AUTHOR=Cai Lei , Alexeev Vladimir A. , Arp Christopher D. , Jones Benjamin M. , Liljedahl Anna K. , Gädeke Anne TITLE=The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska JOURNAL=Frontiers in Earth Science VOLUME=5 YEAR=2018 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2017.00111 DOI=10.3389/feart.2017.00111 ISSN=2296-6463 ABSTRACT=
Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research and Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979–2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950–2005), and the CESM1.0 projected (for 2006–2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-h interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP 8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.