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Precipitation is one of the most important components of the water cycle and its accurate

spatial and temporal representation is fundamental for hydrological modeling. In the

present study, we investigated the impact of spatial resolution of various precipitation

datasets on discharge estimates. First, a new precipitation spatial downscaling

procedure was developed and applied to four gridded global precipitation datasets

based on (i) solely satellite observations: CMORPH and PERSIANN, (ii) satellite and

in situ observations: TRMM, and (iii) satellite and in situ observations and reanalysis data:

MSWEP. The here presented downscaling methodology blended global precipitation

datasets with data on vegetation and topography to improve the representation of

precipitation spatial variability. Second, interpolated in situ, non-downscaled (25 km) and

downscaled (1 km) precipitation data were used to force a grid-distributed version of the

HBV-96 rainfall-runoff model for the Magdalena River basin in Colombia. Results showed

that MSWEP and TRMM outperformed CMORPH and PERSIANN precipitation datasets.

The downscaling procedure resulted in considerable improvements in coefficient of

determination, root mean square error and bias in comparison with in situ precipitation

observations. Discharge model estimates were also in better agreement with the

observations when the model was forced with the downscaled precipitation. Model

performance was improved with Kling Gupta efficiency increases in the order of

0.1 to 0.5. Moreover, better discharge simulations were obtained using downscaled

precipitation compared to using only in situ precipitation data when using less than 100

stations.

Keywords: precipitation spatial downscaling, remote sensing, hydrological modeling, discharge simulations,

Magdalena River basin
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INTRODUCTION

Precipitation is a key component of the water cycle, playing
a crucial role in hydro-meteorological and environmental
processes (Goovaerts, 2000; Schuurmans and Bierkens, 2006;
Langella et al., 2010). An accurate knowledge of precipitation is
essential for water resources management and to predict extreme
weather events, such as floods and droughts (Arnaud et al., 2002;
Vischel and Lebel, 2007; Tramblay et al., 2011).

Precipitation datasets can be obtained from in situ weather
stations, but many river basins around the world are still poorly
gauged (Loukas and Vasiliades, 2014) or ungauged (Sivapalan
et al., 2010). Moreover, measurements from in situ gauges are
only representative over a limited distance around the location
of the instruments (Collischonn et al., 2008; Bohnenstengel
et al., 2011) and their location is often biased toward accessible
lower lying areas. These conventional ground observations
cannot effectively capture the spatial variability of precipitation
and therefore, may be insufficient/non reliable for hydrological
modeling (Javanmard et al., 2010).

Satellite-based precipitation datasets may be an attractive
alternative to in situ measurements. They cover large areas
(many of them have a near-global coverage) over long time
periods, reflecting the spatial patterns and temporal variability
of precipitation (Adler et al., 2001). A series of gridded global
precipitation datasets, including Earth observations, in situ
datasets andmodels, have been developed during the last decades
at a regional and global scale (PERSIANN, Hsu et al., 1997;
CMORPH, Joyce et al., 2004; GSMaP, Kubota et al., 2007; TRMM,
Huffman et al., 2007; ECMWF ERA-Interim, Dee et al., 2011;
GPM, Hou et al., 2014; WFDEI, Weedon et al., 2014; CHIRPS,
Funk et al., 2015; MSWEP, Beck et al., 2017).

However, recent studies have showed some limitations of
satellite-based precipitation datasets in terms of temporal and
spatial resolutions when driving a distributed hydrological model
to estimate daily discharge values, especially in areas where
orographic effects are important (Li et al., 2012; Chen et al.,
2013; Khan et al., 2014; Meng et al., 2014). For example, Meng
et al. (2014) showed that TRMM precipitation data was not
suitable to predict discharge at daily scale in the upstream
part of the Yellow River basin, but in contrast it was useful
at monthly scale. Moreover, the performance of these satellite-
based precipitation datasets might differ depending on basin
characteristics, such as size, geographical location, topography,
and vegetation cover.

Several authors have developed downscaling, interpolation
and aggregation methodologies to increase the spatial resolution
of satellite-based precipitation, often in combination with
ground observations (see overview in Table 1). The resulting
precipitation datasets may provide a better representation of the
spatial variability of precipitation to be used for hydrological
applications.

There exist a large number of Earth observations data
available on hydro-meteorological variables that are related to
precipitation, including Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index
(LAI), temperature, and elevation. The auxiliary information

derived from these variables can be combined with satellite-based
precipitation datasets to increase their spatial resolution. So far
most studies focused on the use of NDVI as proxy to downscale
precipitation (Immerzeel et al., 2009; Chen et al., 2014; Hunink
et al., 2014). Moreover, only one study used different satellite-
based precipitation datasets to TRMM product (Ceccherini
et al., 2015). Also, most studies used regression analyses
with model parameters spatially constant (multiple linear,
polynomial, exponential, etc.), assuming a spatial stationarity of
the relationship between precipitation and the proxy variables
(Duan and Bastiaanssen, 2013; Fang et al., 2013; Park, 2013;
Hunink et al., 2014). In addition, most studies limited their
analyses to satellite-based precipitation datasets and did not
take full advantage of all available data sources, combining
remotely sensed and in situ observations (Ceccherini et al.,
2015; Xu et al., 2015; Ezzine et al., 2017). In this study, a
new downscaling methodology based on earlier work of Duan
and Bastiaanssen (2013), Hunink et al. (2014) and Ceccherini
et al. (2015) was developed using four proxies (EVI, elevation,
slope, and aspect) in a Geographically Weighted Regression
(GWR) algorithm, in which regression parameters varied with
location. Four different satellite-based precipitation datasets,
including CMORPH, MSWEP, PERSIANN, and TRMM, were
downscaled with this new methodology from 25 to 1 km
resolution and combined with in situ observations from March
2000 to December 2012 in the Magdalena River basin in
Colombia.

Furthermore, previous studies did not analyze the impact
of precipitation downscaling on discharge simulations. Several
authors demonstrated that spatial distribution of precipitation
is one of the main sources of uncertainty in hydrological
modeling (Berne et al., 2004; Sangati and Borga, 2009). The
impact of spatial representation of precipitation on hydrological
model estimates is complex and it depends on the type
of precipitation (Bell and Moore, 2000), the hydrological
characteristics of the basin (soils, geology, river morphology,
vegetation cover, etc.), the hydrological model structure (Koren
et al., 1999) and the considered spatial and time scales
(Segond et al., 2007). Some studies stated that the impact of
precipitation spatial resolution on discharge simulation was
not significant (Gascon et al., 2015; Nkiaka et al., 2017).
However, most studies (Andréassian et al., 2001; Smith et al.,
2004; Schuurmans and Bierkens, 2006; Wagener et al., 2007;
Arnaud et al., 2011; Fu et al., 2011; Zoccatelli et al., 2011;
Emmanuel et al., 2012; Zhao et al., 2013; Lobligeois et al.,
2014) showed that better model performances were obtained
when representation of the spatial variability of precipitation
was improved. In this study, the impact of precipitation spatial
resolution on discharge simulations was investigated. Non-
downscaled and downscaled precipitation datasets were used to
force the distributed hydrological model OpenStreams wflow-
hbv. Lastly, the effect on discharge of a decrease in the
number of rain gauge stations used for precipitation downscaling
was analyzed. More than 40 hydrological simulations were
carried out with different network densities of in situ
precipitation data (Vischel and Lebel, 2007; Bardossy and Das,
2008).
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This study aims to analyze how sensitive discharge simulations
are to precipitation spatial resolution using Earth observations
and ground measurements. Developing a new downscaling
methodology which integrates satellite-based and in situ data
and understanding its impact on discharge estimates may have
broader implications for similar but data-poor river basins
globally.

STUDY AREA

The study area is the Magdalena River basin (Figure 1), which
is the largest fluvial system in Colombia, draining an area
of ∼257,000 km2 (about 24% of the total territory of the
country). The Magdalena River originates from headwaters
in the Colombian Andes at an elevation of 3,700m and it
runs for 1,612 km into the Western Caribbean, in the Atlantic
Ocean (Restrepo and Kjerfve, 2000). The main tributary of the
Magdalena River is the Cauca River on the Western part of the
watershed.

Average annual precipitation for the Magdalena River basin is
∼2,150mm year−1, with large inter-annual variability, especially
due to the effect of the El Niño-Southern Oscillation (ENSO)
phenomenon (Hoyos et al., 2013). Precipitation ranges from
1,000mm year−1 in the eastern mountains to more than
5,000mm year−1 in the western region of the basin. The area
under snow influence represents less than 0.1% of the total
area of the watershed. The climate in the basin is characterized
by two wet periods (March-May and October-November)
and two dry periods (December-March and June-September).
Average annual air temperature is ca. 28◦C and average
annual evapotranspiration is∼1,630mm year−1. Average annual
discharge at the outlet of the basin is∼7,200m3 s−1, varying from
4,050 m3 s−1 in March to 10,200 m3 s−1 in November (Camacho
et al., 2008).

Themain cities of Colombia, including Cali, Bogotá,Medellín,
and Barranquilla are situated in the Magdalena River basin and
almost 80% of Colombia’s population lives within the basin.
During the last decades, the basin has witnessed considerable
changes in land use, water, soil losses and a rapid increase of
natural resources exploitation due to the economic development
in the area (Restrepo and Syvitski, 2006). This recent situation
has increased the pressure on the Magdalena River basin, which
is the main source for human water consumption, agriculture,
hydropower generation, industrial activities and ecosystems
support.

Some recent initiatives have been carried out in the basin in
order to improve water resources management for the diverse
demands and at different scales, increasing availability, and
quality of hydro-meteorological data and models (Angarita et al.,
2013; Boodoo et al., 2014; Restrepo et al., 2015; Cruz-Roa et al.,
2017). The region frequently suffers from extreme events, such
as the large flooding event caused by the 2010–2011 La Niña
phenomenon (Hoyos et al., 2013) and the severe droughts as
a result of the 2015–2016 El Niño phenomenon (Hoyos et al.,
2017). Besides, a complex terrain orography, make challenging
to accurately estimate water resources in the basin, including
precipitation and discharge.

Frontiers in Earth Science | www.frontiersin.org 4 June 2018 | Volume 6 | Article 68

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


López López et al. Impact of Spatial Precipitation Downscaling on Discharge

FIGURE 1 | (A) Location of the Magdalena River basin in Colombia; (B) topography, main river network and urban areas within the basin; (C) weather stations used

for deriving the downscaled precipitation datasets; (D) weather stations used for evaluation, and (E) discharge stations and drainage sub-basins.

DATA

Precipitation Data
Satellite-Based Precipitation Data

Four satellite-based precipitation datasets were used in this
study:

- Climate Prediction Center MORPHing technique-CMORPH:

CMORPH precipitation dataset is derived from passive
microwave observations from low-Earth orbiting satellites
exclusively (such as AMSR-E and TMI aboard NASA’s Aqua
and TRMM spacecraft), and whose features are transported
via spatial propagation information entirely obtained from
geostationary satellite infrared data. The technique applied

to derive CMORPH precipitation data is not a precipitation
estimation algorithm, but a means to combine precipitation
estimates from existing microwave precipitation algorithms.
Infrared data are used to transport the microwave-derived
precipitation features during periods when microwave data are
not available at a location (Joyce et al., 2004).

- Multi-Source Weighted-Ensemble Precipitation-MSWEP:

MSWEP v1.0 precipitation dataset combines a wide range
of data sources, including gauges, satellites and atmospheric
reanalysis models. The long-term mean of MSWEP is based
on the elevation-corrected CHPclim dataset but replaced with
more accurate regional datasets where available. A correction
for gauge under-catch and orographic effects is introduced by
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inferring catchment-average P from discharge observations at
13,762 stations across the globe. The temporal variability of
MSWEP precipitation was determined by weighted averaging
precipitation anomalies from seven precipitation datasets: two
based solely on interpolation of in situ observations (CPCUnified
and GPCC), three on satellite remote sensing (CMORPH,
GSMaP-MVK and TMPA 3B42RT) and two on atmospheric
model reanalysis (ERA-Interim and JRA-55). For each grid cell,
the weight assigned to the gauge-based estimates was calculated
from the gauge network density, while the weights assigned to
the satellite- and reanalysis- based estimates were calculated from
their comparative performance at the surrounding gauges (Beck
et al., 2017).

- Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-PERSIANN:

PERSIANN precipitation dataset is derived using artificial neural
network function classification/approximation procedures based
on both infrared and daytime visible imagery by geostationary
satellites (such as GOES-8 and GMS-5). Model parameters of
PERSIANN precipitation algorithm are updated from passive
microwave observations from low-Earth orbiting satellites (Hsu
et al., 1997).

- Tropical Rainfall Measuring Mission—Multi-satellite
Precipitation Analysis 3B42—TRMM:

TRMM precipitation dataset combines remote observations
such as precipitation radar, passive microwave and infrared
from multiple low-Earth orbiting and geostationary satellites
and ground observations. Version 7 TRMM precipitation
estimated by the 3B42 algorithm was used in this study. TRMM
precipitation estimates are produced in four stages: (i) the passive
microwave precipitation estimates are calibrated and combined,
(ii) the infrared precipitation estimates are created using the
calibrated microwave precipitation, (iii) the microwave and
infrared estimates are combined, and (iv) rescaling to monthly
data is applied (Huffman et al., 2007).

Satellite-based precipitation data were provided at
25 km spatial resolution by the Consiglio Nazionale delle
Richerche (CNR) in Italy, as part of the FP7 European project
eartH2Observe (Levizanni and Dorigo, 2017). A non-exhaustive
overview of the satellite-based precipitation datasets is included
in Table 2.

In Situ Precipitation Data
Precipitation data from 1,118 weather stations within the
Magdalena River basin were used. Daily precipitation data
was provided by the Institute of Hydrology, Meteorology, and
Environmental Studies (IDEAM) of Colombia, covering the
period from March 2000 to December 2012. The locations of the
weather stations are shown in Figure 1.

Air Temperature and Evapotranspiration
Data
Daily air temperature and evapotranspiration data were
obtained from the WATCH Forcing Data methodology
applied to ERA-Interim reanalysis data (WFDEI) at a spatial

resolution of ca. 50 km (Weedon et al., 2014). The FAO
Penman-Monteith equation was used to derive reference
potential evapotranspiration. Air temperature and reference
potential evapotranspiration were downscaled from 50 to 1 km
resolution using the e2o-downscaling-tools (Weiland et al., 2015;
Schellekens and Weiland, 2017).

Vegetation Response Data: Enhanced
Vegetation Index
The Enhanced Vegetation Index (EVI) is an indicator of plant
greenness or photosynthetic activity based on how different
surfaces reflect different wavelengths of light. The EVI was
developed as an alternative vegetation index to overcome some
limitations of the Normalized Difference Vegetation Index
(NDVI), such as saturation of the signal in densely vegetated
and humid areas. The EVI was developed to maintain high
sensitivity to changes in areas with dense biomass, to reduce
the influence of the atmospheric conditions in the index value
and to minimize canopy background variations. Some previous
studies proved successful EVI applications in areas having high
biomass, including the Amazon forest (Huete et al., 2002; Bradley
et al., 2011). In this study, EVI data (MOD13A2) derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS)
on board the Terra satellite (from hereafter referred as EVI)
were used. EVI data are provided every 16 days at 1 km spatial
resolution. The post-processing steps include a re-projection and
masking of water bodies. Water bodies may present negative
EVI values leading to problems in the subsequent regression.
Therefore, water bodies were masked and corresponding EVI
values were removed. Subsequently, EVI values were interpolated
for those areas. The water body mask was obtained from the
NASA Shuttle Radar Topography Mission (SRTM) Water Body
Data dataset developed by the National Geospatial-Intelligence
Agency (SWBD, 2017).

Elevation, Slope, and Aspect Data
Digital Elevation Model (DEM) data from the NASA Shuttle
Radar Topographic Mission (SRTM) distributed by the
United States Geological Survey (USGS) was used. The vertical
error of the DEM is less than 16m (Sun et al., 2003). The DEM
at a spatial resolution of 3 arc-second (∼90m) was resampled
(averaged) to 1 km resolution. Slope and aspect were extracted
from the DEM using QGIS (QGIS, 2017).

Discharge Data
Daily discharge data from 22 gauging stations along the
Magdalena River and its tributaries were used for hydrological
model evaluation and provided by the Institute of Hydrology,
Meteorology and Environmental Studies (IDEAM) of Colombia.
Figure 1 shows the location of discharge stations and Table 3

includes the location, river and sub-basin area for each discharge
station.

METHODOLOGY

Firstly, the four satellite-based precipitation datasets were
downscaled to a finer spatial resolution of 1 km. Secondly, an
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TABLE 2 | Satellite-derived precipitation data.

Acronym Full name and details Data source(s) Spatial coverage Temporal coverage References

CMORPH Climate prediction center MORPHing technique (CMORPH) Satellite 60◦ N−60◦ S 1998–present Joyce et al., 2004

MSWEP Multi-source weighted-ensemble precipitation v1.0 (MSWEP) Gauge, satellite,

reanalysis

Global 1979–2015 Beck et al., 2017

PERSIANN Precipitation estimation from remotely sensed information

using artificial neural networks (PERSIANN)

Satellite 50◦ N−50◦ S 1983–2012 Hsu et al., 1997

TRMM Tropical rainfall measuring mission - multi-satellite

precipitation analysis 3B42 (TRMM)

Gauge, satellite 50◦ N−50◦ S 1998–present Huffman et al.,

2007

The datasets are sorted alphabetically by acronym.

TABLE 3 | Discharge stations used for validation.

Station name Station ID

IDEAM

Latitude Longitude River Area

(km2)

La Nueva 21257100 4.80 −74.97 Recio 610

Mateguadua 26107130 4.02 −76.16 Tuluá 664

Puente carretera 21137030 3.26 −75.25 Aipe 746

Puente negro 26147140 4.99 −75.86 Risaralda 1055

El Cóndor 22027010 3.33 −75.62 Ata 1058

Puente anori 27027090 7.20 −75.32 Anori 1310

San gil 24027010 6.55 −73.13 Fonce 1849

Cartago 26127040 4.76 −75.90 La Vieja 2736

Puerto

araujo–automat.

23127020 6.53 −74.09 Carare 5300

La ceiba 24017640 6.45 −73.31 Suárez 6831

Piedras

cobre–automat.

22057010 3.91 −75.11 Saldaña 7009

Remolino 24047020 6.61 −73.28 Suárez 9312

El Jordán 24037360 6.73 −73.10 Chicamocha 10197

La esperanza 27037010 8.03 −74.79 Nechí 13508

La virginia–automat. 26177030 4.90 −75.88 Cauca 22814

Puente iglesias 26207030 5.83 −75.71 Cauca 29022

Apavi 26247030 7.47 −75.33 Cauca 38807

Puente

santander–automat.

21097070 2.94 −75.31 Magdalena 15705

Puerto

salgar–automat.

23037010 5.48 −74.68 Magdalena 56905

Puerto

berrío-automat.

23097030 6.49 −74.40 Magdalena 74410

Regidor 25027410 8.67 −73.83 Magdalena 137636

Barbosa 25027530 9.04 −74.65 Magdalena 228192

independent evaluation of precipitation was carried out using
in situ precipitation data before and after downscaling. Thirdly,
satellite-based and in situ precipitation datasets at different
spatial resolutions were used to force the distributed hydrological
model OpenStreams wflow-hbv and the impact of precipitation
spatial resolution on modeled discharge was evaluated.

Downscaling Precipitation
A new precipitation downscaling model based on earlier work
of Duan and Bastiaanssen (2013), Hunink et al. (2014), and

TABLE 4 | List of variables and parameters used in the precipitation downscaling

model.

Symbol Description Unit

P satellite-based precipitation at 25 km mm

a intercept (GWR model parameter) mm

b slope parameter for DEM (GWR model parameter) mm m−1

c slope parameter for slope (GWR model parameter) mm

d slope parameter for aspect (GWR model parameter) mm

e slope parameter for EVI (GWR model parameter) mm

PD downscaled satellite-based precipitation at 1 km mm

1 residuals between in situ and satellite-based precipitation mm

F fraction of precipitation per day at 25 km –

FD fraction of precipitation per day at 1 km –

PDI donwscaled satellite-based precipitation at 1 km merged

with in situ observations

mm

Ceccherini et al. (2015) was developed and applied to estimate
precipitation at 1 km resolution from the four satellite-based
precipitation datasets. Model parameters and variables are listed
in Table 4. The downscaling procedure consists of three main
steps:

1. Spatial downscaling of monthly precipitation
2. Merging monthly downscaled precipitation with in situ

observations
3. Disaggregating from monthly precipitation into daily

values

Spatial Downscaling of Monthly Precipitation
An exhaustive review of relevant studies where spatial
downscaling methodologies were developed to increase the
spatial resolution of satellite-based precipitation datasets
was done. These downscaling methodologies use auxiliary
information from environmental variables available at fine
spatial resolutions, such as vegetation response, topographical
characteristics (elevation, slope, aspect, etc.), and humidity,
as predictors to estimate precipitation. In this study, four
environmental variables were used as a proxy to downscale
precipitation, including the vegetation response (EVI), elevation,
slope, and aspect. These variables were selected based on the
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hydro-meteorological characteristics of the Magdalena River
basin, considering the main factors that influence precipitation
in the region.

Initially, the relation between EVI and precipitation was
analyzed. The sensitivity of the vegetation state to precipitation
is cumulative (Immerzeel et al., 2005; Gessner et al., 2013),
which means that vegetation indexes, such as NDVI and EVI,
respond to precipitation with a lag time. Quiroz et al. (2011)
estimated the lag time in 1–3 months and Hunink et al. (2014)
considered a lag time of 1 week in their weekly regression models
between precipitation, elevation, climatology and NDVI. In this
study, EVI was used to avoid limitations of NDVI [see section
Vegetation response data: Enhanced Vegetation Index (EVI)].
An analysis was carried out to estimate the lag time between
precipitation and EVI. Basin average values of precipitation
and EVI were calculated for the entire time period (March
2000–December 2012). Correlation values between precipitation
and EVI were obtained considering lag times between 1 week
and 3 months (Table S1). The highest correlation values were
obtained with a lag time between precipitation and EVI of 1
month.

Similarly, the relation between topography (elevation, slope
and aspect) and precipitation was analyzed. Correlation values
between elevation and precipitation were obtained at daily,
weekly, and monthly temporal scales. The highest correlation
values were obtained at monthly scale and hence, precipitation
was estimated based on vegetation response and topography at
monthly scale.

Between the various functions that could be used to
relate precipitation with vegetation response and topography
(linear, second order polynomial, power, exponential, etc.), a
geographically weighted regression (GWR) model was selected,
which is a local form of multiple linear regression. The GWR
model is able to capture the spatial variability in the relationship
between precipitation, vegetation response and topography,
which would not be noticed in the other regression methods.
Moreover, Ceccherini et al. (2015) successfully downscaled
precipitation using the GWR method in South America, where
the Magdalena River basin is located.

The specific steps used for spatial downscaling of monthly
precipitation are described as follows:

(i) DEM, SLOPE, ASPECT, and monthly EVI were aggregated
by pixel averaging from the spatial resolution of 1 km to
the spatial resolution of the satellite-based precipitation
datasets, 25 km.

(ii) Using the GWR model, monthly precipitation, P, was
estimated based on DEM, SLOPE, ASPECT and monthly
EVI at 25 km resolution. The GWR supplied the coefficient
of determination of the regression r2 per pixel. All
possible linear combinations of variables (separately) were
analyzed because in some cases the relationship between
precipitation and auxiliary variables was stronger excluding
some of them. For example, the relationship between
precipitation and EVI may be weak in areas where the land
use was fragmented, hence excluding EVI improved the
model regression performance. The following GWRmodels

resulted in higher r2:

Pj = aj + bj · DEM + cj · SLOPE + dj · ASPECT

+ej · EVIj+1 (1)

Pj = aj + bj · DEM (2)

Pj = aj + bj · DEM + cj · SLOPE + dj · ASPECT (3)

Pj = aj + bj · DEM + ej · EVIj+1 (4)

where aj, bj, cj, dj, and ej were the GWR model parameters
at month j, varying with location and Pj is the estimated
precipitation at 25 km resolution at month j. For each grid
cell, the Pj and the GWR model parameters associated with
the highest coefficient of determination r2 were selected and
used for further downscaling.

(iii) Residuals were computed as the difference between Pj
and the initial precipitation dataset at 25 km resolution.
Assumptions of normality, non-autocorrelation and
homocedasticity of the residuals were checked. The GWR
models that produced residuals which did not meet these
assumptions were rejected. Normality of the residuals was
verified using histograms of the residuals and the Shapiro-
Wilk test (Shapiro and Wilk, 1965). Homocedasticity
was checked with the Breusch-Pagan test (Breusch and
Pagan, 1979) and autocorrelation was verified with the
Durbin-Watson test (Durbin and Watson, 1951).

(iv) The GWR model parameters were downscaled to 1 km
resolution using a cubic spline tension interpolator
(Ceccherini et al., 2015).

(v) Monthly downscaled precipitation at 1 km resolution,
PDj, was estimated based on the obtained GWR model
parameters and DEM, SLOPE, ASPECT, and monthly EVI
at 1 km resolution as follows:

PDj = aj + bj · DEM + cj · SLOPE + dj · ASPECT

+ej · EVIj+1 (5)

Merging Monthly Downscaled Precipitation With in

Situ Observations
To take full advantage of precipitation datasets available in the
region, downscaled satellite-derived precipitation can be merged
with in situ measurements from rain gauge stations. Some
previous downscaling studies (Immerzeel et al., 2009; Duan et al.,
2012; Duan and Bastiaanssen, 2013) compared different methods
to optimally combine in situ and satellite-based precipitation
datasets. In this study, the specific steps used for merging
monthly downscaled precipitation with in situ observations are
described as follows:

(vi) Monthly downscaled precipitation values at 1 km
resolution were extracted for the location of weather
stations and the difference between in situ precipitation
and monthly downscaled precipitation for each station was
calculated. These differences or residuals were spatially
interpolated using a cubic spline tension interpolator
to a resolution of 1 km, obtaining 1j. Inverse distance
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weighting (IDW), nearest neighbor algorithm and cubic
spline interpolation methods were tested and cubic spline
outperformed the other methods.

(vii) By adding PDj to the residuals 1j, monthly downscaled
precipitation are combined with in situ measurements at
1 km resolution, obtaining PDIj:

PDIj = PDj + 1j (6)

Disaggregating From Monthly Precipitation Into Daily

Values
For hydrological modeling and prediction of daily discharge,
daily precipitation estimates are needed. However, the procedure
described until here estimated precipitation at monthly temporal
scale. In this step, the fraction of precipitation per day
derived from precipitation datasets at 25 km resolution was
used to disaggregate monthly downscaled precipitation at 1 km
resolution into maps at daily time scale. Duan and Bastiaanssen
(2013) applied a similar methodology to disaggregate annual to
monthly precipitation. The specific steps for disaggregating from
monthly downscaled precipitation into daily values are described
as follows:

(viii) Precipitation at 25 km resolution that occurs during the ith
day was divided between the monthly total precipitation to
obtain the fraction of precipitation per day i:

Fi =
Pi

∑n
i=1 Pi

(7)

where n was the number of days of each month.
(ix) The fractions of precipitation per day at 25 km resolution,

Fi, were interpolated using a cubic spline tension
interpolator into a spatial resolution of 1 km, obtaining
FDi.

(x) Monthly downscaled precipitation at 1 km resolution was
multiplied with the corresponding fractions to obtain daily
precipitation:

PDIi = FDi · PDIj (8)

Precipitation Evaluation
To ensure an independent evaluation of precipitation before and
after downscaling, a split sample approach of the 1,118 weather
stations was used. The precipitation of 616 stations was used for
deriving the downscaled precipitation datasets and the remaining
502 stations were used for evaluation. These two station groups
were randomly selected such that they were equally distributed in
space over the catchment.

The accuracy of the different precipitation datasets at 25
and 1 km resolution was assessed by a number of commonly
used performance indicators (Immerzeel et al., 2009; Ceccherini
et al., 2015): coefficient of determination (r2), difference between
satellite-based, and in situ precipitation values and Root Mean
Square Error (RMSE).

Hydrological Modeling and Discharge
Evaluation
Hydrological Modeling
The distributed hydrological model OpenStreams wflow-hbv
(Schellekens, 2014) was used. The OpenStreams wflow-hbv
model is based on the HBV-96 model (Sælthun, 1996) and it is
programmed in the PCRaster-Python environment (Karssenberg
et al., 2010). It is freely available through theOpenStreams project
(Schellekens, 2016).

OpenStreams wflow-hbv is applied on a cell-by-cell basis and
for each grid cell it determines the water balance considering
the following three components: precipitation-snow routine
(including interception), soil moisture routine and runoff
response routine. To simulate the different runoff processes, the
soil is divided into two layers: the upper and lower zone. Daily
total runoff of every grid cell results from adding direct runoff,
interflow from the upper soil zone and baseflow from the lower
soil zone. The total runoff is accumulated from all grid cells and
routed using a kinematic wave function to obtain river discharge.
A schematic representation of the hydrological model is given in
Figure 2.

Land cover information was obtained from the global land
cover map GlobCover-2009 derived from observations of MERIS
sensor on board the ENVISAT satellite mission (Arino et al.,
2010). Soil information was obtained from the Food and
Agriculture Organization (FAO) Digital Soil Map of the World
(DSMW, 2007). The model version used in this study does not
include reservoirs. Daily simulations at 1 km resolution were
carried out for the time period March 2000 to December 2012.

Discharge Evaluation
The daily precipitation datasets at 25 and 1 km resolutions
were used to force the OpenStreams wflow-hbv model. Firstly,
in situ daily precipitation values at weather locations were
interpolated using the inverse distance weighting algorithm to
create spatial maps at 1 km resolution (various interpolation
techniques were tested, including splines, inverse distance
weighting and kriging with external drift, and inverse distance

FIGURE 2 | OpenStreams wflow-hbv model structure.
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weighting outperformed the othermethods). Then, OpenStreams
wflow-hbv was calibrated and validated using interpolated in situ
precipitation during 2000–2012. The year 2000 was used to spin
up the model until reaching a dynamical steady state. The time
periods 2001–2004 and 2005–2012 were used for calibration
and validation, respectively. Kling-Gupta efficiency (KGE; Gupta
et al., 2009) was selected as the optimization criterion, to avoid
problems that could occur when Nash-Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970) is used for model calibration (e.g., high
sensitivity to extreme values). Model parameters were calibrated
to optimize KGE values at 22 discharge stations.

Secondly, the impact on discharge simulations of a decrease
in the number of weather stations used in the downscaling
procedure was analyzed. Fourteen weather station networks
composed of 0, 4, 8, 10, 20, 30, 40, 50, 60, 80, 100, 200, 400,
and 616 stations were selected from the 616 rain gauges used
for deriving the downscaled precipitation datasets. A stratified
sampling technique was used to build the weather station
networks. This technique avoids problematic networks that may
result from simple randomly sampling, aiming uniform station
networks homogenously distributed over the basin. The specific
steps to build each station network are described as follows:

(i) The area of the basin was divided into different grid cells
using a spatial resolution of ca. 50 km.

(ii) A random sample of size ni from each grid cell was extracted
aiming for n1 + n2 + . . . + nk = n, where n is the total
number of weather stations of the network (4, 8, 10, 20, 30,
40, 50, 60, 80, 100, 200, 400). Minimum distance between
stations was considered to avoid taking stations that were
very close to each other.

(iii) Step (ii) was repeated 10 times to generate multiple
realizations of each subset of stations per grid cell of size
ni, which results in 10 different configurations of the entire
station network. This reduces the effect of poorly distributed
networks and the influence of undetected inhomogeneous
station records.

(iv) Precipitation values at weather stations were interpolated
using the inverse distance weighting algorithm to create
spatial maps at 1 km resolution for each of the 10 station
network configurations.

(v) Precipitation derived from each of the 10 station network
configurations was evaluated by calculating r2 and RMSE

and the spatial configuration with the highest performance
was selected.

This technique was applied repeatedly to obtain networks of n
number of rain gauge stations. Similar sampling approaches have
been successfully used in previous studies to analyze the effect
of sample size on precipitation and hydrological modeling (Janis
et al., 2004; Bardossy and Das, 2008; Xu et al., 2013).

Every generated precipitation dataset was used to force the
OpenStreams wflow-hbv and the effect on simulated discharge
was evaluated. Various statistical indicators were used to evaluate
model performance: KGE, Pearson’s correlation coefficient (r)
and RMSE. KGE equally measures bias and differences in timing
and amplitude, whereas r measures mainly differences in timing
of high and low discharge and RMSE differences in magnitude.

RESULTS

Precipitation Evaluation
Assessing the Performance of Precipitation Datasets

at 25 km
In order to evaluate how well satellite-based precipitation
datasets at 25 km resolution perform, Figures 3a–c show
the boxplots of three performance indicators, including
the difference (Figure 3a), RMSE (Figure 3b), and r2

(Figure 3c) between monthly satellite-based and in situ
observed precipitation. From Figure 3a, MSWEP and TRMM
precipitations show the largest agreement with in situ data
(differences close to 0). CMORPH slightly underestimates
precipitation, while PERSIANN largely overestimates it. From
Figure 3b, PERSIANN exhibits the largest RMSE values,
followed by CMORPH. Low values of RMSE come from
MSWEP and TRMM. From Figure 3c, MSWEP provides
the highest r2 values. High r2 values are also displayed with
TRMM, while CMORPH and PERSIANN show lower values. To
complete the evaluation of satellite-based precipitation datasets
at 25 km resolution, Figure 3d shows the boxplot of climatology
of monthly satellite-based and in situ observed precipitation.
MSWEP and TRMM capture the intra-annual variability
of precipitation during the year well, whereas CMORPH
and PERSIANN show larger differences with ground data.
PERSIANN displays a good agreement during the dry period
from December to March, but highly overestimates precipitation
during the rest of the year, especially from May to September.
CMORPH is able to reproduce precipitation variability, but with
a consistent underestimation. Precipitation differences could
be due to the fact that MSWEP and TRMM precipitation data
sources include in situ observations, whereas CMORPH and
PERSIANN do not.

Precipitation Downscaling Analysis
Figure 4 summarizes the results derived from the GWR analysis
at 25 km resolution. GWRmodel parameters andmodel variables
to estimate MSWEP precipitation are shown for May 2003.
Although in the GWR model, slope and aspect were considered
as predictors, results indicated that their contribution is minimal.
Therefore and for practical reasons, Figure 4 shows only EVI and
DEM predictors and the associated model parameters. Model
parameters show different spatial patterns. Slope parameter for
DEM is positively related to precipitation in the northern and
southern parts of the basin, but a negative relationship exists in
the central region (high precipitation and low elevation). Slope
parameter for EVI shows positive values for the relationship
between EVI and precipitation in most part of the basin, with
higher values in the central-eastern region.

Once the GWR analysis was completed, downscaled satellite-
based datasets were merged with in situ observations to estimate
precipitation at 1 km resolution. Figure 5 shows precipitation
datasets at 25 km resolution (first row), at 1 km resolution
(second row), and the residuals at 1 km resolution (third row) for
April 2000. Figure 5 reveals that precipitation in the central part
of the basin is indeed much higher (∼400mm month−1) than in
northern and southern regions (∼100mm month−1). The range
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FIGURE 3 | Boxplots of (a) the difference, (b) RMSE, and (c) r2 between monthly satellite-based precipitation at 25 km resolution and observed precipitation for the

502 validation weather stations. (d) Boxplot of climatology of monthly satellite-based and observed precipitation at 25 km resolution (average of 502 validation weather

stations).

of values is consistent with the monthly precipitation analysis
done by IDEAM in Colombia (IDEAM, 2017). Spatial patterns
of CMORPH, MSWEP, and TRMM precipitation datasets are
similar, except for some areas in the south-eastern part of the
basin (CMORPH in the first row of Figure 5). PERSIANN
differs in the spatial variability of precipitation, providing higher
estimates in most of the basin than the remaining precipitation
datasets.

The general precipitation patterns are well captured by the
PD (second row), with the central part wetter, corresponding
well with the original precipitation datasets. Residuals (1,
third row) show the amount of precipitation that cannot be
explained by the GWRmodel compared to in situmeasurements.
Negative residuals (yellow) indicate regions where precipitation
is overestimated. Positive residuals (blue) depict areas where
precipitation is less than expected according to in situ
information. Residuals of CMORPH, MSWEP, and TRMM are
close to zero (green) in the majority of the basin, whereas
residuals of PERSIANN are around −150mm month−1 with
values closer to zero in the southern part. In all precipitation
datasets, some isolated small areas with higher residuals can be
observed, which could be related to the complex orography and
the strong spatial variability of precipitation.

Assessing the Performance of Downscaled

Precipitation Datasets
To assess the performance of downscaled precipitation
datasets r2, the difference between satellite-based and in situ
precipitations and RMSE were calculated. Each indicator was

obtained for each weather station and was plotted and spatially
interpolated using cubic splines. Figure 6 shows the difference
between precipitation datasets at 25 km resolution (P, first
row) and at 1 km resolution (PDI, second row) and in situ
observations, giving an indication of the accuracy of the original
and final precipitation datasets over the entire basin.

At 25 km resolution (P, first row), MSWEP and TRMM show
similar spatial variabilities with the lowest absolute differences,
negative in the northern part (Sierra Nevada) and positive
in the southern part. CMORPH shows negative differences
for the whole basin, except for some spots, indicating an
underestimation of precipitation. On the other hand, PERSIANN
overestimates precipitation in the northern and central regions
and differences are reduced in the upstream part of the river.
At 1 km resolution (PDI, second row), differences are highly
reduced and their spatial patterns are similar for the four datasets.
These similarities in the precipitation estimates are due to the
high density of weather stations. The downscaled PERSIANN
dataset is an exception in the north-western region, which is due
to the high bias of this product at its original resolution.

Table 5 summarizes the statistical indicators of P, PD, and
PDI. These indicators were calculated by averaging the individual
indicators of all validation weather stations. Table 5 shows that
the GWR analysis alone already improves the accuracy, with
decreased RMSE and difference between satellite-based and
in situ precipitation and increased r2 (except for PERSIANN due
to the very poor performance of the original dataset). This shows
that the use of the GWR model is a necessary step to improve
the accuracy of satellite-based precipitation estimates. Merging
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FIGURE 4 | Spatial distribution of (A) average monthly MSWEP precipitation, (B) DEM, (C) average monthly EVI, (D) GWR slope parameter for DEM, (E) GWR slope

parameter for EVI, and (F) GWR intercept in May 2003 at 25 km resolution.

downscaled satellite-based precipitation with in situ observations
further improves the accuracy increasing r2 and reducing RMSE

and differences with ground data. The high density of weather
stations in the basin makes that the improvement due to the
combination with in situ precipitation data (∼83%) is higher than
the one due to the GWR analysis alone (∼17%). Lower density
networks may limit the spatial correction impact, emphasizing
the importance of the GWR analysis in data-poor river basins.

Hydrological Modeling and Discharge
Evaluation
The daily precipitation datasets at 25 and 1 km resolutions
(P, PD, and PDI) were used to force the OpenStreams wflow-
hbv model. Previously, the model was calibrated and validated
using in situ discharge data (Table S2). Further model calibration
could have been done, but the idea was to fairly represent the
main hydrological processes to assess the impact of various
precipitation datasets and their spatial variability on simulated
discharges.

Figure 7 shows simulated and observed discharge at La
Esperanza station. The upstream area of this station is
13,508 km2 (Table 3), which is covered by approximately
22 grid cells at 25 km resolution. As expected, discharge
estimates when the model was driven with MSWEP and
TRMM at 25 km resolution exhibit the highest agreement with
observations. The lowest performance is provided when the
model was forced with PERSIANN at 25 km resolution, with a
significant discharge overestimation from April to September,
in line with precipitation evaluation results. CMORPH results
emphasize the limitations of this product for precipitation
estimation in the basin, which tends to slightly underestimate
discharge.

Driving the model with the downscaled precipitation datasets
(PD and PDI) improves discharge simulation performance
increasing KGE values. For MSWEP and TRMM (Figures 3b,d),
the application of the downscaling procedure improves discharge
estimates to a lesser extent (1KGE∼ 0.02) than when CMORPH
(KGE ∼ 0.10) and PERSIANN (KGE ∼ 1.60) were used
(Figures 3a,c). Due to the good model performance when
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FIGURE 5 | Spatial distribution of CMORPH, MSWEP, PERSIANN, and TRMM precipitation datasets at 25 km (P, first row) and 1 km (PD, second row) and spatial

distribution of residuals at 1 km (1, third row) for April 2000.

MSWEP and TRMM datasets at 25 km resolution were used
(KGE ∼ 0.76), there are no significant discharge differences
between using downscaled precipitation without (PD) and with
(PDI) in situ observations. In this study, the spatial resolution
of the hydrological model, 1 km, was finer compared to that of
precipitation, 25 km. For hydrological models at 25 km resolution
or coarser, it is expected that the precipitation downscaling
procedure does not lead to further improvements on discharge
estimates.

Figure 8 summarizes discharge simulation performances
for the 22 gauging stations through boxplots of their KGE

and r values when the model was forced with precipitation
datasets at 25 km and 1 km resolutions (P, PD and PDI).
KGE and r values obtained when the model was forced
with precipitation datasets at 25 km resolution, P (purple) are
lower than when in situ interpolated data was used (orange).
Possible reasons could be the lower quality of satellite-based
precipitation datasets compared to in situ data and that
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FIGURE 6 | Interpolated difference between CMORPH, MSWEP, PERSIANN, and TRMM precipitation datasets at 25 km (P, first row) and 1 km (PDI, second row)

and in situ observations for the 2000–2012 period.

TABLE 5 | Statistical indicators of CMORPH, MSWEP, PERSIANN, and TRMM precipitation vs. in situ data (average of 502 validation weather stations).

Satellite-based—in situ [mm] RMSE [mm] r2 [-]

P PD PDI P PD PDI P PD PDI

CMORPH −19.93 −13.38 2.48 102.74 98.36 76.23 0.40 0.42 0.61

MSWEP 14.11 13.14 3.16 87.25 86.26 75.35 0.58 0.59 0.62

PERSIANN 45.30 46.89 2.25 163.88 164.74 77.76 0.26 0.25 0.59

TRMM 25.25 23.31 3.42 95.02 93.77 75.69 0.53 0.54 0.62

model parameters were calibrated with in situ precipitation
data.

In agreement with precipitation results in Table 5, KGE and r

increase when the downscaled precipitation PD was used (blue).
This improvement is higher when the model was forced with
downscaled precipitation merged with in situ observations, PDI
(red). When analyzing the discharge performance obtained with
PDI, the downscaling procedure manages to reduce the initial
differences between the original MSWEP, TRMM, CMORPH,
and PERSIANN precipitation datasets providing comparable
averaged KGE (∼0.57) and r (∼0.75) values. These values are
similar to those obtained when the model was forced with in situ
data, KGE = 0.57 and r = 0.74 (except for PERSIANN).

Due to the application of the precipitation downscaling
procedure, KGE increases were in the order of ∼0.10–0.50 and
correlation increases were in the order of∼0.02–0.40.

Once the impact of the downscaling procedure on discharge
estimates was analyzed, the influence of the number of stations

used in that procedure was further investigated. Figure 9 shows
that when increasing the number of weather stations in the
downscaling procedure, the performance of the hydrological
model driven by the precipitation datasets improves. CMORPH
precipitation is increased from ∼110 to 200 mmm month−1

and therefore, discharge is also increased from ∼3,000 to 4,000
m3 s−1. PERSIANN precipitation is reduced from ∼260 to
180mm month−1 and therefore, discharge also decreases from
∼7,000 to 4,500 m3 s−1. In general, no further variations occur
when increasing the number of weather stations above 100.
The upstream area at Barbosa station is 228,192 km2, hence
100 stations represent 2,282 km2 per weather station average
or a circle with a radius of ca. 27 km. A possible reason
behind no further improvements when increasing the number
of stations above 100 could be a value of decorrelation distance
of precipitation larger than 27 km. Contrary to CMORPH and
PERSIANN, MSWEP, and TRMM do not show a monotonic
tendency to increase or decrease when the number of stations
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FIGURE 7 | Daily observed discharge (black) and estimated discharge (orange, purple, blue, and red) time series at La Esperanza station (27037010) when the model

was forced with (a) CMORPH, (b) MSWEP, (c) PERSIANN, and (d) TRMM for the 2005–2007 period. The orange lines represent discharge estimates when in situ

precipitation data was used. The purple, blue, and red lines represent discharge estimates when satellite-based precipitation data was used at 25 km (P), at 1 km

(PD), and at 1 km merged with in situ observations (PDI).

FIGURE 8 | (A) KGE and (B) r values between daily simulated and observed discharge at the 22 discharge stations when the model was forced with in situ

precipitation data (orange) and satellite-based precipitation datasets at 25 km (P, purple), at 1 km (PD, blue), and at 1 km merged with in situ observations (PDI, red)

for the 2000–2012 period.
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FIGURE 9 | Monthly areal average precipitation (left vertical axis) and simulated (blue dots) and observed (green dashed line) average discharge (right vertical axis) at

Barbosa station (25027530) at 1 km resolution for the 2000–2012 period, derived with different number of weather stations (0, 4, 8, 10, 20, 30, 40, 50, 60, 80, 100,

200, 400, and 616). (A) CMORPH, (B) MSWEP, (C) PERSIANN, and (D) TRMM. Logarithmic scale was used for the horizontal axis.

increases, as expected. Precipitation and discharge vary similarly
until they reach constant values of∼190mmmonth−1 and 4,600
m3 s−1, respectively (100 stations).

Figures 10, 11 summarizes KGE and r results for the 22
discharge stations when changing the number of weather stations
in the precipitation downscaling procedure. Average values were
calculated from KGE and r values obtained at all discharge
stations.

As expected, the lowest model performance was observed
when downscaled precipitation was not merged with in situ data
(with some exceptions for TRMMandMSWEP). In general,KGE
and r values increase with increasing the number of weather
stations in a monotonic tendency. KGE and r variation ranges
differ between precipitation datasets. Average KGE values vary
from 0.31 to 0.57 for CMORPH (Figure 10A) and from 0.07 to
0.55 for PERSIANN (Figure 10C). KGE and r values obtained
when using MSWEP and TRMM show lower improvements
when the number of stations increases, varying from 0.43 to

0.57 for MSWEP (Figure 10B) and from 0.39 to 0.57 for TRMM
(Figure 10D). In spite of this general trend, sometimes the
increase of the number of stations does not imply an increase
in KGE and r values, or even causes a decrease. A possible
reason behind this may be related to the inclusion of weather
stations with lower quality data which would deteriorate the
satellite-based precipitation datasets.

Increasing the number of stations above 100 did not further
increase KGE or r values (the increase in average and median
KGE and r values becomes relatively small).

Once the impact of increasing the number of weather stations
for precipitation downscaling was analyzed, in situ precipitation
values at the same samples of weather stations were interpolated
(using the inverse distance weighting algorithm) to obtain
different spatial maps at 1 km resolution. These maps, based
only on in situ data, were used to force the hydrological
model and discharge simulation performance results are shown
in Figure 12.
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FIGURE 10 | KGE values (y-axis) between daily simulated and observed discharge when the model was forced with (A) CMORPH, (B) MSWEP, (C) PERSIANN, and

(D) TRMM precipitation datasets at 1 km resolution for the 2000–2012 period, derived with different number of weather stations (x-axis; 0, 4, 8, 10, 20, 30, 40, 50, 60,

80, 100, 200, 400, and 616). Logarithmic scale was used for the horizontal axis.

As expected, increasing the number of weather stations
used for in situ precipitation interpolation improves KGE

(Figure 12A) and r (Figure 12B) values. Discharge simulation
performance when the model was forced with downscaled
precipitation is better than when the model was forced
with in situ interpolated precipitation, considering the
same weather station network. For example, for a network
of 20 weather stations, higher KGE and r values were
obtained when driving the model with downscaled MSWEP
precipitation (KGE = 0.43 and r = 0.73) compared
to those obtained when in situ interpolated precipitation
was used (KGE = 0.36 and r = 0.66). This may
be due to the downscaled datasets that better capture
precipitation spatial variability combining different sources
of information (satellite-based and in situ precipitation,
vegetation response, elevation, slope, and aspect). These results
show the potential of the described downscaling methodology
for ungauged river basins or with limited number of rain gauge
stations.

DISCUSSION

Precipitation Downscaling and Evaluation
A new spatial downscaling procedure was developed and applied
to four different satellite-based precipitation datasets to estimate

precipitation at 1 km resolution in the Magdalena River basin in
Colombia.

Firstly, satellite-based precipitation datasets at 25 km
resolution were evaluated using in situ observations. Overall,
results showed the great potential of all satellite-based
precipitation data. As expected, MSWEP was the precipitation
dataset with the best performance since this dataset is the result
of combining several precipitation data sources, including
gauge, satellite, and reanalysis data and therefore, it takes full
advantage of the complementary nature of the different sources
(Beck et al., 2017). Although CMORPH performance could be
considered acceptable in terms of low RMSE and relatively high
r2 values, it tends to systematically underestimate precipitation
for each month. Dinku et al. (2010) showed similar CMORPH
results for Colombia and they partly attributed them to the
orographic warm rain processes. PERSIANN shows the worst
performance, which is consistent with previous studies in
the area (de Goncalves et al., 2006; Ceccherini et al., 2015).
Performance differences could be also due to the fact that
CMORPH and PERSIANN do not include a posterior gauge
correction, whereas MSWEP and TRMM do. Accompanying the
satellite-based precipitation by an error product could benefit
their use (Zeweldi and Gebremichael, 2009).

Secondly, a GWR model was used to downscale satellite-
based precipitation from 25 to 1 km resolution using auxiliary
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FIGURE 11 | r values (y-axis) between daily simulated and observed discharge when the model was forced with (A) CMORPH, (B) MSWEP, (C) PERSIANN, and (D)

TRMM precipitation datasets at 1 km resolution for the 2000–2012 period, derived with different number of weather stations (x-axis; 0, 4, 8, 10, 20, 30, 40, 50, 60, 80,

100, 200, 400, and 616). Logarithmic scale was used for the horizontal axis.

FIGURE 12 | (A) KGE and (B) r values (y-axis) between daily simulated and observed discharge when the model was forced with in situ interpolated precipitation at

1 km resolution for the 2000–2012 period, derived with different number of weather stations (x-axis; 4, 8, 10, 20, 30, 40, 50, 60, 80, 100, 200, 400, and 616).

Logarithmic scale was used for the horizontal axis.

information from vegetation response, elevation, slope, and
aspect. Other regression methodologies, such as multiple linear
regression or exponential regression (see overview in Table 1),
could be used. However, the GWR model can capture the
spatial variability in the relationship between precipitation,
DEM, slope, aspect and EVI, which would not be noticed
in the other regression models. GWR model parameters were
downscaled using a cubic spline tension interpolator based on
previous work by Ceccherini et al. (2015). Future studies might
investigate alternative techniques, such as kriging or spatial
autoregressive models. Additional variables, such as humidity,

wind speed or topographical roughness, may be included as
model predictors to further improve precipitation estimates.
Moreover, a lag time of 1 month between precipitation and EVI
was determined using average values over the entire basin. A
spatial analysis of the correlation between precipitation and EVI
with different lag times by regions may be done in the future,
limiting the use of EVI predictor to those areas with higher
correlations.

Thirdly, downscaled precipitation datasets were merged
with in situ observations to take full advantage of all possible
data sources available in the basin. When combining satellite
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and in situ observations, it is crucial to compare the rain
gauge stations used in the derivation of TRMM and MSWEP
with those locally available in the basin to derive independent
downscaled precipitation datasets. Moreover, alternative
interpolation techniques could be applied to interpolate
the residuals between in situ and downscaled precipitation
using auxiliary topographical information. Precipitation
evaluation results are in line with those obtained by Duan
and Bastiaanssen (2013) highlighting the importance of using
the GWR model prior to the combination with in situ data to
improve even further the accuracy of the final precipitation
products.

To derive in situ precipitation maps at 1 km resolution,
ground measurements at rain gauge stations were interpolated
using the IDW algorithm. Various interpolation techniques were
tested and IDW outperformed the other methods. In future
studies, the non-homogeneous spatial distribution of stations in
the basin may be analyzed in more detail and more sophisticated
interpolation techniques could be investigated. Special attention
should be paid to complex orographic areas in the south of the
basin where the density of stations is lower.

The fractions of precipitation per day at 25 km were
interpolated to a 1 km resolution to disaggregate precipitation
from monthly to daily values, using an approach based on the
downscaling methodology described by Duan and Bastiaanssen
(2013). However, this approach might largely neglect the space-
time correlation structure and the intermittent nature of rainfall,
i.e., the fact that precipitation fields contain zeros in space and
time. Alternative methodologies may be investigated to increase
the temporal scale from monthly to daily.

Precipitation was evaluated to in situ observations during
2005–2012 period following a split-sample approach. This period
represents fairly well the climate variability in the basin, however,
longer data records could bring additional information to the
study. Alternatively, a leave-one-out cross-validation procedure
could be used to extend the study time period to 2000–
2012 (Hunink et al., 2014). Moreover, additional performance
indicators could be calculated to further analyze the impact of
rain intensity, location and time errors, among others (Thiemig
et al., 2012).

Satellite-based precipitation datasets were downscaled to 1 km
resolution considering the complexity of the orography and
precipitation patterns in the basin. Further investigation on the
decorrelation distance at different temporal resolutions could
give more information to face the challenge of matching spatial
and temporal scale in precipitation monitoring.

Hydrological Modeling and Discharge
Evaluation
To analyse the impact of precipitation spatial resolution on
discharge estimates, in situ interpolated, non-downscaled, and
downscaled precipitation datasets were used to force the
OpenStreams wflow-hbv model. Previously, the hydrological
model was calibrated with interpolated in situ precipitation data
at 1 km resolution. Some previous studies calibrated the model
for each precipitation dataset to evaluate the sensitivity of model

parameters to precipitation (Andréassian et al., 2001; Nkiaka
et al., 2017). In this study, model parameters are not optimized
for each forcing aiming to avoid correcting precipitation errors
through fine-tuning the hydrological processes representation in
the model (sensitivity analysis).

Hydrological modeling results showed that precipitation
spatial downscaling improves discharge estimates, not only
in terms of reducing model bias, but also increasing model
ability to capture the overall flow variability between extreme
events, the timing and the shape of the hydrographs. Additional
performance indicators could be calculated to extend the
discharge evaluation, for example, by analyzing discharge peaks
and recession periods. Precipitation datasets at intermediate
spatial resolutions, such as 20, 15, 10, 5, or 2 km, could be derived
and used to force the hydrological model to give some indications
on appropriate spatial resolution for the determination of
discharge (Lobligeois et al., 2014; Gascon et al., 2015). The impact
of precipitation temporal resolution on simulated discharge may
be additionally investigated. Various studies (Littlewood and
Croke, 2008; Biemans et al., 2009; Ryo et al., 2014; Brauer et al.,
2016) have shown that temporal effects in precipitation datasets,
such as biases, may also have a deteriorating impact on discharge
simulations. Moreover, investigating temporal downscaling to
finer scales (3-hourly or hourly), could be of great added value for
specific hydrological applications in the basin, such as extreme
flood events in urban areas.

Downscaled satellite-based precipitation combined with
in situ data lead to the highest improvement on discharge
model performance. When increasing the number of rain
gauges stations used in the downscaling procedure, discharge
simulations improved in a monotonic tendency, with some
exceptions where performance indicators even decreased.
Previous studies (Bardossy and Das, 2008; Xu et al., 2013) have
found similar results and attributed them to the contribution of
individual weather stations and their location within the basin.
Xu et al. (2013) explained that when a low number of stations
is used, their location plays an important role. Although 10
stations cannot reproduce the spatial variability of precipitation
in comparison with all 616 stations, if they would be more evenly
spatially distributed within the basin that would significantly
impact model results. A possibility for future research would be
to further investigate the station networks that lead to a decrease
in KGE and r values by regions, especially in mountainous
areas where heavy orographic precipitation events occur, which
highly contribute to discharge. Moreover, alternative sampling
techniques could be used.

When analyzing the effect of the number of weather stations
used in the downscaling procedure, results showed that no
further improvements on discharge simulations were found
when increasing the number of stations above 100. This
gives an indication of the appropriate number of stations to
accurately estimate discharge. Additional analysis could be done
investigating, for example, the relative number of stations per
unit of basin area, or inversely, the average area per weather
station.

Discharge evaluation results are specific for this basin,
hydrological model, precipitation datasets, and resolutions. The
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impact of the number of rain gauge stations and the spatial
variability of precipitation on discharge simulations might
differ depending on topography, soil type, basin hydrological
characteristics and type of precipitation (Janis et al., 2004;
Bardossy and Das, 2008). In the future, downscaled precipitation
could be derived using the here-described approach (or an
adaptation depending on in situ data availability) for a selection
of basins around the world with diverse hydro-meteorological
characteristics.

Overall, the new developed precipitation downscaling
methodology showed great potential for hydrological modeling
applications at a river basin scale. Future studies might consider
using this downscaling procedure of satellite-based observations
to derive an optimal precipitation product for accurate discharge
simulations in ungauged river basins where scarce in situ data
are available.

CONCLUSIONS

This study investigated how discharge estimates of a distributed
hydrological model, OpenStreams wflow-hbv, can be influenced
by precipitation spatial variability in the Magdalena River basin
in Colombia. The effect of precipitation on discharge simulations
was assessed by running themodel with in situ and satellite-based
precipitation datasets at non-downscaled and downscaled spatial
resolutions. The conclusions of the study are as follows:

(i) At 25 km resolution, MSWEP and TRMM outperformed
CMORPH and PERSIANN precipitation datasets.

(ii) The downscaling procedure resulted in highly improved
accuracy of the four precipitation datasets. Vegetation,
elevation, slope, and aspect were successfully used in a GWR
model as proxies to precipitation leading to improvements
of ∼17% in RMSE, r2 and bias compared to in situ
observations. The combination with in situ precipitation
data further improved them, due to the high density of
weather stations in the basin. Lower density networks
may limit the spatial correction impact, highlighting the
significance of the GWR analysis in data-poor river
basins.

(iii) Discharge model estimates were in better agreement with
observations when MSWEP and TRMM were used to
force the model compared to CMORPH and PERSIANN
precipitation datasets at 25 km resolution.

(iv) Forcing the model with the downscaled precipitation
datasets considerably improved discharge model estimates,
with KGE increases in the order of 0.1 to 0.5.

(v) A higher number of weather stations was necessary in
the downscaling procedure with in situ data of CMORPH
and PERSIANN to achieve similar discharge performances
than those obtained with MSWEP and TRMM. However,
increasing the number of stations above 100 did not
further improve model estimates with any precipitation
dataset.

(vi) The downscaling of satellite-based precipitation datasets
resulted in better discharge estimates compared to using

only in situ precipitation data when using less than 100
weather stations.

Although results depend on the specifics of each basin,
the present study showed that an accurate representation of
precipitation spatial variability may help to improve discharge
simulations. Downscaling procedures, such as the one used in
this study, make globally available satellite-based precipitation
datasets an interesting alternative/complement to ground data
for hydrological modeling in poor-gauged or ungauged river
basins.
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