AUTHOR=Tierz Pablo , Woodhouse Mark J. , Phillips Jeremy C. , Sandri Laura , Selva Jacopo , Marzocchi Warner , Odbert Henry M. TITLE=A Framework for Probabilistic Multi-Hazard Assessment of Rain-Triggered Lahars Using Bayesian Belief Networks JOURNAL=Frontiers in Earth Science VOLUME=5 YEAR=2017 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2017.00073 DOI=10.3389/feart.2017.00073 ISSN=2296-6463 ABSTRACT=
Volcanic water-sediment flows, commonly known as lahars, can often pose a higher threat to population and infrastructure than primary volcanic hazardous processes such as tephra fallout and Pyroclastic Density Currents (PDCs). Lahars are volcaniclastic flows of water, volcanic debris and entrained sediments that can travel long distances from their source, causing severe damage by impact and burial. Lahars are frequently triggered by intense or prolonged rainfall occurring after explosive eruptions, and their occurrence depends on numerous factors including the spatio-temporal rainfall characteristics, the spatial distribution and hydraulic properties of the tephra deposit, and the pre- and post-eruption topography. Modeling (and forecasting) such a complex system requires the quantification of aleatory variability in the lahar triggering and propagation. To fulfill this goal, we develop a novel framework for probabilistic hazard assessment of lahars within a multi-hazard environment, based on coupling a versatile probabilistic model for lahar triggering (a Bayesian Belief Network: