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In spring of 2011, a perennial storage of water was observed in the firn of the

southeastern Greenland Ice Sheet (GrIS), a region of both high snow accumulation and

high melt. This aquifer is created through percolation of surface meltwater downward

through the firn, saturating the pore space above the ice-firn transition. The aquifer may

play a significant role in sea level rise through storage or draining freshwater into the

ocean. We carried out a series of active source seismic experiments using continuously

refracted P-waves and inverted the first P-arrivals using a transdimensional Bayesian

approach where the depth, velocity, and number of layers are allowed to vary to identify

the seismic velocities associated with the base of the aquifer. When our seismic approach

is combined with a radar sounding of the water table situated at the top of the firn aquifer,

we are able to quantify the volume of water present. In our study region, the base of the

aquifer lies on average 27.7 ± 2.9m beneath the surface, with an average thickness of

11.5 ± 5.5m. Using a Wyllie average for porosity, we found the aquifer has an average

water content of 16± 8%, with considerable variation in water storage capacity along the

studied east-west flow line, 40 km upstream of the Helheim glacier terminus. Between

2015 and 2016, we observed a 1–2 km uphill expansion of the aquifer system, with a

site dry in summer 2015 exhibiting a water content of 530 kg m−2 in summer 2016. We

estimate the volume of water stored in the aquifer across the entire region upstream of

Helheim glacier to be 4.7 ± 3.1 Gt, ∼3% of the total water stored in firn aquifers across

the GrIS. Elucidating the volume of water stored within these recently discovered aquifers

is vital for determining the hydrological structure and stability of the southeastern GrIS.

Keywords: firn aquifer, seismology, active source, ice, meltwater, water retention, mass balance

INTRODUCTION

The mass balance of the Greenland Ice Sheet (GrIS) is negative and mass loss is accelerating as
melt and subsequent runoff increases (Ettema et al., 2009; Rignot et al., 2011; Enderlin et al.,
2014). The recent acceleration of mass loss, driven by meltwater runoff overtaking ice discharge
(e.g., van den Broeke et al., 2009; Enderlin et al., 2014; Jeffries et al., 2015), suggests that the GrIS
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will be a dominant contributor to sea level change in upcoming
decades (Fettweis et al., 2013) as temperatures continue to
increase across the Arctic and surface albedo decreases (e.g.,
Jeffries et al., 2015). Though it is clear that surface melt is
increasing across the GrIS, tracking meltwater as it travels
across the ice sheet to the sea is complicated and imprecisely
known (Rennermalm et al., 2013). For instance, it is estimated
that retention and refreezing prevents ∼40% of the meltwater
from reaching the ocean, however, large discrepancies still
exist between models (van Angelen et al., 2013; Vernon et al.,
2013). Humphrey et al. (2012) and Harper et al. (2012) made
observations of meltwater storage capacity and refreezing in
the firn across the western GrIS by firn coring and through
temperature modeling. Additional observations, however, are
necessary to accurately constrain surface mass balance and the
storage of water within the GrIS as the Arctic warms.

In 2011, a perennial storage of liquid water, i.e., a firn
aquifer, was observed in the southeastern GrIS through ice
coring and radar measurement (Forster et al., 2014; Koenig
et al., 2014). Aquifers are formed by meltwater percolating into
the firn in high-accumulation, high-melt regions (Forster et al.,
2014; Munneke et al., 2014) and are located extensively in the
southeastern and southern parts of the GrIS according to NASA
Operation IceBridge airborne radar and ground based radar
measurements (Miège et al., 2016). Though extensive in some
regions of the ice sheet, the exact flux and stability of meltwater
into and out of firn aquifer systems remains uncertain.

The water stored within a firn aquifer is ultimately either
drained out of the system or freezes into ice. If meltwater within
the aquifer is replenished at nearly the same rate as outflow, then
a stable aquifer system develops (Christianson et al., 2015). This
requires drainage through crevasses or similar features, leading
to meltwater addition to the bed of the ice sheet and eventually to
the sea. If meltwater flux into the aquifer system exceeds outflow
and saturates the pore space, the aquifer will buffer sea level rise
until storage capacity is reached and, a sudden release event could
happen (Koenig et al., 2014). In both cases, firn aquifers likely
play a role in sea level rise but also on ice dynamics, and hence ice
discharge, in the region by constantly supplying water to the base
of the ice sheet and/or by storing and then briefly releasing large
amounts of fresh water to the sea. Thus, improving the spatial and
temporal volume estimates of the water stored in a firn aquifer is
essential to quantify the aquifer’s contribution to sea level change.

The compressional velocity of seismic waves in snow/firn
(500–2000m s−1) and water (1450m s−1) is less than their
velocity in ice (3500–3900m s−1) (e.g., Albert, 1998). Firn
velocity will increase as pore space is removed via compaction
and/or the addition of liquid water. Seismic velocities are also
expected to increase if any liquid water in the pore space
freezes out. Active source seismic experiments have been used to
determine the stratigraphy and thickness of Antarctic ice streams
(e.g., Blankenship et al., 1986; Jarvis and King, 1995; Johnson and
Smith, 1997; Winberry et al., 2009; Horgan et al., 2012; Smith
et al., 2013). Seismic experiments can be executed on meters to
kilometer scales, using mechanical and/or explosive sources to
generate seismic waves for imaging tens to thousands of meters
into an ice sheet. Continuously refracted seismic waves that turn

or bottomwithin the upper 100m of ice sheets are sensitive to firn
velocity structure and the properties of the underlying ice. Active
source seismic studies are a valuable complement to ground/ice
penetrating radar (GPR) measurements and ice core studies
for the study of firn aquifers, as seismic waves can penetrate
into liquids where the radar signal is attenuated. In addition,
ice coring is comparably challenging as most drills are not
adapted for a transition of water and then colder ice temperatures
where refreezing in the borehole may occur (McMahon and
Lackie, 2006; Neff et al., 2012). Therefore, seismic studies can
provide information on ice properties in regions of the ice sheet
where meltwater infiltration and firn aquifers dominate the firn
column.

Here we use active-source seismic experiments to study the
uppermost 100m of the GrIS along a flow line at HelheimGlacier
to investigate the structure of a firn aquifer. Seismic velocities
are sensitive to the relative proportion of liquid water to ice and
provide a tool for mapping lateral variations in aquifer water
content and thickness. Our goal is first to constrain the local
thickness of the aquifer layer and then provide seismological
estimates for the volume fraction of water that can be compared
to other geophysical and hydrological estimates.

METHODS

Field Site
During two field seasons in July and August of 2015 and 2016,
we investigated the structure of a firn aquifer using seismic in the
southeastern GrIS, situated 70 kmwest from Sermilik Fjord in the
upper portion of Helheim Glacier, 40 km west from its terminus
(Figure 1A). Our field site was chosen based on the presence
and structure of the firn aquifer determined by NASA Operation
IceBridge airborne radar measurements and ice core data from
the region (Forster et al., 2014; Miège et al., 2016). This field site
was positioned to assess the impact of the firn aquifer on a tide-
water glacier contributing to sea-level rise through ice discharge
and melt (Enderlin et al., 2014). Past field campaigns using radar
soundings established that the water table is varying spatially
between 10 and 20m below the surface (Forster et al., 2014;Miège
et al., 2016), and ice-coring placed the firn-ice transition at 30m
depth (Koenig et al., 2014). Gogineni (2012) used multi-channel
coherent radar sounding to determine the ice sheet is 800–1000m
above sea level (a.s.l.) in the region. During the two field seasons,
the aquifer site was also assessed by a range of hydrological and
other geophysical methods, including hydrological conductivity
measurements from slug tests, magnetic resonance soundings,
density determined from ice cores, and aquifer depth from radar
profiling (Miller et al., in review).

Seismic Refraction Experiment
To assess the structure of the firn aquifer and measure the
depth of the aquifer-ice transition, we used a series of active
source seismic refraction experiments situated every 1–2 km over
a profile 15 km in length (Figure 1C). Each experiment was
positioned parallel to the local east-west ice flow line defined by
past radar investigations. We used two linear array geometries
with geophones spaced every 5m; (i) a 115m long array in 2015
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FIGURE 1 | Location of the firn aquifer field site in southeastern Greenland. (A) Geographic context of the field site, Helheim Glacier (black circle). (B)

Geometry of seismic deployments; geophones (blue triangles) and source locations (black circle) for summers of 2015 and 2016. Note that in 2016 there were two

overlapping arrays (inverted and regular triangles) and the source locations were occupied twice. Values beneath each source indicate the number of shots stacked at

the location. (C) Locations of seismic refraction lines; hatches indicate location of first and last geophone in the station geometry shown in (B). Drill sites (DS) from

each year are also indicated. Surface topography is obtained from a WorldView-1 (DigitalGlobe©) digital elevation model generated by the Polar Geospatial Center;

elevation contour interval is 25 m.

(24 stations) and (ii) two 115m arrays that overlapped at the
first station in 2016 (47 unique stations, 1 duplicated location)
(Figure 1B). The seismic line was instrumented with Sercel 40
Hz vertical-component geophones. We buried the geophones
5–25 cm into the firn to improve the signal quality and isolate
them from noise sources. The burial depth introduced 0.10–
0.25ms of uncertainty into seismic wave travel times, but this
uncertainty is similar to or less than the error in picking the
P-wave onsets (0.5–1.0ms) and surface roughness, and is not
considered further. In general, the sources of noise at each
site were minimal, consisting of blowing wind or snow, distant
generator noise, small disturbances in the firn from daily melt,
or human movement. Noise conditions were typically better in
the morning when the firn was still frozen, and deteriorated
in the afternoon as the surface became softer and underwent
melt. Seismograms were recorded on a Geometrics Geode
multichannel data recorder using a record length of 1 s with a
sampling rate of 62.5 µs.

For the active source, we manually struck a 30 × 30 cm,
1.5 cm thick steel plate with a 8-kg sledgehammer, producing
seismic waves with a dominant frequency of 150–200Hz. Where
appropriate, multiple hammer strikes (or “shots”) were stacked
to enhance the signal-to-noise ratio of waves recorded from the
shot location. The initial hammer strike would typically settle
the plate into the surface, and subsequent shots would compact
the underlying snow by 1–2 cm. Any uncertainties in travel time
introduced by the settling of the plate between shots is expected
to be minimal, and similar to the uncertainty introduced by the

burial of the geophones (0.10–0.25ms). The attenuation in this
environment is quite high (Q= 5–10) so more shots were needed
as we moved the source further from the geophone array to
produce high signal-to-noise arrivals for analysis.

Two separate source configurations were used in the field
experiment. In 2015, sources were spaced regularly with a
separation of 10m and with each consisting of a stack of 3 shots.
The number of shots was determined experimentally in the field
by determining the minimum number of hammer strikes needed
to confidently identify the P-wave onset arriving at the most
distant station. The first source was collected 80m off the line
from the first geophone, while the last source was positioned 80m
off the line from the last geophone (Figure 1B). This produced
a maximum source-station offset of 195m in the 2015 array
geometry.

In 2016, we modified the source geometry to allow us to
sample deeper into the ice sheet, with sources spaced 30m
apart and up to 270m from the first station in our double
array geometry, for a maximum source-station offset of 385m.
Each source location was occupied twice; the line was reshot
after repositioning the 24 geophones into the second 115m
array configuration (array 1 and 2 in Figure 1B). The initial
source was positioned 270m from the first geophone, with
multiple shots stacked to produce an acceptable signal-to-noise
in the recordings. The numbers beneath each source location in
Figure 1B indicates the number of shots stacked at each source.
The number of shots was determined by experimentation in
the field and designed to equalize data quality across different
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hammer operator abilities and endurance, and to optimize
the unfiltered signal-to-noise quality of the seismograms (e.g.,
Figure 2).

The final dataset consisted of operators stacking over
7000 shots, 18 separate seismic lines, and 21,312 individual
seismogram recordings from the geophone stations.

Data Processing
Continuous refractions of P-waves are produced by a gradational
increase in seismic velocity that bends downward diving waves
gradually back upwards toward the surface (e.g., Shearer, 2009).
The travel time of the wave is dependent upon the velocities
encountered along the raypath of the seismic wave. If any seismic
discontinuities are present at depth, a head wave forms along the
interface with a travel time slope proportional to the underlying
layer seismic velocity. A simple model of a water saturated layer
within a gradually increasing firn velocity is shown in Figure 2B,
and illustrates how the raypaths of continuous refractions are
sensitive to velocity changes in such a medium. Therefore, using
travel times of the first arriving P-wave, it is possible to recover
the underlying seismic velocities.

Seismograms were visually examined to select the onset
travel times of the refracted P-waves arrivals and determine the
underlying seismic velocities. Each seismogram was Butterworth
band-pass filtered between 40 and 200 Hz. This filtering range
was chosen to remove high and low frequency environmental
noise and isolate the seismic arrivals. Each P-wave arrival was
selected manually according to the first coherent swing deviating
from zero amplitude. Consistency between picks was achieved
by examining all data for a shot simultaneously and picking on
the same polarity across all seismograms (Figure 2). The picking
error was defined by pixel accuracy of our picking tool (2–3
pixels), and was less than 0.5 ms.

Inversion for Ice Seismic Velocity Models
To determine the seismic structure of the firn and aquifer, we
invert the travel time picks of the continuously refracted waves
for one-dimensional (1D) velocity models. Past active source
surveys of glacial ice have fit refraction data with an exponential
function (e.g., Kirchner and Bentley, 1979). In this study, sharp
increases in velocity from the top and bottom of the firn aquifer
were anticipated, so we chose to represent the glacier with
constant velocity layers in depth (e.g., Shearer, 2009). A further
assumption is that the first arriving refracted waves are insensitive
to decreases in velocity. In effect, the data could be equally well fit
by models with an arbitrary number of low velocity layers. We
therefore look for models with velocity increasing with depth. In
order to constrain decreasing velocities, other parts of the seismic
wavefield—particularly reflected waves and surface waves—could
be incorporated in future efforts.

The inversion of first arrivals for layered structure is non-
unique in that many velocity models could adequately explain
the observations. Instead of inverting for the singular best fitting
velocity model, our approach is to instead generate a large
number of 1D models that fit the data to within the variance in
the travel time picks.

We generate this chain of models using a reversible-jump
Markov chain Monte Carlo algorithm (Green, 1995). New
models in the chain are proposed by changing the properties
of one layer in the current model. In addition to the varying
the depth and velocity a layer, we also allow layers to be added
or removed (i.e., the transdimensional approach, Bodin and
Sambridge, 2009). Proposed changes in velocity and layer depth
are randomly drawn from a normal distributions around their
current values with standard deviations of 50m s−1 and 2m
respectively. The depth of proposed new layers is chosen at
random, and the velocity drawn at random from between the
layers above and below. The velocities are constrained to be
between 0 and 4500m s−1 and the layer depths between 0 and
75 m.

For each proposed new model, the misfit between the
observed and modeled travel times is calculated. The model is
accepted or rejected based on the change to the misfit and the
number of layers (Metropolis et al., 1953). The preferred models
explain the data with the fewest number of layers. At regular
intervals, the current model is added to an ensemble solution,
and in the long term, the frequency with which a model appears
in the ensemble is proportional to the probability that it explains
the data.

We interpret these the model ensembles to estimate the base
of the aquifer and the velocity of the solid ice underlying it.
There are two main properties that we can derive from the
ensemble of 1D models. First, we find the distribution of possible
velocities at each depth (Figure 3A), which allows us to compute
a mean velocity and standard deviation. Second, by finding the
number of models that place a layer boundary within a certain
depth range, we find the probability that there is an increase in
velocity at each depth (Figure 3B). From this, we can estimate
the confidence intervals on the depths of different interfaces.

RESULTS

Overview of Results
The velocity profiles and discontinuity histograms derived from
the inversion are interpreted to estimate aquifer bottom depth
(Figure 4). We define the base of the aquifer as the transition
from liquid saturated pore space to where the liquid is frozen into
ice, which manifests as a transition from increasing to a higher,
nearly constant seismic velocity with depth. This definition is
derived from ice cores in our study area that showed the base
of the aquifer is associated with the onset of clear ice layers
resulting from the freezing of aquifer water. We manually select
the deepest, most probable discontinuity associated with this
boundary (e.g., Figure 3B) and use the surrounding shape of the
discontinuity histogram to select the minimum and maximum
depths defining the uncertainty in the pick (Table 1). We also
derive the local seismic velocity of the ice by selecting the
velocity 3–4m beneath the aquifer layer. As our experimental
design was not optimized for imaging the top of the aquifer, we
independently obtained depth to the water table from ground
penetrating radar reflections that were collected in the field in
tandem with the seismic data (Miège et al., 2016). The GPR
depths to the water table are estimated from the two-way-travel
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FIGURE 2 | Example active source seismograms, raypaths, and P-wave

travel times measured at Site 3 of the study area. (A) Vertical component

seismograms with the maximum amplitude of each trace normalized to unity.

Interpreted seismic arrivals are labeled in the plot. (B) Theoretical raypaths for

P-waves traveling in the hypothetical velocity model on the right. (C) Travel

time picks for first arrivals of P-waves at Site 3. The gray regions indicate the

distances where P-waves turn and refract: (i) at the water table, (ii) within the

firn aquifer and at the ice transition, (iii) within the underlying glacial ice.

time of the radar electromagnetic wave between the snow surface
and the water-table surface, with a calculated error of ±0.5m.
The aquifer thickness is then the difference between the GPR-
derived water table depth and the seismically derived base of the
aquifer. A summary of these measurements for each site in our
study region is presented in Table 1.

Aquifer Thicknesses
The depth from both the radar-obtained measurements of the
top and seismic-derived measurement of the bottom of the

FIGURE 3 | Example model output from Site 11 from the

transdimensional reversible-jump Markov chain Monte Carlo

inversion. (A) Velocity profile. The mean velocity of models in the ensemble

solution is shown as a black line, and the gray region shows the 95%

confidence interval. (B) Histogram showing the proportion of models in the

ensemble with an increase in velocity at each depth. We interpret this to find

the likelihood that a boundary between layers occurs in a given depth range.

aquifer are summarized in Figure 5. On average, the base of
the aquifer lies at 27.7 ± 2.9 m, with an average aquifer
thickness of 11.5 ± 5.5m. While there is temporal and spatial
variations in the depth of the water table (Miège et al., 2016),
the base of the aquifer appears stable between the 2015 and

2016 field seasons. We note that there is greater uncertainty
in the 2015 measurements; this owes to the different array
design, as the shorter effective apertures used in 2015 (Figure 1B)
had less sensitivity to the base of the aquifer than the 2016
design. This is illustrated for 2015 by the two coincident
seismic and GPR depths of the aquifer bottom and top in
Figure 5. In this case, the inversion produced results with the
largest velocity change near the depth of the water table, but
seismic sampling was apparently not deep enough to capture
the base, an issue rectified by the larger aperture of the 2016
measurements.

Ice Seismic Velocity
At each site, the seismic velocity of the glacial ice and its
standard deviation were derived from the 1D inversion at a
depth 3–4m below the inferred base of the aquifer (Figure 6).
We find significant variation between the ice velocities as a
function of location along the profile (Figure 1B). On average,
the ice in our study region has a velocity of 3590 ± 133m s−1,
however we note that in 2015 we observed more variability in ice
seismic velocities (3400–3900m s−1) than in 2016 (3700–3800m
s−1) for the downslope regions. We attribute this difference
to the larger array aperture in 2016 that provided improved
sensitivity to the deeper ice structure compared to the 2015
array. We calculate that the deepest continuously refracted waves
for the 2015 array reached a depth of 30–35 m, while the
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FIGURE 4 | Mean 1D velocity profiles derived from the inversion of travel times measured in the 2016 seismic experiments (solid black lines). The sites

locations are as indicated in Figure 1. Light blue is the unsaturated firn, dark blue bands indicate the aquifer layer, and cyan the underlying ice. The water table depth

(top dashed line) is derived from radar data, while the aquifer base (lower dashed line) is inferred from the probability of a seismic velocity increase (from 0 to 0.4)

associated with the base of the aquifer (Figure 3B).

TABLE 1 | Aquifer and ice properties of our seismic survey sites upstream of Helheim glacier.

Site Latitude Longitude Year E D H Err Vaq V ice Φ

1 66.367 −39.532 2016 1770 18.35 6 +1/−1 3111 3403 8

2 (a) 66.366 −39.485 2016 1755 16.27 9 +1/−2 3222 3452 6

2 (b)a 66.366 −39.481 2015 1753 16.07 – +4/−3 – 3505 –

3 66.365 −39.434 2016 1711 13.99 13 +2/−3 2984 3506 17

4 66.365 −39.403 2016 1710 12.63 9 +2/−2 3097 3532 12

5 66.363 −39.366 2016 1691 10.94 17 +2/−3 2792 3600 22

6 (a) 66.362 −39.311 2015 1663 8.42 14 +3/2 3195 3631 15

6 (b) 66.361 −39.308 2016 1661 8.37 11 +1/−1 3007 3668 20

7 66.360 −39.289 2016 1647 7.50 8 +3/2 3001 3711 22

8 (a) 66.357 −39.238 2016 1618 5.20 8 +2/−3 3458 3751 6

8 (b) 66.357 −39.234 2015 1615 4.99 1 +6/−4 3200 3580 10

9b 66.355 −39.212 2015 1589 4.14 – +3/−3 – 3448 –

10 (a) 66.355 −39.194 2016 1560 3.24 6 +3/−1 3000 3689 21

10 (b) 66.355 −39.184 2015 1545 2.83 17 +2/−2 3056 3812 22

10 (c) 66.354 −39.181 2015 1544 2.71 14 +3/−3 2854 3626 28

10 (d) 66.354 −39.178 2015 1543 2.59 21 +7/−6 3117 3883 21

10 (e) 66.354 −39.176 2015 1542 2.36 6 +6/−2 2779 3414 25

10 (f) 66.354 −39.173 2015 1542 2.25 8 +1/−2 2974 3467 16

11 66.354 −39.159 2016 1538 1.69 8 +5/−2 2925 3683 25

12 (a) 66.352 −39.131 2016 1518 0.41 20 +3/−3 3017 3631 19

12 (b) 66.352 −39.122 2015 1519 0 16 +3/−4 2918 3417 19

12 (c) 66.352 −39.124 2015 1519 0 19 +3/−2 2969 3563 17

Sites sharing similar locations are labeled with a–f. Measurements and observations are defined as: E surface elevation (m a.s.l.), D the relative distance from Site 12 (km), H the computed

thickness of aquifer (m) and Err is the uncertainty in the thickness measurement (m) (Section Aquifer Thicknesses), Vaq is the average velocity of aquifer (m s−1) lying between the radar

top and seismic base, Vice is the average velocity of ice in the underlying glacier (m s−1) (Section Ice Seismic Velocity), and Φ is our estimated water content (%) (Section Water Content

and Volume).
aNo aquifer detected by GPR measurements.
bUnconstrained bottom of aquifer by seismic measurements.

continuously refracted wave in the 2016 survey reached a depth
of 50–55m.We also observed a systematic increase in ice velocity
moving downslope to Site 9; this may represent the addition of

ice lenses, compaction processes, increased ice flow or frozen
aquifers (Harper et al., 2012). We explore this further in the
discussion.
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FIGURE 5 | Summary of measurements of the top of aquifer from GPR (red, error ± 50cm) and seismic determined bottom of aquifer (black; errors

from Table 1) along the (A) Summer 2015 and (B) Summer 2016 field sites.

FIGURE 6 | Velocity of the ice underlying the firn aquifer, as measured in the summer of (A) 2015 and (B) 2016. Error bars are derived from the 1D inversion

(Figure 3B).

Water Content and Volume
Seismic velocities are sensitive to the relative fraction of liquid
and solid in a two-phase interconnected mixture (Biot, 1956;
Hajra and Mukhopadhyay, 1982). We can relate these two
quantities using (Equation 1) (Wyllie et al., 1956), which
describes the contribution of water content (φ) to the P-wave
velocity (vaq) observed in the aquifer layer of each seismic site.

φ =
vH2O

(

vice�vaq − 1
)

(

vice − vH2O

) × 100% (1)

The value of φ is proportional to the relative seismic velocity
of the water in the saturated pore space, (vH2O = 1450m s−1;
Shearer, 2009), the seismic velocity of ice (vice) that we derive
from our inversion results (Table 1), and the average seismic

velocity of the aquifer Vaq, also in Table 1. Our porosity estimate
from this method is an upper bound as we exclude the effects
of air bubbles trapped within the saturated pore space (∼6% on
average, Koenig et al., 2014), which would further reduce seismic
velocity.

We observe spatial and temporal changes in water content

within the aquifer (Figure 7). We omit locations where we could

not determine the aquifer base or water table, and sampling of

the aquifer at higher altitudes further to the west was limited

to one site in 2015 (Site 2b). At this location, no reflection in
the GPR data corresponding to the water table was identified,

so we interpret this region as having minimal water content in
2015. In 2016, Site 1 was dry, while Site 2a situated near Site 2b
indicated the presence of water in both the seismic and radar
investigations (Figure 7). These observations confirm that the
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FIGURE 7 | Seismic velocity-derived water content (Φ) of the saturated pore space within the firn aquifer for years 2015 and 2016. Error bars are derived

from the uncertainty in the thickness measurements.

aquifer is expanding inland to the west and at higher elevations,
which is in agreement with airborne radar and remote sensing
observations (Jeffries et al., 2015; Miège et al., 2016). In both
years, we calculate that the average water content of the aquifer
saturated zone ranges from 8 to 24%.

We then use aquifer water content to calculate firn storage
capacity MH2O (in kg m−2) for each site by estimating the total
mass of water stored per 1 m2 of aquifer:

MH2O = φHρ. (2)

where H is aquifer thickness (m), φ is the water content (%),
and ρ is the density of water (1000 kg m−3). Figure 8 shows
the result of this calculation for firn water storage capacity at
each site. We calculate that the aquifer in our study region has
an average storage capacity of 2070 ± 1360 kg m−2. There is
a general increase in water storage capacity within the aquifer,
moving from a minimum at the highest elevations to the west,
and increasing downslope to the east.

DISCUSSION

Effective media estimations require knowledge of the matrix
and fluid velocities to determine the bulk velocity of a fluid-
filled medium (e.g., Biot, 1956; Wyllie et al., 1956). Here we
assign a value of 1450m s−1 for liquid water and 343m s−1

for air (Shearer, 2009). An assembled dataset of laboratory
and in situ measurements of firn and ice velocity presented in
Kohnen (1974) show that polycrystalline ice at 0◦C should have
a seismic velocity of 3795m s−1. This is comparable, given the
uncertainties, to the highest velocities observed in our study
region in 2015, 3883 ± 165m s−1 at site 10 days; in 2016, 3751
± 20m s−1 at site 8a. However, the majority of sites across
our study region are systematically slower than this expected
value for ice, up to 10% less at Site 1. In the 2015 active

source experiments, this discrepancy can be attributed to the
195m effective array aperture and incomplete sampling of the
region beneath the aquifer. The continuously refracted seismic
waves in these experiments refracted very near the base of the
aquifer (25–30m) and may not have sampled deep enough to
resolve ice velocity. This is supported by the comparably higher
errors derived from the inversions of the ice seismic velocity
in 2015 vs. 2016 (Figure 6). In the 2016 experiments, there is
a systematic increase in seismic velocity derived from Site 1
(3403 ± 11m s−1) eastward and downslope to Site 8a (3751
± 20m s−1), and then a small decrease moving eastward and
downslope to Site 12a (3631 ± 18m s−1). For these experiments
the effective array aperture is 385m, with the deepest diving
rays sampling near 50–55m depth, well below the base of the
aquifer. Given this deeper sampling, we interpret the pattern
of ice velocities in 2016 as a well-resolved feature of the study
region. Furthermore, since these ice velocities are up to 10% less
than that of polycrystalline ice, we suggest that the base of the
firn aquifer in these locations cannot correspond to the pore
closure depth within the firn, and is associated with a different
mechanism.

In situ measurements of firn and ice velocity from Kohnen
and Bentley (1973) show that dry firn velocities increase
exponentially with depth and are related to the mechanisms
driving compaction within the firn. Densification in the upper
11–14m of firn is driven by mechanical rearrangement of grain
boundaries, and then switches to recrystallization of grains down
to 56–64m depth. Below these depths, any further densification
results from the compression of air bubbles in the ice. Liquid
water percolating into and through the firn would descend to
a depth where it either reaches an impermeable boundary (e.g.,
pore closure at the firn-ice transition) or falls below 0◦C and
freezes into the pore space. The freezing depth in our study
region occurs near 30–35m depth (Koenig et al., 2014) and is
shallower than the expected depth of pore closure (56–64m)

Frontiers in Earth Science | www.frontiersin.org 8 February 2017 | Volume 5 | Article 10

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Montgomery et al. Firn Aquifer Seismic Structure

FIGURE 8 | Aquifer water storage capacity across our study region. (A) Elevation profile along flow line and location of the major change in slope across our

study region. Surface topography is obtained from a WorldView-1 (DigitalGlobe©) digital elevation model generated by the Polar Geospatial Center. (B) 2015

measurements shown in cyan, 2016 measurements shown in black. Error bars are determined from the uncertainty in the water content measurements. (C) Inferred

structure of the Greenland ice sheet aquifer.

reported by Kohnen and Bentley (1973). The base of the aquifer
in our study (27.7 ± 2.9 m) is therefore closer to the freezing
depth than the pore closure depth, so we infer that the seismic
velocity jump at the base of the aquifer corresponds to freezing
of liquid water into the pore space. Since the firn at this depth
has not completely recrystallized into ice, the effective velocity
is dependent upon the amount of frozen water added at the
base of the aquifer. We also observe multiple 0.2–0.5m layers
of clear ice in cores drilled in the summers of 2015 and 2016
down to depths of 55m (Koenig et al., 2014). The clear ice
layers are more abundant in cores drilled further eastward and
downslope (Figure 1C). Clear ice forms by freezing of a layer
of older aquifer water; addition of material to the ice sheet will
compact and drive the aquifer layer below the freezing isotherm.
It is expected that regions with older aquifer would therefore
be underlain by a series of frozen clear ice layers. Subsequent

addition of these layers each year would increase seismic velocity
as the number of frozen-in clear ice layers increases with
the velocity of the ice beneath the aquifer and is expected
to increase as the ice moves the aquifer to lower elevation
(Figure 8).

Our estimate of water content in the aquifer is dependent
upon several assumptions about the relationship between seismic
velocity, porosity, and fluid content. First, we use the velocity of
the ice directly below the aquifer layer rather than the expected
velocity of polycrystalline ice at 0◦C (3795m s−1). The Wyllie
average assumes prior knowledge about the velocity of the
fluid and matrix; using the velocity of polycrystalline ice would
overestimate water content as it assumes the unsaturated firn
matrix would behave as fully recrystallized ice (Kohnen and
Bentley, 1973). The firn is still undergoing compaction and thus
will have a lower effective velocity than pure ice. We therefore
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choose to use the velocity of the ice directly beneath the aquifer
to derive a porosity estimate tominimize any offset expected from
the incomplete compaction of the firn matrix. Second, we use
the average of the velocity across the aquifer layer to compare
to the underlying ice. This is obtained by finding the mean
velocity lying between the GPR-defined top of the aquifer, and
seismically defined base. This does not take into account vertical
variations of water content that could be present within the
aquifer. Integrating the porosity across the layer would provide
a more appropriate estimate; however the resolution of our
inversion typically places a singular layer at aquifer range of
depths, so any attempt to refine the stratification in the aquifer
layer would be better served by allowing the inversion to fit
gradients rather than layers. This will be incorporated into future
work. Third, we neglect the effect of air bubbles on the seismic
velocity, making our estimate of porosity an upper bound on
the water content within the aquifer layer. The addition of air
bubbles will reduce the amount of water required to explain
the inversion-derived seismic velocity within the aquifer layer.
For example, adding 6% air to the pore space in the aquifer
at site 12a will reduce the derived porosity from 18.8 to 10.5%
and our storage capacity down from 3780 to 1946 kg m−2. Since
we do not have a way to independently evaluate air content
within the aquifer layer, we choose to report the upper bound
estimate of water content assuming no contribution from the
air.

Past estimates of water content in the aquifer obtained by
Koenig et al. (2014) via ice cores found a firn capacity (in kgm−2)
of 2150 kg m−2 assuming a 14-m thick aquifer with an aerial
extent of 70 ± 10 × 103 km2 or 980 ± 140 km3. Using radar
mapping of the lateral extent of the firn aquifer, they estimated
the total mass of Greenland aquifer to contain 140± 20 gigatons
(Gt) of liquid water. With our seismic methodology, we are
able to examine the lateral variability in aquifer thickness and
water content along an elevation 2-D transect and refine this
volume estimate (Figure 8). With these improved estimates of
aquifer thickness (11.5 ± 5.5 m) and seismically-derived water
content (8–24%), we find that water volume ranges from 0 to
4400 kg m−2; with an average value of 2070 ± 1360 kg m−2,
similar to the Koenig et al. (2014) value. Furthermore, in 2016,
the spatial extent of the Helheim Glacier aquifer is estimated at
2286 km2 (Miège et al., 2016). With these values, we estimate
that the total volume of water in the Helheim aquifer is 4.7
± 3.1 Gt, similar to the ice core estimates of Koenig et al.
(2014).

The values reported above represent bulk averages; we also
detect spatial variability in the water content of the aquifer
layer. This value evolves from 530 kg m−2 at Site 2 up to
3800 kg m−2 at Site 12 (Figure 8). Site 12 is 250m lower in
elevation than Site 2, with undulations in the surface topography
(and underlying water table) with wavelengths of 1–2 km. The
increase in water content generally mirrors the topography and
is expected to increase due to more melt percolating into the
system at lower and presumably warmer elevations. The water
table approaches the surface (10.7m) at Site 12 (Figure 5) where
we seismically estimate the highest water storage capacities for
the aquifer. There is also a large decrease in water content

near Sites 8 and 9 (530 and 50 kg m−2, respectively) where
there is a noticeable change in surface slope (marked in
Figure 8). Cores drilled at Site 8a in 2016 revealed a very
thin (<1m) aquifer at this location. The lack of water at this
location could reflect a 3-dimensional change in the aquifer,
including increased flow rates at the higher slope, drainage
into a buried crevasse, diversion around a local geographic
feature, or a locally shallow firn-ice transition and lack of
permeability within the ice. We cannot distinguish between these
possibilities without further investigation of this feature in the
field.

At most sites with seismic measurements in both years (e.g.,
Sites 6, 8, 12), there is agreement between the estimated water
storage capacities. However, at Site 10, we observed a discrepancy
in the estimated storage capacities from 2015 to 2016 (Figure 8).
Sites 9 and 10 were our noisiest sites, with both data collected
during active drill site and team operations in 2015 (individuals
walking, generators, etc.). In the resulting inversions, we were
unable to uniquely derive aquifer properties at Site 9 owing to
coincidence of the radar selected water table and seismological
discontinuities. This discrepancy was also observed in the seismic
velocity measurements of the ice; in general the sites expressed
much lower ice seismic velocity than their 2016 counterparts
(Figure 6). These uncertainties were not identified until after
the 2015 field season, to which we responded by the expansion
of the effective array aperture length of the seismic array from
195m to 385 m. To offset any potential site noise, we also
increased the number of stacked shots in 2015 (3 shots) to
>5 in 2016 (Figure 1B). These measures improved the overall
quality of the deepest diving seismic waves that sample the base
of the aquifer. The combined effects of higher signal-to-noise
and deeper sampling thus make us more confident in the 2016
results.

To summarize, in 2015 and 2016, we used refraction
seismology to temporally and spatially sample the structure of a
firn aquifer on the southeastern GrIS, and determined that the
base of this aquifer lies on average 27.7 ± 2.9m beneath the
surface, with an average thickness of 11.5 ± 5.5m. We relate the
change in seismic wave speed across the aquifer to pore saturation
of water, finding the aquifer has an average pore space of 16 ±

8%, with considerable variation in storage capacity of water along
the studied east-west regional flow line. We also find that the
seismic base of the aquifer corresponds to the freezing point of
liquid water within the pore space. Subsequent addition of these
frozen layers beneath the aquifer from year-to-year produces a
high velocity seismic layer directly beneath the aquifer. From
2015 to 2016, we observed a 1–2 km uphill expansion of the
aquifer system, with a dry site seismically investigated in 2015
now having a 530 kg m−2 water content in 2016 (Site 2). We
estimate that the volume of water stored in the aquifer across
the entire region upstream of Helheim glacier to be 4.7 ± 3.1
gigatons, a value comparable to prior estimates by Koenig et al.
(2014) from ice core sampling of the aquifer. Using seismics,
we reveal the relationship between the percolation of meltwater
through the aquifer system, the addition of frozen surface melt
at depth beneath the aquifer layer, and ultimately constrain the
impact of ice sheet aquifers on sea level rise.
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