AUTHOR=Feng Jianlong , Li Huan , Li Delei , Liu Qiulin , Wang Hui , Liu Kexiu TITLE=Changes of Extreme Sea Level in 1.5 and 2.0°C Warmer Climate Along the Coast of China JOURNAL=Frontiers in Earth Science VOLUME=6 YEAR=2018 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2018.00216 DOI=10.3389/feart.2018.00216 ISSN=2296-6463 ABSTRACT=

Using hourly sea level data from 15 tide gauges along the Chinese coast and sea level data of three simulations of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we assessed the changes and benefits of the extreme sea level of limiting warming to 1.5°C instead of 2.0°C. Observations show that the extreme sea level has risen with high confidence during the past decades along the coast of China, while the mean sea level change, especially the long-term change plays important roles in the changing process of extreme sea levels. Under the 1.5 and 2.0°C warming scenarios, the sea level will rise with fluctuations in the future, so will the return levels of the extreme sea levels. Compared with the 1.5°C warming condition, the return levels under the 2.0°C warming condition will rise significantly at all tide gauges along the Chinese coast. The results indicate that a 0.5°C warming will bring much difference to the extreme sea levels along the coast of China. It is of great necessity to limit anthropogenic warming to 1.5°C rather than 2.0°C, as proposed by the Paris Climate Agreement, which will greatly reduce the potential risks of future flood disasters along the coast of China and is beneficial for risk response management.