
methods that seek to quantify an MDA through averaging
replicate measurements and assigning an uncertainty to the
resulting MDA: that the resulting uncertainty is not a actually
a measure of confidence in the MDA, but rather a measure of

the similarity and precision of those ages that were selected as
representative. In other words, the 2σ bound on pooled MDA
methods does not reflect 95% confidence in the youngest grains
in a population being drawn from that interval, because we may
have had a very small chance of observing the youngest grains to
begin with (Figure 2).

2.3. Transforming Maximum Depositional
Ages Into Predictions of True Depositional
Age
It is challenging, if not impossible, to identify an infallible
method to compute a single MDA from a series of ages; how
can you appropriately characterize confidence in establishing
the age of the youngest material when it is impossible to know
how common that material should be (e.g., f of Figure 2)?
How likely is it that your sample was contaminated or that a
mineral grain retained, and you measured, all of its parent and
daughter isotopes?

To compute MDAs we rely on an approach presented by
Keller et al. (2018). We model the timing of last crystallization as
the truncation of a prior expectation of the probability of zircon
ages. Given a prior understanding of the relative proportions
of dateable grains formed throughout mineral growth, fxtal, we
can modify that distribution by truncating the probability of
observing an age, tobs, greater than the time at which the first
mineral crystallized, tsat , and less than the time at which the
youngest crystal could have formed, te,

p(tobs|te, tsat) =











0, if tobs < te

0, if tobs > tsat

fxtal/(tsat − te), otherwise.

(8)

Keller et al. (2018) present results constructing fxtal from
expectations derived from a thermodynamic model of a steadily
cooling magma body, from kernel density estimates derived
from observed ages within the dated unit, and with a uniform
prior that makes no assumptions about the relative timing of
crystallization (e.g., fxtal = 1 in Equation 8). Here, we utilize the
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FIGURE 3 | How many grains should be dated to be 95% confident that we would date at least kc grains from the youngest source of grains? The solid lines provide

this recommendation as a function of f, the fraction of dateable mineral grains from the youngest source. In practice, it is unlikely that this quantity can be known. The

dashed lines represent specific recommendations for if f = 10, 5, and 1%. In 95% of cases where you date ∼60, ∼120, and ∼630 grains, at least 3 grains will be

dated from sources that contributed 10, 5, and 1% of all the dateable minerals.

uniform prior approach, as detrital distributions likely integrate
complex histories of crystal growth and recycling which we don’t
presume to be able to fully characterize. We utilize a Markov-
Chain Monte Carlo Model (Foreman-Mackey et al., 2013) to
infer the posterior distributions of te and tsat , although for MDA
analysis we are only interested in the former. In this approach,
a series of “walkers” take random steps about an initial guess of
parameters such that they first explore the parameter space (a
“burn-in” phase) and then take steps such that the frequency of
parameters sampled at each step mirrors the posterior probability
of those parameters. From initial guesses of te and tsat that
vary randomly about the youngest and oldest ages in a sample,
respectively, we update these estimates over 700 steps taken
by an ensemble sampler with 100 walkers and trim a burn-in
period of 200 steps from the sample-chain constructed by each
walker, resulting in 50,000 samples characterizing the posterior
of te and tsat .

Examples of MDAs calculated with the weighted mean of
the youngest grain cluster overlapping at 2 sigma (YGC2σ ,
Dickinson and Gehrels, 2009) and te estimates are shown in
Figures 4D,F. In the example shown in Figure 4D, there is
relatively good agreement between the two samples, as an isolated
cluster of three young grains defines the MDA calculated with
the YGC2σ method. However, the example shown in Figure 4F

shows how the two methods can deviate; an over-dispersed but
overlapping cluster of grains pulls the YGC2σ MDA toward older
values, while te is limited by the youngest observed grains. Unlike
the weighted mean approach, characterizing te does not require

the selection of a sub-population of observed ages and is therefore
able to produce reliable estimates without interpretations of
groupings. For these reasons, in addition to those discussed in
Keller et al. (2018), we use te to characterize MDAs from here out
in the text.

More important than the MDA method used is the
recognition that when using detrital geochronology data to
understand geologic histories, it is the true depositional age
that we are typically interested in. The bottom row of Figure 4
highlights the probabilities of crystallization ages. The top row
of Figure 4 highlights our focus in the manuscript, how likely
is it that we would have observed a suite of detrital mineral
ages if the deposit were of a certain age? We refer to this
as p(A, σ |td), the likelihood of a series of ages, A, and their
associated uncertainties, σ , given a depositional age td. If we
knew the true age components of our sample (Figure 4B), then
p(A, σ |td) would be equal for all ages younger than the youngest
true component age (Figure 4A), but there is no chance (e.g.,
p = 0) that one of these true component ages could be less
than td. In some situations, for example known proximity to
an active arc, future work may wish to consider the situation
where true depositional ages close to those of the youngest
zircons are more likely than those associated with large lags
between crystallization and deposition. We ignore this special
case and just consider detrital ages to define upper bounding
ages. Our characterization of the youngest mineral ages is subject
to uncertainties associated with our measurements and our
ability to identify the youngest mineral ages from within a
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A C E

B D F

FIGURE 4 | The top row highlights probabilities of observing a set of detrital ages (A),σ , given an age of the deposit td , whereas the bottom row shows our

observations. (A,B) show an idealized example, where we have absolute confidence that we have characterized the true formation age of constituent minerals, shown

in (B), so that the deposit is equally likely to be any age younger than the youngest age component. (B) also highlights an example of how we might have

characterized the distribution of ages of this example based on measurements. (D,F) highlight real detrital zircon geochronology data, whereas (C,E) show example

likelihood functions for the depositional age of these samples based on two methods for determining MDAs from observed data. In (D,F), a Gaussian kernel density

estimate with a 10 Ma bandwidth (Vermeesch, 2012) is shown alongside the observed ages and their uncertainties (shown as circles with lines showing the 95%

confidence intervals). Individual ages are shown in alternating colors to indicate different groups. Groups are defined based on overlap of the 2σ confidence interval of

the youngest grain in that group.

complex population (Figures 4C–F). Here we assume that we can
characterize the likelihood of observing a set of detrital mineral
ages given a true depositional age, p(A, σ |td), based entirely on
the probability that the depositional age is less than the MDA,

p(A, σ |td) =
1−

∫ td
0 p(t|MDA)dt

∫ 4.5Ga
0 1− p(t|MDA)dt

. (9)

Here, p(t|MDA) refers to the probability of a particular age,
t, characterizing an MDA. In the case of YGC2σ this would
be governed by a normal distribution, but the probabilities of
te are not necessarily normally distributed. The numerator in
Equation 9 is just a mirror image of the cumulative density
function of the MDA (Figures 4A,C,E). The denominator in
Equation 9 integrates over the age of the earth to ensure that
the probabilities of all possible ages integrate to one. Plotting
Equation (9) emphasizes that these are indeed only maximum
depositional ages; providing no information about the lower
bound on possible depositional ages (Figures 4C, E). It is only
through context with other neighboring samples that we can
determine bound estimates of true depositional ages.

2.4. Examples of Depositional Age and
Uncertainty Inference
We use synthetic examples to demonstrate how the depositional
ages inferred using Equation (1) respond given ideal and,
perhaps, more common scenarios with detrital geochronology.
Figure 5 highlights a stratigraphic section from which five
geochronology samples were collected. The lower four are all

detrital geochronology samples, while the upper sample is a
direct date of an ash bed (this sample provides a lower-limit
to the underlying ages). Figure 5B highlights a well-behaved
example; the best-case scenario where the youngest grains from a
suite of detrital geochronology samples nearly overlap or young
upsection and are close to overlapping with the absolute age
constraint at the top of the section (Figure 5B). Figures 5C,D
provide increasingly complicated scenarios: in Figure 5C not all
youngest grain ages decrease upsection, and in Figure 5D there is
a large time gap between the youngest grains of the basal sample
and the second sample up from the bottom of the section. The
examples shown in Figures 5C,D are derived by incrementing all
the observed ages in a subset of samples shown in Figure 5B.

To integrate the individual age constraints informed by
observations within individual deposits (e.g., the detrital
geochronology data and age of the upper ash that inform
the likelihood of a unit’s age, p(O|t) of Equation 1) with
the constraints dictated by stratigraphic ordering (Equation
2), we utilize a Monte Carlo sampling approach. We make a
guess of the age for each sample and then evaluate both its
prior (Equation 2) and likelihood (e.g., Equation 1, Figure 7).
Specifically, we employ a Bayesian, MCMC approach with
an affine-invariant ensemble sampler (Foreman-Mackey et al.,
2013). In each iteration, a series of “walkers” (each walker
makes parameter guesses and evaluates them) takes a “step”
by evaluating a suite of parameters (e.g., the vector of true
depositional ages t). In the MCMC approach, the suite of guessed
ages is chosen such that over time, the frequency with which
ages are sampled mirrors the posterior probability (Foreman-
Mackey et al., 2013; VanderPlas, 2014). For detrital samples,
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FIGURE 5 | A synthetic example of a stratigraphic section (A) with five geochronologic constraints. The bottom four age constraints are from detrital geochronology

samples, the top sample represents a dated ash bed (or any other deposit that can be directly dated). The plot in column (B) is an idealized example; plots in columns

(C,D) are results given modifications to (B). In (B-D) each row shows the posterior probability of the depositional age of that unit as a green histogram of MCMC

samples with 50 evenly spaced bins, the likelihood of a depositional age given the data available for that deposit, and for detrital geochronology sample a KDE

constructed with a gaussian kernel with a bandwidth equal to the mean 2σ uncertainty of samples. The black arrows in (C,D) show the datasets that were perturbed

from the case shown in (B). In each plot of model results, the legend indicates the 95% credible interval for the modeled true depositional age td and, for detrital

geochronology samples, the MDA, te, determined with the approach of Keller et al. (2018).

we first model the posterior of te and use this to numerically
evaluate (Equation 9). For this work, we ignore all grain ages
older than 200 Ma in MCMC models of te. We run the MCMC
models of td with 200 walkers that each take a total of 1,200
steps, and we trim the first 400 steps from each walker to
allow for a ‘burn-in’ phase of the model where the sampler
explores the parameter space around the initial guesses. Because
of the stiff constraints imposed by stratigraphic ordering, we
find that having a large number of samples characterizing the
burn-in phase can be necessary to allow the model to fully
explore the parameter space. Although we do not explore this
concept here to maintain simplicity, the true depositional age
also limits te, providing additional prior information that could
be exploited if one simultaneously modeled values of te and td in
a stratigraphic succession.

In the well-behaved example of Figure 5B, we are able to
predict comparable uncertainties (a 95% credible interval of
30 Ma) for all samples despite only having a single absolute
age constraint. The other way of viewing this, is that we are
able to propagate the confidence we have from the directly
dated sample into predictions of true depositional ages lower in
the section.

Having some samples that do not contain MDAs close to
the true depositional age does not necessarily substantively
impact our predicted depositional ages (Figure 5C). While the
top two detrital samples in Figure 5C have much older youngest
grains than those in Figure 5B, the predicted true depositional
ages for these samples are only marginally older in example
C. This is because the upper samples did not provide much

information that was not already available from one of the
lowermost two samples due to the overlap in te within these
deposits (Figure 5).

In Figure 5D, the ages of the youngest grains in the basal
sample are much older than the youngest grains in the next
sample upsection. This results in a broad, flat-topped posterior
probability of true depositional ages because there is an extensive
region between where overlying samples provide information
limiting the youngest ages and the grains provided in this sample
limit the oldest allowable age. The change in ages of the basal
sample also impacts the credible intervals of ages in all the
overlying samples (allowing the upper bounds of most samples
to increase by 4 Ma). This is reflecting the complex covariances
that exist between the modeled true depositional ages of samples,
and the cascade of information that propagates through the
prior constraint of superposition. If the upper bounding absolute
constraint was not present (and there were no other constraints
available to provide minimum bounds on ages), then all the
modeled posterior probabilities of true depositional ages would be
broad plateaus, similar to that in the bottom sample of Figure 5D,
but extending all the way to the present.

The other phenomenon highlighted by the examples in
Figure 5 is how detrital geochronology can refine the age
estimates provided by direct dating. The uppermost age in these
examples has a broad uncertainty, but in Figure 5B, the median
value inferred from the depositional age model (td) is shifted to
be younger than the mean age of the absolute date. In Figure 5B,
the underlying detrital geochronology samples provide
information that shifts this sample to younger values, but as the
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constraints provided by detrital geochronology are relaxed (in
Figures 5C,D), the posterior estimate of td from the depositional
age model becomes closer to the assigned absolute age.

3. APPLICATION TO THE MAGALLANES
BASIN, PATAGONIA

3.1. Geologic Setting and Data Exposition
The Magallanes basin is a retroarc foreland basin that formed
during Late Cretaceous to Neogene uplift of the southern Andes
(Wilson, 1991). The foreland basin is floored by attenuated,
transitional-oceanic crust associated with the Jurassic-Early

Cretaceous Rocas Verdes extensional basin (Dalziel et al., 1974;
Dalziel, 1981; Biddle et al., 1986; Wilson, 1991). Loading and
flexure of the dense, attenuated crust facilitated the formation of a
deep-marine foredeep (Natland, 1974; Fosdick et al., 2014), which
accumulated more than 4 km of deep-marine basin floor to slope
deposits (Punta Barrosa, Cerro Toro, and Tres Pasos Formations;
Biddle et al., 1986; Romans et al., 2010; Fosdick et al., 2011) that
are overlain by up to 1 km of shelfal deposits (Dorotea Formation;
Schwartz and Graham, 2015) during Late Cretaceous time
(Figure 6). The uppermost deep-marine deposits (Tres Pasos
Formation; Figure 6) and overlying shelfal deposits (Dorotea
Formation; Figure 6) record shoaling in the foredeep between ca.
80–65 Ma, and together represent a genetically linked shelf and

FIGURE 6 | Stratigraphic context for the zircon data modeled in this paper. (A) Simplified stratigraphic column for the Rocas Verdes and Magallanes basin fill in

southern Chile, between approximately 51◦ 30’ S and 50◦ 30’ S (modified from Fosdick et al., 2011; Schwartz et al., 2017; Daniels et al., 2018a,b). Numeric ages in

bold indicate well-established radiometric ages for major lithostratigraphic boundaries in the basin fill (after Daniels et al., 2018a,b). (B) Highly simplified, composite

stratigraphic column for the Tres Pasos and Dorotea Formations at approximately 50◦ 45’ S, which record shoaling in the Magallanes foredeep from bathyal to

non-marine environments through the successive deposition of progradational slope, delta-front and delta-plain deposits (after Schwartz et al., 2017; Daniels et al.,

2018a). The stratigraphic positions of all available ash, detrital zircon, and fossil age constraints are indicated to the right of the column.
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slope that prograded southward along the axis of the Magallanes
foredeep (Macellari et al., 1989; Covault et al., 2009; Hubbard
et al., 2010; Schwartz and Graham, 2015; Schwartz et al., 2017;
Daniels et al., 2018a).

As a whole, the Magallanes foreland basin fill is well-
constrained based on lithostratigraphic correlations, radiometric
dates from ashes, and MDAs from detrital zircon samples
(Fildani and Hessler, 2005; Romans et al., 2010; Bernhardt
et al., 2011; Fosdick et al., 2011; Malkowski et al., 2017;
Schwartz et al., 2017; Daniels et al., 2018a). Ashes are
relatively abundant in the deep-marine phase of the basin
fill (e.g., Fildani and Hessler, 2005; Bernhardt et al., 2011;
Fosdick et al., 2011; Malkowski et al., 2017), but have not
been observed above the base of the Tres Pasos Formation
(Schwartz et al., 2017; Daniels et al., 2018a). Detrital zircon
MDAs in the deep-marine section have been shown to closely
overlap with stratigraphically adjacent ash ages (Bernhardt
et al., 2011; Malkowski et al., 2017), supporting connectivity
between the active Patagonian arc and foredeep as well as
rapid transfer of volcanogenic sediment from the arc to the
retroarc foreland basin (Schwartz et al., 2017). In addition,
most detrital zircon MDAs from the shallow-marine section
exhibit apparent younging up-section, supporting continued
connectivity between the arc and foredeep through time and
suggesting that MDAs may closely track true depositional
ages of the deposits (Schwartz et al., 2017; Daniels et al.,
2018a). In addition to radiometric age constraints, the Dorotea

Formation contains relatively abundant fossil assemblages
including ammonites, bivalves, shark teeth, and dinosaurs
(Schwartz et al., 2017).

Lithostratigraphically, we simplify the 2.25 km-thick Tres
Pasos-Dorotea depositional system into three conformable
lithofacies assemblages: (1) mudstone-dominated slope
clinoforms of the Tres Pasos Formation ( 1,200 m thick) that
downlap onto basinfloor deposits of the Cerro Toro Formation;
(2) sandstone-dominated delta-front clinoforms of the Dorotea
Formation ( 300 m thick) that interfinger with topsets of the
Tres Pasos Formation; and 3) heterolithic delta-plain deposits
of the Dorotea Formation ( 750 m thick, Figure 6, Schwartz
et al., 2017). Figure 6 shows the vertical distribution of twenty
existing age constraints for the Tres Pasos-Dorotea succession
(compiled from Schwartz et al., 2017; Daniels et al., 2018a): (1)
one ash at the base of the Tres Pasos Formation; (2) fourteen
detrital zircon samples that are distributed throughout the Tres
Pasos and Dorotea formations, one of which (TS12-LCH-7.1A)
is interpreted as a fluvially reworked ash; and (3) five fossil
assemblages from the Dorotea Formation (Figure 6, Table 1).

The Tres Pasos-Dorotea succession provides a unique
opportunity to test our proposed modeling framework for
depositional ages for two reasons. First, this example includes
abundant and varied age constraints that are relatively evenly
distributed throughout the > 2 km succession of strata,
but a relatively limited number of them (2 of 20) are
expected to directly record the timing of deposition. As a

TABLE 1 | Summary of data sources and ages constraints used in modeling depositional ages of the Magallanes-Austral Basin.

Sample Original source Constraint type Age constraint (Ma) Stratigraphic height (m)

TS13-RB-3B Schwartz et al., 2017 DZ, 28 grains <200 Ma <92 (+6 / –10) 2,245

JCF 09-208 Fosdick et al., 2015 DZ, 83 grains <200 Ma <69 (+2 / –4) 2,225

TS13-RB-1A Schwartz et al., 2017 DZ, 53 grains <200 Ma <69 (+2 / –4) 2,200

TS11-RT-2A Schwartz et al., 2017 DZ, 55 grains <200 Ma <68 (+3 / –7) 2,180

Shark teeth Schwartz et al., 2017 Fossil, Maastrichtian 66.0 – 72.1 2,175

TS12-LCH-2A Schwartz et al., 2017 DZ, 42 grains <200 Ma <70 (+6 / –8) 2,075

Hadrosaur Schwartz et al., 2017 Fossil, Maastrichtian 66.0 – 72.1 2,060

Panopaea Schwartz et al., 2017 Fossil, Maastrichtian 66.0 – 72.1 1,950

Titanosaur Schwartz et al., 2017 Fossil, Campanian 72.1 – 83.6 1,670

TS13-LCH-7.1A Schwartz et al., 2017 Reworked ash 78.0±3.6 1650

TS12-LCH-1C Schwartz et al., 2017 DZ, 44 grains <200 Ma <75 (+4 / –8) 1,420

TS12-LCH-1B Schwartz et al., 2017 DZ, 52 grains <200 Ma <81 (+2 / –5) 1,410

TS12-LCH-1A Schwartz et al., 2017 DZ, 68 grains <200 Ma <86 (+4 / –5) 1,400

BWR CM-1 Romans et al., 2010 DZ, 30 grains <200 Ma <93 (+3 / –7) 1,300

Ammonites Schwartz et al., 2017 Fossil, Campanian 72.1 – 83.6 1,250

15-RZ-DZ3 Daniels et al., 2018a DZ, 118 grains <200 Ma <86 (+3 / –4) 900

15-RZ-DZ2 Daniels et al., 2018a DZ, 150 grains <200 Ma <78 (+2 / –3) 725

15-RZ-DZ1 Daniels et al., 2018a DZ, 190 grains <200 Ma <82 (+3 / –3) 350

15-CS-01 Daniels et al., 2018a DZ, 158 grains <200 Ma <83 (+3 / –3) 10

15-CS-02 Daniels et al., 2018a Ash 80.5±0.6 0

Detrital zircon (DZ in table) age constraints are reported as the median, and deviation to the lower 2.5th and upper 97.5th percentiles of MCMC samples of te (i.e., the 95% credible

interval). Direct dates are reported as means and 2σ uncertainties. We follow the interpretation of Schwartz et al. (2017) that TS13-LCH-7.1A, collected from a reworked ash, can be

interpreted as syndepositional. The number of grains reported in the “constraint type” field references those grains less than 200 Ma old that we consider when modeling te, kernel

density estimates for detrital geochronology data are shown in Figures 7, 10. Age ranges for fossil assemblages use the timescale of Walker et al. (2018).
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result, we can explore how well the modeling framework
can refine estimates of the timing of deposition provided by
different sets of observations. Second, detailed sedimentological
comprehension of the Tres Pasos-Dorotea depositional system
provides confidence in the relative stratigraphic position of
various age constraints and in the depositional environment,
from which we can construct an informed expectation for the
form of a sedimentation rate curve. In the two sections that
follow, we explore how both the constraints of stratigraphic
ordering (Equation 2, Figure 1C) and a sediment accumulation
rate curve (Figure 1D) refine our models of depositional
ages based on geochronology data. For all detrital zircon
geochronology samples we recompute anMDA (following Keller
et al., 2018, see above) independent of modeling td, but for
samples where direct age constraints are available we describe
the likelihood of depositional ages using the reported ages and
uncertainties of the presenting studies rather than reanalyzing the
data ourselves (Table 1).

3.2. Modeling the Ages of Stratigraphy
With Stratigraphic Ordering
We begin by investigating the impacts of enforcing stratigraphic
ordering (Equation 2) on the modeled depositional ages of
the lower approximately 1,500 m of the Tres Pasos-Dorotea
succession (Tres Pasos slope clinoforms through Dorotea delta-
front clinoforms, samples 15-CS-02 through the Titanosaur
observation above TS12-LCH-7.1A; Figure 6). This lower part
of the Tres Pasos-Dorotea succession is bracketed by absolute
age constraints. At the base, sample 15-CS-02 is an ash with
13 zircons dated by isotope dilution-thermal ionization mass
spectrometry (ID-TIMS, Daniels et al., 2018a). At the top,
sample TS12-LCH-7.1A is a detrital sample with 99 zircons
dated by LA-ICP-MS (Schwartz et al., 2017). Based on the
sedimentological characteristics of the sampled bed, its modal
composition, and the presence of 21 zircon grains defining
an indistinguishable, young population, Schwartz et al. (2017)
interpreted this unit to be a fluvially reworked ash. We follow
the interpretation of Schwartz et al. (2017) and assume that
the youngest grain ages in this deposit are syndepositional,
such that their age characterizes the true depositional age (i.e.,
although it is a detrital sample, it is treated as an ash). In
the middle of this sub-section, at the transition from Tres
Pasos slope clinoforms to Dorotea delta-front clinoforms, an
ammonite fossil assemblage restricts the timing of deposition to
Campanian (72.1 - 83.6 Ma; age bounds after Walker et al.,
2018). A Titanosaur fossil at the top of this sub-section further
restricts deposition to within the Campanian. Based on these
fossil assemblages, we treat the likelihood of an age of this unit
(Equation 1), that is the probability of the observation of this
fossil assemblage given an age for the unit, as equally likely
within the range 72.1–83.6 Ma and impossible outside this range
(Figure 7). As discussed above, this likelihood is in no doubt
an oversimplification, but nonetheless provides a starting point
for incorporating these data. Within this lower interval, eight
other detrital zircon samples provide additional age constraints
(Figure 7). We describe the likelihood of a true depositional

age at the stratigraphic height associated with each of these
detrital samples with Equation (9). We refer to the modeled ages
of this stratigraphy later in the text as the “well constrained”
age only model.

We initialize the model with random parameter guesses that
obey stratigraphic ordering and are within the intervals allowed
by overlying, underlying, and local information (e.g., within the
interval bound by the gray regions in Figure 1). From our initial
estimates, we run the MCMC model for 4,000 iterations after
an initial burn-in period of 1,000 iterations with 300 walkers.
Examination of the results with these parameters shows that this
number of iterations allows the model to explore the allowable
parameter space during the burn-in phase of the model, so
that the post burn-in iterations reflect a stable sampling of the
posterior distribution.

3.2.1. Results and Discussion

Histograms of the MCMC samples for the depositional ages
model after the burn-in period, which approximate the posterior
probabilities of depositional ages, are shown in Figure 7A. We
summarize the MCMC samples for each depositional age (td)
and MDA (te) with the 95% credible interval approximated
by the MCMC samples. The modeled ages for all units
are limited to fairly precise ranges (95% credible intervals
span ∼3-4 Ma) despite limited absolute age constraints. As
was highlighted by Figures 5C,D, this is a function of the
strong age constraints that are available within this section.
At the base of the section, the high-precision ID-TIMS date
(Daniels et al., 2018a) provides a narrow range of allowable
ages, and the identified fossil assemblages (Schwartz et al.,
2017) provide lower limits to depositional ages close to
the MDAs.

Even though modeled MDAs do not get consistently younger
up-section (Figure 7A), our stratigraphic constraint (Equation
2) enforces this behavior in the modeled true depositional ages.
This is highlighted by directly computing a posterior probability
distribution on the “lag-time” between the time of last zircon
crystallization and the timing of deposition in the unit of interest
(ignoring that in some instances those youngest zircons could
have been recycled from other sedimentary units) (Brandon and
Vance, 1992; Romans et al., 2016).We compute distributions of
lag-time by differencing the MCMC sampled distributions of
te and td (an approach similar to Kruschke, 2013). The lower
three detrital zircon samples have lag-times of a few million
years or less, but lag-time increases substantially for sample
BWR CM-1 (to greater than 10 Ma), and then decreases
again toward a few million years or less moving up in the
section (Figure 7B).

The computed 95% credible intervals of lag time include
and extend beyond zero in samples TS12-LCH-1C and 15-
RZ-DZ2. Negative lag-times are not possible. The presence
of negative lag-times here reflects that we compute our
MDA and td independently of one another, and that the
uncertainty in the independently calibrated MDA allows
for overlap with the modeled true depositional age. In
other words, these models suggest nearly synchronous
crystallization and deposition of the youngest grains in
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FIGURE 7 | Results of modeling the ages of stratigraphic units from the lower half of the study section (Figure 6). Each row shows one of the stratigraphic units that

contains an age constraint. Age constraints and modeled ages are shown in column (A). In (A), each row shows a KDE constructed with a gaussian kernel with a

bandwidth equal to the mean 2σ uncertainty of samples if that row corresponds to a detrital geochronology sample, the likelihood of a depositional age given the data

available for that deposit as a red line, and the posterior probability of the depositional age of that unit as a green histogram of MCMC samples with 50 evenly spaced

bins. In each plot, the legend indicates the 95% credible interval for the modeled true depositional age td and, for detrital geochronology samples, the MDA, te,

determined with the approach of Keller et al. (2018). For those samples where we compute te, column (B) highlights the duration between the modeled timing of last

crystallization (te) and the modeled timing of deposition (td ), refered to here as ‘lag time’ (Brandon and Vance, 1992; Romans et al., 2016).

these samples, but uncertainty in measured ages can results
in some dated grains whose age are less than the depositional
age (Coutts et al., 2019).

3.3. Modeling the Accumulation of
Sediment as a Prograding Shelf-Slope
System
Previous sedimentology-based studies have interpreted the Tres
Pasos and Dorotea Formations to record a transition from
marine to terrestrial environments, represented by progressive
shoaling of slope and shelf deposits (Macellari et al., 1989;
Covault et al., 2009; Hubbard et al., 2010; Schwartz and Graham,
2015; Schwartz et al., 2017). Here, we use this field-based

interpretation to establish further constraints on the history of
deposition by modeling the depositional ages of stratigraphy in
the context of a stratigraphic accumulation rate (e.g., Figure 1D).
In light of these interpretations, we attempt to describe the
depositional history with a simple model of the stratigraphic
accumulation rate expected for a steadily prograding shelf-
slope system (Figure 8A). Specifically, we model a change in
accumulation rate that may be expected to occur with the
transition from deposition on the continental slope recorded
by the lower portion of the section, to deposition on the shelf
recorded by the upper portion of the section (e.g., Carvajal
and Steel, 2009; Schwartz et al., 2017). Consider a stratigraphic
succession being deposited at the 0 coordinate of the x-axis in
Figure 8A. As the simplified and idealized shelf-slope system
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FIGURE 8 | Conceptual model of the accumulation of the Tres Pasos and Dorotea Formations in the Magallanes basin. (A) schematically depicts the accumulation of

strata as the result of a prograding shelf-slope system that is advancing self-similarly through time. In this model, the local magnitude of aggradation 1H is related to

the local progradation P by the gradient of the depositional system. As a result, we expect a decrease in vertical sediment accumulation rates (R) when crossing from

the higher-gradient shelf to the lower-gradient slope. (B) depicts the bathymetric profile of a modern shelf-slope system (offshore of Rio Colorado, Argentina; PM -

passive margin) measured from ETOPO1 elevations data (Amante and Eakins, 2009) and highlights our method for aggregating topographic data from modern

systems. The thin, gray line is the entire profile we collected, from which we only consider those elevations below sea-level and above 1,000 m water depth. The thin

dashed lines depict the fitted topographic profile,from which we calculate S1 and S0, with the shelf-slope break identified by the star.

progrades self-similarly out into the basin and over this point,
indicated by the star, aggradation will first occur quickly due to
the steep gradient of the slope, and will then slow once that point
is overtaken by the prograding shelf (at which point we would
also expect a change in depositional environment). We simplify
this depositional history by expressing this progradation with two
stratigraphic accumulation rates, R0 and R1, which respectively
represent deposition on the slope and shelf,

H(t) =

{

H = R0(t − t0), if H < Hc

H = Hc + R1(t − tc), otherwise.
(10)

Here, Hc is the height in the stratigraphic section where
deposition rates slow from R0 to R1, which is derived
based on the time that deposition on the continental shelf
begins, tc,

Hc = R0(tc − t0). (11)

Given steady, self-similar progradation of a shelf-slope system
(Figure 8), the rates R0 and R1 can be considered to be
the product of the local depositional gradients, S, and the
progradation rate, Vx,

R0 = VxS0,R1 = VxS1. (12)

From this, we see that we would expect the ratio of accumulation
rates to be equivalent to the ratio of depositional gradients on the
shelf, S1, and slope, S0,:

R0

R1
=

VxS0

VxS1
=

S0

S1
(13)

While we may have little prior knowledge regarding the
deposition rates in the Magallanes basin, if that depositional
system was similar to those on earth today, we can make a good
prediction of S0

S1
based on the ratio of depositional gradients

observed in modern shelf-slope systems. If the assumptions
made in deriving (Equation 13) are valid, then the ratio of
modern shelf-slope gradients (Figure 8B) can provide insight
into how much accumulation rates may have changed when
transitioning from deposition on the slope to deposition on
the shelf. We can insert this expectation into our model of
stratigraphic accumulation rates in the form of a statement about
prior probability in Bayes’ rule (Equation 1).

To develop our expectation of S0
S1
, we compiled 45 bathymetric

profiles across modern shelf-slope breaks from ETOPO1
elevation data (Amante and Eakins, 2009) using Google Earth
Engine (Gorelick et al., 2016). Profiles were selected in order to
provide an adequate representation of the variation in shelf-slope
morphologies using the following criteria: (1) all profiles were
collected from siliciclastic-dominated systems (i.e., excluding
high-relief carbonate banks, etc.); (2) the set of profiles is affected
by a spectrum of wave-, tide-, and river-associated processes, but
with a preference for fluvial input at the shoreline to mimic the
Magallanes basin example; (3) all profiles extend across the entire
shelf, include the shelf-slope break, and end at the approximate
base-of-slope; and (4) no profiles cross plate boundaries, but
may be closely associated with one. Between sea-level and depths
of 1,500 m, we fit a piece-wise linear-regression by minimizing
the sum of the squared errors between that fitted surface and
the topography (Figure 8B). This regression intends to mimic
a simple slope break where the average bathymetric gradient
transitions from shallow to steep, a kinked topographic surface
representing a simplified shelf-slope geometry (Figure 8). All
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extracted topographic profiles are shown in Figure 9A, with
their best-fitting counterparts shown in Figure 9B. In these plots
we stack all the data so that 0 on the x- and y-axes is at the
shelf-slope break.

The ratio of shelf to slope gradients, S0S1 (Figures 8, 9C), is well-
described by a log-normal distribution with a shape σR = 1.2,
location, θR = 5.3, and scale, mR = 29.4, so we take this as the
prior probability of the ratio of accumulation rates (R0R1 ),

P(R0,R1) =
1

(R0R1 − θR)σr
√
2π

e

−ln((
R0
R1

−θR)/mr )
2

2σ2R . (14)

From stratigraphic observations we also have expectations of
where in the section we expect stratigraphic accumulation rates

to transition from R0 to R1 (that is, the stratigraphic height,
Hc in Equation 10). There is a lithofacies transition between
Dorotea delta-front clinoforms and Dorotea delta plain deposits
at approximately 1,450m in the examined section (after Schwartz
et al., 2017). Since the Dorotea delta-front was attached to
the shelf-edge (i.e., a shelf-edge delta) (Schwartz and Graham,
2015; Schwartz et al., 2017), the lithofacies transition from delta-
front to delta-plain can effectively be considered to represent
a change from slope-dominant deposition to shelf-dominant
deposition. Defining a continuous prior probability onHc is more
challenging than it was for R0

R1
, where that probability function

was dictated by a large number of observations.
The transition in lithofacies used to defineHc at 1450m occurs

within an approximately 150 m-thick succession of sandstone
and conglomerate that represents tidally influenced mouth bars

FIGURE 9 | Compilation of observations from 45 modern shelf-slope systems. Map of shaded relief topography from ETOPO1 elevation data (Amante and Eakins,

2009) shows the locations of extracted bathymetric profiles in red. The bottom row (A–C) shows the data extracted from the profiles. (A) is a composite of all profiles

of bathymetry collected from ETOPO1 elevation data (Amante and Eakins, 2009), hung so that 0,0 is at the best fit shelf-slope break. (B) depicts all of the simplified

topographic fits for the profiles. In (A,B), red, blue, and black lines indicate profiles from convergent, passive, and rifted margins, respectively. (C) depicts the ratio of

slope to shelf gradients (e.g., Equation 13), with the thin black line indicating the best fitting distribution of relative gradients of the slope and shelf. Under the

assumption that progradation of a similar system was steady, and occurred self-similarly, we use this distribution to characterize the prior probability on the ratio of

accumulation rates on the slope and shelf,
R0
R1

. The K-S test does not reject the null hypothesis that the observations of shelf-slope data were drawn from this

distribution (p = 0.93).
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and distributary channels (e.g., facies assemblage 3 after Schwartz
et al., 2017). We select the parameters of a t distribution
describing Hc to conservatively match the scale of this lithofacies
unit (Schwartz et al., 2017). Specifically, this is done so that
the 95% confidence interval ranges 100 m on either side of
1450 m transition (encompassing the majority of the delta-
front interval) and that the 99% confidence bounds extend an
additional 150 m beyond this (extending an additional thickness
of this lithofacies beyond the 95% interval). This is accomplished
with a t distribution with a location, µ of 1450, a scale, σ of 25,
and a value, v of 2.We utilize a t distribution to describe our prior
probability onHc because the broad tails allow us to acknowledge
that this identification was subjective and that the model should
be able to explore values well-outside of our assigned central
value. Although v typically denotes the degrees of freedom, we
instead use it here as a “normality” parameter (Kruschke, 2013);
smaller values of v expand the tails of this distribution and cause
it to deviate from a normal distribution.

From our initial estimates, we run theMCMCmodel for 5,000
iterations after an initial burn-in period of 500 iterations with 400
walkers. We use a starting guess of t0 = 79.5, of R0&R1 = –1,000
& –95 and t1 = 78.0, as these are consistent with our priors and
able to predict ages for all deposits with temporal constraints.
The negative values of R indicate that strata accumulate as ages
decrease. We start each walker with initial guesses drawn from a
normal distribution with the previously mentioned means and
a 0.1% relative error. From these initial guesses the MCMC
model is able to expand to a stable sampling space over the
burn-in period.

3.3.1. Results and Discussion

Results for the model of stratigraphic accumulation rates
are shown in Figure 10, which highlights both the modeled
depositional ages and the modeled stratigraphic accumulation
rate curve from which these ages are derived. For each
age, we report the 95% credible interval derived from the
MCMC samples. All of the geochronologic constraints can be
appropriately described by a ‘kinked’ stratigraphic accumulation
rate that transitions from a relatively rapid accumulation rate
to a slower one at Hc = 1456 (+100, –104) m (reported as the
median and the range between the 5th and 95th percentiles of
the MCMC samples characterizing the posterior), approximately
the position of a change in depositional facies (Figures 6, 10).
The lower, more rapid sediment accumulation rate R0 = –675
(–1031, +227) m/Ma, we associate with progradation of the
Tres Pasos slope. The slower accumulation rate in the upper
part of the section, R1 = –65 (–14, +11) m/Ma, we associate
with the Dorotea delta-plain (Figure 6). Based on the relative
gradients in modern systems S0

S1
(Figure 9), we expect the ratio

of accumulation rates in self-similarly propagating shelf-slope
systems, R0

R1
, to be 11.7. This is similar to the median posterior

value of 10.3 observed from our model of the Magallanes basin.
In summary, the available geochronologic data are not sufficient
to provide a substantive update of our prior knowledge of Hc,
resulting in a nearly identical posterior. Similarly, there is much
overlap between the prior and posterior distributions on relative
rates R0

R1
, but the posterior distribution indicates a much lower

probability of relative rates greater than 30 than was suggested
by our prior expectations that were derived from measurements
of modern bathymetry (Figures 9, 11). In other words, given
our model of stratigraphic accumulation rates (e.g., Figure 8A),
the ratio of stratigraphic accumulation rates for the Magallanes
basin is not expected to be as high as the ratio of shelf to slope
gradients observed in many modern systems. However, the most
likely value of R0

R1
(Figure 11) is very similar to the most common

observation of S0
S1

from modern systems (Figure 9)
Alternative depositional histories could also explain the

observed geochronology. One such explanation would be the
presence of an unconformity at approximately 1,670 m (the
location of the observed Titanosaur), above and below which
point all geochronologic constraints could be described by a near-
instantaneous rate of deposition (Figure 10). In this model, one
could effectively describe the observed geochronology with three
variables; an age of material below an unconformity, above the
unconformity, and the duration of the unconformity. Although
an unconformity separating two rapidly deposited accumulations
of sediment could explain the geochronologic data from the
Magallanes basin (Figure 10), the detailed observational record
does not currently support this. No major erosion surfaces, well-
developed soils, or dramatic changes in lithofacies have been
observed in this interval (Schwartz and Graham, 2015). While
the models introduced here produce predictions of deposit ages
that are subject to our interpretations of the geologic record, it
is for that same reason that we argue they are constructive, as
they provide testable prediction for our hypotheses of geologic
histories. In the case presented here, the available geochronology
can not refute those predictions.

Our model of stratigraphic accumulation rate is derived
from the expectation that the stratigraphy represents steady,
uninterrupted progradation of a shelf-slope system through the
Magallanes foredeep on a multi-Myr scale. This assumption
for the model is consistent with observed stratigraphic patterns
that suggest (1) progressive southward progradation of the
shelf and slope in Late Cretaceous time; 2) maintained genetic
linkage between the Dorotea shelf and Tres Pasos slope
(at least at the scale of outcrop exposure); and 3) a lack
of significant unconformities within the Tres Pasos-Dorotea
succession (Hubbard et al., 2010; Romans et al., 2010; Schwartz
and Graham, 2015; Schwartz et al., 2017; Daniels et al., 2018a).
We note that this is a highly simplified model that does not
account for sub-Myr sedimentary processes (e.g., deltaic lobe-
switching), variable subsidence patterns, or compaction (which
could preferentially impact the finer grain sizes observed on
the slope, and thus produce values of S0

S1
larger than R0

R1
,

similar to what we observe here). Rather, this model is an
assumption of long-term (multi-Myr), "average" sedimentation
patterns consistent with a highly generalized interpretation of the
stratigraphy (e.g., Figures 6B, 8, after Schwartz et al., 2017).

4. DISCUSSION AND CONCLUSION

Sedimentary deposits are no older than their youngest mineral
constituent, and efforts to calculate maximum depositional ages
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FIGURE 10 | Results of modeling the stratigraphic accumulation rate of the Magallanes basin based on geochronologic constraints. Each row shows a KDE

constructed with a gaussian kernel with a bandwidth equal to the mean 2σ uncertainty of samples if that row corresponds to a detrital geochronology sample, the

likelihood of a depositional age given the data available for that deposit as a red line, and the posterior probability of the depositional age of that unit as a green

histogram of MCMC samples with 50 evenly spaced bins. In each of these plots the legend indicates the 95% credible interval for the modeled true depositional age,

td and, for detrital geochronology samples, the MDA, te, determined with the approach of Keller et al. (2018). Right panel depicts the allowable ranges of ages for

each sample, shown by gray horizontal lines, positioned vertically at their respective stratigraphic positions and extending horizontally from the point at which the

likelihood function exceeds 1% of its mass to the point where it decreases below 1% of its mass; note that the age constraints are not distributed equally throughout

the section. The gray horizontal age constraints do not factor in the geologic constraint imposed by superposition. Stacked, semi-transparent black lines are a subset

of the probable stratigraphic accumulation rate solutions drawn from the MCMC samples. Red dashed line and box indicate the median modeled position of a change

in sediment accumulation rate and the 95% bound of our prior expectation based on facies transitions (Schwartz and Graham, 2015).

from detrital geochronology often rely on weighted means that
are calculated based on defined groups of young grains (see
Coutts et al., 2019, and references therein). Given the typical

numbers of grains analyzed in detrital zircon geochronology
studies (n ∼100, Sharman et al., 2018; Coutts et al., 2019), we
can be fairly certain that we will capture at least three grains from
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FIGURE 11 | Prior and posterior probabilities (e.g., our initial knowledge and modeled inference) on the stratigraphic position of a change in rate (Hc) and the relative

stratigraphic accumulation rates above and below that transition. Prior distributions are shown as solid black lines, posterior distributions are shown as normalized

histograms of MCMC samples after the burn-in period.

the youngest population if that population comprises ∼10% of
all zircons (Figure 2, see Andersen, 2005, for a more complete
discussion). However, caution should be taken as this limits how
often we should expect to see certain rare, young populations.
Only in ∼10% of studies of 100 grains would we expect to date
three of the youngest grains if grains of that age only made up
∼1% of dateable zircons.

Superposition (or any cross cutting relationship) provides
an additional constraint on the ages of deposits. Utilizing
Bayesian statistics to enforce this principle has long been a
tactic of archeological and paleoenvironmental studies that infer
depositional ages from geochronologic data (e.g., Naylor and
Smith, 1988; Buck et al., 1992; Christen et al., 1995; Blaauw
and Christen, 2005; Haslett and Parnell, 2008; Parnell et al.,
2008; Bronk Ramsey, 2009; Blaauw, 2010; Blaauw and Christeny,
2011). Given some additional constraints that provide minimum
limiting ages for deposits, these Bayesian approaches can be
used to determine true depositional ages for deposits where
only maximum depositional age constraints are present. While
it is straightforward enough to qualitatively interpret ages with
stratigraphic relationships in mind, placing these in a Bayesian
framework enables inference of true depositional ages and their
uncertainties (e.g., Figure 5). In spite of variations in the lag
time between crystal formation and deposition, this approach
makes predictions for the depositional ages of samples from
the Magallanes basin with credible age intervals that span 4 Ma
(Figure 7). While we achieve this degree of precision with limited
direct constraints on depositional ages, this is also a favorable
example. Situations with greater uncertainties on the samples
that are directly dated or larger gaps between the youngest ages
of zircons low in the section and constraints that provide lower
limits on ages high in the sections will be met with greater
uncertainty (Figure 1).

Here we determine age constraints, and assign the likelihood
of depositional ages for each deposit, independently of modeling
true depositional ages. The independence of these two steps

results in some distributions of lag time that unrealistically
span 0 Ma (Figure 7B). Future efforts can improve upon this
by simultaneously solving for MDAs and td and, for example,
enforcing the prior expectation that te > td. Such an approach
might enable greater confidence in MDAs that depended on a
small number of grains, as it would require these MDAs be
consistent with other information in the stratigraphic section
and therefore could help to reject observations from inconsistent
grains that might by the product of contamination or Pb loss.
The posterior probabilities of depositional ages inferred here are
dependent on our characterization of the likelihood of a true
depositional age given a suite of detrital geochronology ages
(Equation 7 & Figure 4). Rather than the method of estimating
te that we apply here (Keller et al., 2018), another alternative
would be to determine the most likely true ages contained
within a detrital geochronology sample using a mixture modeling
approach that placed emphasis on identification of the youngest
component (Vermeesch, 2018). The youngest true component
age determined by the mixture model, and its uncertainty, could
then be used to define the likelihood of a true depositional
age (Equation 9).

Describing the entire stratigraphic section with a
sedimentation rate curve provides a way to propagate age
constraints to samples at the top of a stratigraphic section that
are only characterized by MDAs (Figure 10). In our example
from the Magallanes basin, the uppermost four age constraints
are all obtained from detrital zircon analyses. Had we viewed
these samples individually, each of them could be well-described
by any age < 92 Ma, but given our model of stratigraphic
accumulation rate, the uppermost unit (TS13-RB-3B) has a
predicted age of 64.8–68.1 Ma. Here we prescribe the form of
this sedimentation rate curve in order to replicate expectations
from a simple conceptual model of a prograding shelf-slope
break (Figure 8). This in turn allows us to inform our inference
of ancient deposition rates with expectations derived from
measurements of modern depositional systems (Figure 9).
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Rather than specifying a form to the deposition rate curve,
there are many existing tools for more flexibly determining how
sedimentation rates might vary through time, some of which can
also enable introduction of expectations of hiatuses or inflections
in deposition rates derived from sedimentologic observations
(e.g., Blaauw and Christen, 2005; Haslett and Parnell, 2008;
Parnell et al., 2008; Bronk Ramsey, 2009; Blaauw, 2010;
Blaauw and Christeny, 2011).

Our model of sedimentation rates (Figure 10) produces
parameter estimates that overlap significantly with the prior
expectations we derive based on sedimentology (Schwartz
et al., 2017) and measurements of modern depositional systems
(Figures 9, 11). It is easy to imagine two seemingly conflicting
interpretations of the observation that the posterior probabilities
significantly overlap the prior probabilities: (1) that through
asserting these prior probabilities we have forced a particular
outcome, or (2) that the data we do have is consistent
with our expectations for this system. A more conservative
statement would be to acknowledge both points: the available
geochronologic constraints do not provide information that is
either contrary to our expectation or in support of a more precise
quantification of the rates of stratigraphic accumulation or the
point in the stratigraphic section at which they change.

The probabilities of ages we report here (Figures 7, 10)
are explicitly linked to the model that generated them. As a
result, model ages covary with one another. In the stratigraphic
accumulation model (Figure 10), the detrital zircon sample from
sedimentary unit 15-CS-01 that immediately overlies the ID-
TIMS dated ash sample 15-CS-02 has a similarly precise posterior.
We do not take that to mean that the timing of deposition
is equally well-known for both samples; rather, this implies
that both samples are similarly constrained given our model of
the deposition history. In general, we have attempted to show
how coupling geologic insights with geochronology can improve
our understanding of sedimentary sections and can expand the
inferences we can make from sections with detrital records of
maximum depositional ages. The routine practice in geology
of enforcing stratigraphic order in interpretation of the ages
of deposits from MDAs is inherently Bayesian. Building this

knowledge into a statistical model can provide a cascade of
information through series of samples that can improve our
characterization of geologic histories.
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