AUTHOR=Shellnutt J. G. , Pham Thuy T. TITLE=Mantle Potential Temperature Estimates and Primary Melt Compositions of the Low-Ti Emeishan Flood Basalt JOURNAL=Frontiers in Earth Science VOLUME=6 YEAR=2018 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2018.00067 DOI=10.3389/feart.2018.00067 ISSN=2296-6463 ABSTRACT=

The Late Permian Emeishan large igneous province (ELIP) is considered to be one of the best examples of a mantle plume derived large igneous province. One of the primary observations that favor a mantle plume regime is the presence of ultramafic volcanic rocks. The picrites suggest primary mantle melts erupted and that mantle potential temperatures (TP) of the ELIP were > 200°C above ambient mantle conditions. However, the picrites may represent a mixture of liquid and cumulus olivine and pyroxene rather than primary liquids. Consequently, temperature estimates based on the picrite compositions may not be accurate. Here we calculate mantle potential temperature (TP) estimates and primary liquids compositions using PRIMELT3 for the low-Ti (Ti/Y < 500) Emeishan basalt as they represent definite liquid compositions. The calculated TP yield a range from ~1,400 to ~1,550°C, which is consistent with variability across a mantle plume axis. The primary melt compositions of the basalts are mostly picritic. The results of this study indicate that the Emeishan basalt was produced by a high temperature regime and that a few of the ultramafic volcanic rocks may be indicative of primary liquids.