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In this paper, we reconstruct the climatic changes starting from the late Pleistocene
to the early Holocene as recorded from a fluvio-lacustrine section located within the
Kumaun Central Himalaya. The results suggest two major climatic events corresponding
with the Last Glacial Maximum (LGM) and Older Dryas (OD). The values of carbon
isotopes vary between −23h and −14h, along with a shift in vegetation pattern. The
lower part of the section shows prevalence of C3 type vegetation, indicating warm and
moist conditions at around 25,000 years BP, possibly coinciding with the intensification
of the Indian Summer Monsoon. The onset of cold and arid phase is evident in the
gradual shift in vegetation pattern from C3 to C4 plants, which is prominently observed
in the middle part of the paleolake profile. Eventually, as the value of δ13C during this
time interval confirms, a prolonged phase of cold and arid climate sets in, coinciding
with the strengthening of winter westerlies. This cold phase is dated at ∼19,000 years
BP and the extended phase of cold interval observed at Dwarahat profile correlates well
with previous results elsewhere from the Himalaya. The profile also shows that the LGM
phase gradually transforms into a warm and moist climate. This transition registered at
200 cm above the base of the profile, marks the end of glacial period. The short, yet
a clear warm spike could be related to the oscillation of Bølling-Allerød interstadial at
∼15,000 years BP. A significant negative excursion marked by an abrupt increase in
δ13C values from −20h to −14h observed toward the top part of the profile, however,
is reflective of the reduced monsoon precipitation, corresponding possibly with OD. The
topmost part of the profile that registers a depleted trend in δ13C values with dominance
of C3 vegetation marks the return of the warm and moist climate.

Keywords: Central Himalaya, paleoclimate, stable carbon isotopes, fluvio-lacustrine profile, Last Glacial
Maximum, Older Dryas

INTRODUCTION

The climate plays a significant role in the Himalaya, as much as tectonics in shaping the landscape
and associated processes. The high intensity as well as the deterioration of the climate systems such
as the Indian Summer Monsoon (ISM) and the Winter Westerlies has impacted the Himalayan
region in the past with varying intensities, triggering major climatic regime modifications in the
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region. Their changing patterns over long durations of time have
not only altered the vegetation pattern but had exerted influence
in the formation as well as in the desertion of many lakes in this
region, and also in controlling the mass balance of glaciers.

The seasonally reversing moisture laden wind from the
Arabian Sea and the Bay of Bengal brings the maximum
precipitation all over the mountain arc during the summer
(Bookhagen et al., 2005; Anders et al., 2006; Bookhagen and
Burbank, 2006). But the precipitation pattern shows spatial
variation, which is fundamentally controlled by topography.
The higher peaks, because of their distinctive altitude and
elevation, receive moderate to heavy snowfall by the action of
the mid-latitude subtropical Westerly Jet, referred as Western
Disturbances (WDs) or Westerlies, and known as “The Indian
Winter Monsoon” as proposed by Dimri and Niyogi (2013)
and Dimri et al. (2013). The flooding in the Himalayan Rivers
due to heavy rains, rapid snowmelt and outbursts of glacial
lakes impact the drainage basins in the high mountain regions
as well as the lower reaches. As an alternative mechanism,
tectonism also contributes incrementally to altering the drainage
behavior and landform architecture. These processes result in
barricading the Himalayan Rivers and thus facilitating the
formation of lakes and ponds in many parts of the region. The
damming of rivers caused either because of climatic processes
or tectonism also facilitates formation of depositional niches
where long sedimentary records of past climate are likely to be
preserved.

One such paleolake section is exposed near Dwarahat Village,
situated in the Kumaun Central Himalaya (Figure 1). The
lake was formed about 30,000–28,000 years ago, as evidenced
by the charcoal date (21,197 ± 329 years BP; Figure 2)
obtained from the basal part of the section. It is likely
that the lake was resulted from melt water blockage either
at the downstream part of the glacier-fed river channel or
morphologically depressed area during the rapid snow melt
phase. The sediment, which gets trapped in the lake during
its active phase largely, owes its origin to the overland flow
generated from precipitation that may capture the local, regional
and global climatic signature to a considerable extent. These
deposits have been used as significant proxies for inferring past
climatic fluctuations. Several studies, across various locations and
time scales, prove the enormous value of lakes as paleoclimatic
archives as they are considered to reflect the precipitation-
evaporation balance of their respective catchment (e.g., Cohen,
2003).

The present study is an attempt toward deciphering the late
Quaternary climatic history of the central Kumaun Himalaya
using lake deposits as an archive. Although it is known that
the climatic patterns in the Himalayan region are mostly
controlled by the variations in the ISM and WDs, their long-term
variations are not easily resolvable from the geological proxies.
Frequently overprinted by the influence of winter westerlies, the
interpretation of these proxy records of precipitation often pose
challenges in isolating the individual roles of ISM and WDs
(Enzel et al., 1999; Prasad and Enzel, 2006; Sinha et al., 2006;
Dixit et al., 2014a). However, the earlier studies were able to
document the Quaternary climatic variations from the central

and western Himalaya (e.g., Chauhan et al., 1997; Kotlia et al.,
1997b, 2000, 2010, 2016; Pant et al., 1998, 2005; Sekar, 2000;
Chakraborty et al., 2006; Ranhotra et al., 2007, 2017; Trivedi
and Chauhan, 2008, 2009; Demske et al., 2009; Juyal et al.,
2009; Bali et al., 2013, 2015; Sanwal et al., 2013; Rawat et al.,
2015).

REGIONAL SETTING

Geology, Geomorphology, Climate, and
Vegetation of the Study Area
The study area is located at an altitude of ∼1,100 to 1,200 m
(MSL) near Dwarahat Township in the district of Bageshwar
of Kumaun Central Himalaya (Figure 1). The lateral extent
of the exposed part of fluvio-lacustrine deposit varies from
70 to 80 m, and the maximum thickness of the sediment
measures up to 6 m. This section is exposed along a small
stream (Shirogarh), and our current work focuses on the exposed
part of the deposit adjacent to the Ranikhet-Dwarahat motor
road, northwest of Dwarahat Township. The country rocks
in the study site consist of gneisses of Almora group and,
the area is situated in the zone of ‘North Almora Thrust’
(Figure 1B). The landscape is expressed as a complex mosaic
of mountain rises and deeply dissected valleys including a large
part of flat land. The elevation from valleys to hills varies from
1,100 to 2,400 m (MSL). As mentioned earlier, such undulated
and dissected landscape is prone to a range of micro-climatic
regimes, marked by variation in temperature and precipitation
within relatively short distances. The river valleys at the lower
elevation in general are dominated by sub-tropical climate
whereas the elevated and high gradient areas host temperate
climatic conditions.

Presently, this region receives moderate precipitation (∼60%)
from the ISM during June to September and about 20%
from Westerlies during the winter season. The δ13C values of
the soil samples collected from the study site vary between
−23.5 and −21.5%, which indicates that this region falls
under the sub-tropical climate with warm and wet conditions.
The mean annual precipitation of this area varies from 104.0
to 129.0 cm. The variation of climatic conditions is also
expressed in the type of vegetation. The higher elevations
are dominated by Spruce (Picea), Fir (Abies), Birch (Betula),
and Juniper (Juniperus) while the lower elevations are covered
with the forests of Cypress, pine (Pinus), Oak (quercus) and
Rhododendron.

Lithology of Paleolake Sequence
The base of the Dwarahat lacustrine profile mainly comprises
by coarse-grained (coarse sand to boulder size particles)
and non-cohesive sediments. These deposits could have been
generated by debris flows that are most often triggered
by extreme precipitation following a period of depleted
precipitation, or by rapid snow melt. The geomorphological
and sedimentological evidence also implies that the high pore-
water pressures might have caused the soil and weathered
rock to rapidly lose strength and flow downslope toward
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FIGURE 1 | (A) Map shows the location of study area (Dwarahat paleolake) with trend of monsoon systems (ISM, EASM, and WDs), source of the base map:
Amante and Eakins (2009), http://www.ngdc.noaa.gov/mgg/image/color_etopo1_ice_low.jpg. (B) Geology and tectonics around the study area (modified after,
Joshi, 1999). (C) Google image of the Dwarahat paleolake and (D) a field exposure of paleo-lacustrine deposit.

relatively depressed/flat land where it gets accumulated within
ponds or lakes. The morphology around the study area
indicates that the climate had played a foremost role in the
development of this basin and the formation of the lake.
Thus, the paleolake at Dwarahat (29◦45’ N: 79◦25’ E) in the
Kumaun Himalaya, was most probably resulted from damming
of meltwater.

The lake profile consists of 4-m-thick mud, silt and sand;
the base of the lacustrine profile is dominated by coarse-grained
sediment (Figure 3A). The entire profile can be divided into six
different units, the basal unit (unit 1) is homogeneously made
of black to gray carbonaceous mud demonstrating low energy
deposition; whereas the second unit (unit 2) from the bottom
mostly consists of gritty sand and silt that reveals comparatively
moderate energy conditions during the deposition. The overlying
unit 3 comprises mainly silt representing moderate energy
condition, which is capped by a band of black to brown mud (unit
4) indicating low energy conditions during their deposition. The
fifth unit (unit 5) is consists of cross-bedded channel sand and
is topped by the thinly laminated alternative layers of upward
grading silt and sand (unit 6). This top stratigraphic unit is
overlain by a well sorted cross-bedded upward coarsening fluvial

succession, demarcating the transition from a lacustrine to fluvial
phase.

MATERIALS AND METHODS

Chronology
Radiocarbon dates (Acceleration Mass Spectrometry; AMS)
were obtained from the bulk organic sediment samples
as no charcoal material was available from the section.
The age data was calibrated using CALIB 6.0 program

TABLE 1 | AMS radiocarbon (14C) age data from Dwarahat paleolake.

Sample ID Measured
radiocarbon age

(years BP)

2 sigma Estimated
calibrated age
(cal years BP)

Rc_D 1 21,197 ± 329 [cal BP 24601: cal
BP 26060] 1.

25,330 cal years
BP

Rc_D 2 16,380 ± 453 [cal BP 18745: cal
BP 20850] 1.

19,797 cal years
BP
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FIGURE 2 | Age model obtained for AMS radiocarbon ages using Oxcal version 4.2.4 (Bronk Ramsey, 2009).

(Stuiver and Reimer, 1993), in calibrated years before present
(cal years BP). The oldest radiocarbon date: 21,197 ± 329
years BP is obtained from the lowermost unit (at ∼30 cm
from the base) of the profile is calibrated as 25,330 cal
years BP (Table 1 and Figure 2). A younger age obtained
at ∼120 cm from the base corresponds to 16,380 ± 453
years BP and is calibrated as 19,797 cal years BP (Table 1).
The interpolated ages for the section discussed in the text
are estimated from the above cited calibrated radiocarbon
dates.

We have further refined chronological constraints by
applying OxCal V 4.2.4 (Bronk Ramsey, 2009), a Bayesian
statistical program that incorporates sequential stratigraphic
relationships that can filter the probability distributions
of each sample age. This age model developed through
an iterative process narrows the probability distribution
functions (PDFs) for the ages of each of the calibrated samples
and identifies outliers (Figure 2). With only two dates,
our chronological constraints obtained from the Dwarahat
section are too limited. We believe that there is scope for
refining the chronology and better age resolution in future
studies, which will help in finer interpretation of climatic
fluctuations.

Organic Carbon
In a lake system, the primary production of organic matter
depends on the plants within the lake and around it, but its
alteration varies geographically and temporally. The maximum
organic substance in the lake can be divided into two categories
on the basis of their biochemical compositions: (a) the non-
vascular plants and phytoplanktons that contain limited
or no carbon-rich cellulose and lignin, and (b) terrestrial
plants like grasses, herbaceous plants and macrophytes
(Last and Smol, 2001). These herbs and/or macrophytes
that are photoautotrophic utilize CO2 for photosynthesis
with different efficiencies. Water availability and other
environmental factors like temperature can also alter carbon
assimilation. Hence, assessing the carbon isotope signatures
could be a powerful tool in estimating the photosynthetic
efficiency of the planktons of a lake. For this study the
carbon isotope ratios were measured using Isotope Ratio

Mass Spectrometer (IRMS) working on a continuous flow
basis.

Stable Carbon Isotope (δ13C)
Stable carbon isotopic analysis of organic matter is a proven
tool for deciphering the past climatic history. The results are
expressed here as δ13C with respect to VPDB standard using
the standard δ (h) notation. In general, based on the carbon
isotope abundance (δ13C values), the photosynthetic plants can
be separated into two categories: C3 and C4 plants (Smith and
Epstein, 1971). The δ13C values of C3 plants range between
−35h and −22h, averaging around −27h, while those of
the C4 plants range between −20h and −9h with an average
of −13h (Osmond and Ziegler, 1975; Cerling, 1984). The lake
sediments contain inorganic as well as organic carbon along with
organic matter. Isotopic signature of organic carbon distinguishes
between C3 and C4 photosynthetic mechanisms. Hence, careful
separation of organic matter from the bulk sediment is essential.
We powdered 2 g of samples and treated with dilute HCL (1:4)
for 10 to 15 min for the removal of inorganic carbon and
carbonate followed by centrifuging at ∼3,000 rpm with Milli-Q
water and same process was repeated until the inorganic carbon
and carbonate were completely removed following the method by
Sanwal (2004, Unpublished) and Kotlia et al. (2010). Thereafter
residue power was dried at 60◦C and the resultant samples were
stored in sealed containers.

Stable carbon isotope composition (δ13C) was measured using
an IRMS (DeltaV Adv., Thermo Fischer Scientific, Bremen,
Germany) interfaced with an elemental analyzer (NA1112,
Carlo-Erba, Italy) with a continuous flow device (Conflo-
III, Thermo Fischer Scientific) installed in the Department of
Crop Physiology, University of Agricultural Sciences (UAS),
Bengaluru. About 1.5–3 mg of samples was packed in silver
capsules and combusted at ∼1,060◦C in an oxygenated
environment of the Elemental Analyzer. Resultant CO2 was
flushed along a helium carrier flow after scrubbing excess oxygen
and moisture. The helium flow carried the gases through a
“reduction” furnace filled with reduced copper heated at 680oC
to reduce the nitrogen oxides to nitrogen (N2). The CO2 gas was
effectively separated from nitrogen by passing the gases through
a Gas Chromatography column in the elemental analyzer. Mass
to charge ratio (m/z) for mass 44, and 45 were determined by
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FIGURE 3 | (A) Lithostratigraphy of Dwarahat paleolake, (B) carbon isotope variation (δ13Ch), and (C) total organic carbon (TOC%).

the Continuous Flow IRMS. The internal precision of the system
was determined by sequencing injection of reference CO2 gas and
was found to be better than 0.06h. External precision to include
variability caused due to sample combustion was determined by
using two standards. Potato starch (Sigma) as a C3 standard and
ANU Sucrose, as a C4 standard. The analytical uncertainty was
found to be less than 0.15h. The results are expressed as δ13C
with respect to VPDB standard using the δ (h) notation as:

δ13C(h) = [{Rsample/Rstandard} − 1] × 1000

In the aforementioned equation, Rsample and Rstandard express
the ratio of heavy to light isotopes (13C/12C) in sample as well in
the standard. We analyzed 163 samples at the interval of every
2 cm out of 320 cm long profile for δ13C values (Figure 3).

Total Organic Carbon (TOC)
Pure potato starch and elemental analyzer standards such
as cyclohexanone were used to develop a calibration curve
to determine the total organic carbon (TOC) content. Area
under the chromatogram for all masses of CO2 was used to
compute the TOC content using the calibration curve developed
using elemental analyzer standards. The results of TOC are
demonstrated as the percentage of the dry weight of the samples

RESULTS AND INTERPRETATIONS

Climatic Reconstruction
We have used the stable isotopic data (δ13C) obtained from
a fluvio-lacustrine sedimentary profile along with the available
chronological constraints for the reconstruction of the Late
Quaternary climatic changes. The AMS date obtained from the
base of the profile, (∼25,330 cal years BP), suggests that the lake
might have been in existence between 30,000 and 28,000 years
BP (Table 1 and Figure 2). We have identified five prominent
climatic phases by mainly tracking the carbon isotope trends.
Correspondingly, the lower, middle and topmost parts of the
profile also display a large variation in the distribution of C3
and C4 type of vegetation (Figure 3). As mentioned earlier, the
benchmark is provided by the present-day δ13C values that vary
between−23.5 and−21.5h corresponding with the sub-tropical
climate with warm and wet conditions.

The lowermost part of the profile (0–60 cm) that consists of
black carbonaceous mud and marked by the abundance of C3
kind of vegetation, is characterized by depleting trend in δ13C
values (up to−23h). These features suggest an interval of warm
and moist climate between 30,000 and 25,000 years BP marked by
a long spell of intensified monsoon. The isotope curve indicates
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FIGURE 4 | A few proxy records of paleoclimate covering the last glacial-interglacial transition, reconstructed from the Central Himalaya (A–D) Ladakh Himalaya
(E) and Guliya Ice Cap, Qinghai-Tibet (F).

a gradual rise in δ13C values (up to −14h) at the height of 55–
60 cm from the base and this trend suggests a prolonged phase of
cold and arid conditions with dominance of C4 kind of vegetation
with the peak aridity at the height of 140 cm from the base. This
extended cold and arid interval must have started around 19,000
years BP.

The carbon isotope results reveal that the LGM interval of
cold and arid climate gradually emerges into a phase of climatic
amelioration marked by warm and moist climate, and this
transition makes its appearance on the profile at 200 cm above
the base. The gradually increasing dominance of C3 vegetation
with a prominent depletion in δ13C values (from ∼ −17 to
22.5h) indicates escalating monsoon during this period, i.e.,
after ∼15,000 years BP. This climatic transformation is marked
by the intensification of the Indian Summer Monsoon. This short,
yet prominent warm spike is probably related to the oscillation
of Bølling-Allerød interstadial around 15,000 years BP. Although
we lack dates from this part of the profile, the isotope values
obtained by us mimic the vertical trends reported from the paleo-
lacustrine sections elsewhere in the central Himalaya that are
chronologically much better constrained (see Kotlia et al., 2010).

The aforesaid phase of climatic amelioration is followed by
a conspicuous negative excursion as evidenced by the abrupt
increase in δ13C values from−20h up to−14h. The dominance
of C4 type vegetation reflects the weakening of monsoon
precipitation. This phase of declined monsoon may overlap the
Older Dryas (OD), which is largely been documented around
∼14,000–13,000 years BP in the Asian continent. The carbon
isotope data toward the top of the profile shows domination of
C3 vegetation as reflected in the gradual depletion of δ13C values.
The values of δ13C varying from −15 to −21h are indicative of
warm and moist climate with increasing summer precipitation.

The data obtained from TOC range between ∼2.0 and 38%.
The lowermost part of the profile dominated by carbonaceous

mud exhibits high values of TOC that varies between 30
and 36.5% and are indicative of high precipitation. A gradual
decreasing trend of TOC (5–25%) is obtained from the middle
part of the profile (∼22,000–18,000 years BP) suggesting arid
conditions. An increasing trend of TOC varying from 15 to 30% is
registered around 15,000 years BP and is an indicator of enhanced
precipitation. A decreasing trend of TOC is also noticed toward
the top of the profile with some distinct fluctuations (Figure 4B).

The isotope signature is an indicator of the efficiency of carbon
metabolism and it tracks the record of climatic conditions that
influence the growth of vegetation, whereas TOC trends reflect
absorption or assimilation of carbon. But there are cases when
TOC may not correspond well with the isotope ratios, as may
be applicable to our present study also. Therefore, we have
exclusively used the variation in δ13C for climatic reconstruction
presented here.

DISCUSSION

Studies of climate variability during the Quaternary in the
Himalayan region are of great interest as they help in furthering
our understanding of the climatic evolution of a mountainous
terrain that is also currently a severely impacted ecosystem. These
studies could open a way to understand more about how the
climate system diversify under the natural conditions in a unique
mountainous environment during an interval that is known for
abrupt as well as gradual climatic transitions. In this context,
the ancient lakes sedimentary sections are considered excellent
storehouses that embed not only local but regional and global
climatic signals, as well.

The Dwarahat paleolake was possibly formed because of
damming of meltwater about 30,000 years ago. Presently, the
area falls under moderately warm and moist conditions, receiving
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about 70% of the ISM during summers and experiences cool
winters with 20% of rains with low to moderate snow. The
results obtained using organic carbon isotopes (δ13C) reveal that
the initial stage of deposition (∼30,000–25,000 years BP) was
dominated by organic carbon-rich sediments and the vegetation
represented by C3 plants. These observations are suggestive of
warm and moist climate with strong monsoon precipitation. The
trend in general agrees with the results obtained elsewhere in the
Himalaya (Figure 4).

The earlier studies from paleolake and peat deposits from
the central Himalaya indicate that the climatic amelioration
with the humid phase began around 30,000 years, before
present (Pant et al., 1998; Kotlia et al., 2000, 2008). The
humid conditions have also been documented at around 30,000
years BP from some other parts like Tso Kar Lake located
in the Ladakh Himalaya. The palynological signals indicate
abundance of biogenic deposits and increasing trend in Juniperus
(Bhattacharyya, 1989) (Figure 4), along with the chemical
signatures marked by lower concentration of Na, K, and Mg
(Sekar, 2000). The ice core analyses reported from Tibet (Dunde
Ice Cap) suggest relatively warm conditions around 30,000 years
BP (Thompson et al., 1989, 1990). The studies on Chinese
loess and lake deposits from Western China also suggest similar
patterns (Kukla and An, 1989; Jelinowska et al., 1995).

A prominent phase of warm/humid climate from 28,900
to 27,400 years BP and 26,800 to 25,300 years BP has been
identified from a paleolake section at Dulam in the Central
Himalaya (Sanwal, 2004, Unpublished; Kotlia et al., 2008)
(Figures 1, 4). The signatures include declining levels of
Ca/Mg and Fe/Mn ratios and clay minerals like chlorite and
muscovite, corresponding with domination of C3 type vegetation
(Sanwal, 2004, Unpublished; Kotlia et al., 2010). The magnetic
susceptibility studies of peat sediments from Garhwal Himalaya
also indicate warm moist climate during this interval (Pant et al.,
1998). Corollary evidence is obtained from Qaidam basin in the
northern margin of the Tibetan Plateau where the lake levels
continued to be high from 40,000 to 25,000 years BP, which
is linked to increased precipitation (Chen and Bowler, 1986).
Comparable results of warm and moist climate at around 24,000
years BP is documented from the southeastern part of China, as
well (Zheng and Li, 2000).

The dominance of C4 type of vegetation, with a gradual rise
in δ13C values (up to −14h), marking the onset of prolonged
phase of cold and arid conditions can be traced at the Dwarahat
section around 140 cm from the base. The peak of this extended
period of cold and aridity about 19,000 years BP corresponds
with the Last Glacial Maximum (LGM). Comparable signals are
available from the terrestrial and marine records from India and
Tibet. It is worth mentioning here that a study from Dulam
paleolake located in the Central Himalaya (Figures 1, 4), not far
from Dwarahat also indicates the dominance of C3 vegetation
(Sanwal, 2004, Unpublished; Kotlia et al., 2010). Thus, the central
Himalaya displays an abrupt rise in δ13C and a drop in marshy
taxa, mesic herbs, the dominance of Pinus, and a depleted trend
in warmer minerals and reduced magnetic susceptibility (Kotlia
et al., 1997a; Basavaiah et al., 2004; Juyal et al., 2009; Kotlia
et al., 2010) (Figure 4). In the same interval (23,000 years BP),

a spell of accelerated erosion has also been identified in the
Garhwal Himalaya (Pant et al., 1998). An arid cold period also
existed in the Nepal Himalaya between 25,000 and 18,000 years
BP (Richards et al., 2001). The dominance of steppe vegetation
and a declining trend in Juniperus have been observed at 21,000
years BP in the Ladakh region (Bhattacharyya, 1989) (Figure 4),
reiterating the validity of an arid phase during this period. These
signatures of onset of arid conditions starting from 22,000 years
BP, therefore, appear to be regional in nature. These results also
should be seen in the context of an expanded distribution of
Himalayan glaciers that is registered at ∼18,000 years BP (Benn
and Owen, 1998; Owen et al., 2002). The records of δ18O and δ13C
from Guliya ice core from Qinghai-Tibetan plateau, suggest the
timing of the LGM in the tropics and subtropics to be around
18,000 years BP (Thompson et al., 1997) (Figure 4), and the peak
aridity at ∼18,000 years BP, as reported from the northeastern
Tibetan Plateau (Yan et al., 1999).

The records between 20,000 and 13,000 years BP from the
continental areas of India, as exemplified by the Thar Desert,
show hyper saline conditions that overlap with a decline in the
summer monsoon with increased winter precipitation (Wasson
et al., 1983; Singh et al., 1990). These records of prolonged arid
phase in the western India between 20,000 and 15,000 years
BP are also well supported by the findings from southern India
(Sukumar et al., 1993; Bera et al., 1996; Rajagopalan et al., 1997;
Sukhija et al., 1998), as well as from the central India (Singh et al.,
1974, 1990; Andrews et al., 1998; Srivastava et al., 2003).

The marine proxy data for the same period (∼20,000 to
15,000 years BP) from the Arabian Sea and the Bay of Bengal
suggest lowered of sea levels (Duplessy, 1982; Van Campo et al.,
1982; Van Campo, 1986; Sarkar et al., 1990; Chauhan and
Suneethi, 2001). Further, this interval (18,000 years BP) is also
defined by weak upwelling in the Arabian Sea (Van Campo et al.,
1982; Prell and Van Campo, 1986; Prell and Kutzbach, 1987;
Sirocko et al., 1991, 1993).

The Dwarahat section reveals that the prolonged phase of
cold climate ends in short spell of climatic amelioration marked
by warm and moist conditions (observed at 200 cm above
the base). This transition marks the end of the glacial period.
Although we lack chronological controls on this phase our
interpretations are based on the cues provided by the increasing
appearance of C3 vegetation. Showing a prominent depleting
trend in δ13C this phase indicates an escalating monsoon
during this period. Furthermore, these patterns identified at
Dwarahat also agree with the signals identified from other sites
in the Himalaya at the corresponding stratigraphic levels. For
instance, the speleothem records of δ18O from the Central
Himalaya reveal intensified monsoon during ∼15,200 to 11,700
years BP and this strong monsoon phase has been correlated
with Bølling-Allerød interstadial (Sinha et al., 2005). A similar
phase of climatic amelioration is reported from the distant
Kashmir (Singh and Agrawal, 1976) and the Ladakh Himalaya
at ∼15,000 years BP (Bhattacharyya, 1989). Correspondingly, a
post-glacial temperature rise is recorded from the Tibetan Plateau
around 15,000 years BP (Yan et al., 1999). This observation is
further supported by the climatic amelioration identified from
Northwestern China around this time (Feng et al., 2007).
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A sharp spike of negative excursion at Dwarahat (230 cm
above the base) is marked by an abrupt increase in δ13C values
with dominance of C4 vegetation. This may be interpreted to be
the result of weak summer monsoon precipitation; this phase
of declined monsoon spans the OD cooling event, a global
event that occurred between 14,000 and 13,000 years BP. This
cooling event is evidenced by an abrupt increase in δ13C and
magnetic susceptibility, as reported in an earlier study (Kotlia
et al., 2010). Similar records of declined monsoon precipitation
are also documented from the Ganga Plains (Sharma et al., 2004)
and the Bay of Bengal (Kudrass et al., 2001; Chauhan, 2003). The
declining monsoon is reported to be evident in the continent as
well the marine deposits in mid-latitude regions of China (Zhou
et al., 1991; Li, 1993).

The Dwarahat profile toward the top (∼300 cm above
the base) shows depleting δ13C values, concomitant with the
domination of C3 vegetation. Marking the transition to the
Holocene, this trend reflecting the warm and moist conditions
might have been triggered by the intensification of the southwest
monsoon.

CONCLUSION

Based on the carbon isotopic (δ13C) variations of the sedimentary
profile exposed at Dwarahat in the Kumaun central Himalaya
we attempt to construct the climatic changes in the region
during the interval ranging from 28,000 to 12,000 years BP
that forms the later part of the Quaternary Period. Our results
demonstrate five distinct alternating phases of warm and cold
conditions. The profile begins with the warm and moist climate
with intensified monsoon with high vegetation growth of C3
type. This phase gradually gives way to prolonged cold spell with
abundance of C4 plants. This interval of aridity corresponding
with the LGM gradually transits into a short spell of climatic
amelioration with warm and moist climate. We suggest that this
initial onset of climate change is marked by the intensification
of summer monsoon around 15,000 years BP – a timing that
agrees well with the results elsewhere from the Himalaya. This
phase is followed by depleted precipitation curve, which is
evident by the dominance of C4 vegetation, a marker for the

OD (14,000–13,000 years BP). A prominent warm spike at the
top end of the profile probably corresponds with the Allerød
oscillation, around ∼12,000 years BP. The factors including
the shifting of the Intratropical Convergence Zone (ITCZ) and
southwest airflow, along with the changing patterns of summer
monsoon and westerlies play important determining roles in the
changing dynamics of the climatic conditions in the Himalayan
region. A weak southwest airflow, southward shift in the ITCZ,
depletion in the summer monsoon and stronger westerlies
characterize the alternating cycles of cold and arid periods,
whereas strengthening of the southwestern monsoon during the
summers facilitates the onset of warm and moist climate.
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