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Editorial on the Research Topic

MeltWater Retention Processes in Snow and Firn on Ice Sheets and Glaciers: Observations and

Modeling

INTRODUCTION

More than half of Greenland’s current annual mass loss is attributed to runoff from surface melt
(Enderlin et al., 2014; van den Broeke et al., 2016). While this already suggests that melt plays an
important role in Greenland’s mass balance, it is worth noting that only slightly more than half
of the surface melt runs off in today’s climate (Steger et al.). The remaining half of the meltwater
produced is retained in firn and snow and does not contribute to runoff. If the fraction of retained
meltwater were to decrease, the impact of surface melt on ice sheet mass balance could become
much larger. Compared to Greenland, Antarctic surface melt is comparatively very small and has
limited direct impact on mass balance. However, a process called hydrofracturing provides even
smaller amounts of meltwater with a potentially powerful lever on Antarctic sea level contribution;
meltwater that accumulates in crevasses promotes growth of fractures and reduces the stability of
Antarctic ice shelves (Kuipers Munneke et al., 2014; Pollard et al., 2015), potentially leading to their
detachment. While the break-off of an ice shelf can have a strong impact on the flow of the glaciers
feeding the former ice shelf (Mercer, 1978), there are also more subtle ways by which meltwater
and meltwater retention in snow and firn influence ice dynamics. The release of latent heat upon
refreezing efficiently warms snow or firn while heat conduction and advection expand the warming
signal. This effect, termed cryo-hydrological warming (Phillips et al., 2010; Lüthi et al., 2015), raises
temperature, associated viscosity and consequently flow velocity of glaciers and ice sheets (Colgan
et al., 2015).

This brief review highlights why understanding meltwater retention processes is crucial to
anticipate future changes in ice sheets and glaciers in a warming world. The 11 studies of this
Frontiers in Earth Sciences Research Topic examine various aspects of meltwater retention in snow
and firn. In the following, we separate research progress and challenges into three categories:
measuring firn properties, modeling firn structure and meltwater retention, and unraveling the
mechanisms associated with the Greenland firn aquifers.
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MEASURING FIRN PROPERTIES

Measuring the firn meltwater retention process and its influence
on land ice hydrology is inherently challenging as the major
processes take place at the subsurface in a spatially heterogeneous
manner. While a large body of work on snow hydrology exists
(e.g., Colbeck, 1972; Hirashima et al., 2014), the firn of glaciers
and ice sheets comprises scales and structures not usually
identified in seasonal snow, and are produced by multi-year
processes also not known from seasonal snow studies. Hence,
dedicatedmeasurements of firn hydrology can complement snow
studies. Sommers et al. address firn water through their approach
of in situ pneumatic measurements of firn permeability. While
earlier research (e.g., Albert et al., 1996) focused on dry firn,
they studied firn regularly exposed to melt. Sommers et al. adds
to an increasing number of innovative in situ measurements of
melting firn, such as for example direct observation of percolating
meltwater by means of ground penetrating radar (Heilig et al.,
2018). Samimi and Marshall examine firn meltwater retention
from the perspective of a temperate mountain glacier. Through
direct measurement of temperature and water content, they
find that temperate snow and firn does not retain meltwater
directly, but overnight refreezing of meltwater consumes about
10–15% of the melt energy available the subsequent day. Samimi
and Marshall thus underline the importance of short-term
cycles of melt and freezing which even influence mass balance
of bare ice areas of the Greenland ice sheet (Smith et al.,
2017).

MODELING OF FIRN STRUCTURE AND

MELTWATER RETENTION

Meltwater retention in snow and firn moderates Greenland ice
sheet mass loss and global sea level (Pfeffer et al., 1991; Janssens
and Huybrechts, 2000). This global impact stands in stark
contrast to the small-scale variability of meltwater percolation
and retention that manifests itself in the complexity of firn
structures (Brown et al., 2011). Modelers generally invoke a
concept where vertical percolation is described as either (i) a
homogeneously progressing wetting front in isothermal snow
and firn at 0◦C, or (ii) heterogeneous flow in advance of a
uniform wetting front in a matrix at sub-freezing temperatures.
van Pelt et al., Steger et al., and Langen et al. apply firn meltwater
models to assess future relevance of retention processes on a
synthetic Arctic glacier and to quantify the present-day role
of meltwater retention on the Greenland ice sheet. Langen et
al. show their model achieving agreement with observed firn
stratigraphy and mass balance while Steger et al. conclude
that Greenland’s snow and firn currently retain 41–46% of all
liquid water (mainly melt but also including rain). All three
studies, however, invoke homogeneous percolation and leave
the issue of heterogeneous flow as poorly understood. Models
of heterogeneous percolation exist (Hirashima et al., 2014;
Wever et al., 2016) but they are computationally expensive and
validation of model output is challenged by uncertainties of
basic input parameters such as fresh-snow density (Steger et al.).
These challenges are addressed by Marchenko et al. who

suggest a simple empirical parametrization of preferential
flow and by Fausto et al. who analyzed a large set of firn
and snow data to improve estimates of Greenland snow
density.

FIRN AQUIFERS

In spring 2011 in a little studied region of southeast Greenland,
a group of researchers were surprised when their drill emerged
from its borehole dripping with water (Forster et al., 2014).
Finding liquid water in the firn before the melt season had even
started was a surprise and inspired a new Greenland research
field in perennial firn aquifers. Model simulations exhibit skill
in indicating the location of firn aquifers (Forster et al., 2014;
Langen et al.) and indicate that the east Greenland aquifer could
be a recent phenomenon that formed following strong melt
in summer 2010 (Steger et al.). The hydrology of the aquifers
is subject to ongoing research, applying seismic methods to
determine aquifer thickness and volume, (Montgomery et al.),
or slug testing to measure hydraulic conductivity. (Miller et al.).
The amount of water contained in the aquifers remains poorly
constrained, but the total estimated area of at least 22,000 km2

(Miège et al., 2016) makes firn aquifers potentially significant
contributors to global sea level change. In this context, the
findings of Poinar et al. are relevant because they suggest
that aquifers infiltrate through the hydrofracturing of crevasses
down to the bed, which connect to the ice sheet discharge
system.

SYNTHESIS

The study of meltwater retention has been stimulated by recent
discoveries such as the Greenland firn aquifers and studies
indicating high importance of surface mass balance in sea level
scenarios. To further improve understanding of the processes
and their relevance in mass balance of glaciers and ice sheets,
Van As et al. performed an expert solicitation to point out
major hurdles. The survey responses show that the community
identifies research priorities in (i) measuring and modeling the
spatial heterogeneity of processes, (ii) assessing the permeability
of different types of firn to percolating meltwater, and (iii)
in improving surface boundary conditions for modeling. It is
promising that the 11 manuscripts of this eBook address all three
of the challenges identified by the expert pool.
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