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Earth’s axial dipole field changes in a complex fashion on many different time scales

ranging from less than a year to tens of million years. Documenting, analysing, and

replicating this intricate signal is a challenge for data acquisition, theoretical interpretation,

and dynamo modeling alike. Here we explore whether axial dipole variations can

be described by the superposition of a slow deterministic drift and fast stochastic

fluctuations, i.e. by a Langevin-type system. The drift term describes the time averaged

behavior of the axial dipole variations, whereas the stochastic part mimics complex

flow interactions. The statistical behavior of the system is described by a Fokker-Planck

equation which allows useful predictions, including the average rates of dipole reversals

and excursions. We analyze several numerical dynamo simulations, most of which have

been integrated particularly long in time, and also the palaeomagnetic model PADM2M

which covers the past 2Myr. The results show that the Langevin description provides a

viable statistical model of the axial dipole variations on time scales longer than about 1 kyr.

For example, the axial dipole probability distribution and the average reversal rate are

successfully predicted. The exception is PADM2M where the stochastic model reversal

rate seems too low. The dependence of the drift on the axial dipole moment reveals the

nonlinear interactions that establish the dynamo balance. A separate analysis of inductive

and diffusive magnetic effects in three dynamo simulations suggests that the classical

quadratic quenching of induction predicted by mean-field theory seems at work.

Keywords: geodynamo, geomagnetic field, field reversals, numerical simulation, stochastic model, statistical

analysis

1. INTRODUCTION

Earth’s internal magnetic field is produced in the liquid iron core in a complex highly nonlinear
dynamo mechanism. Geomagnetic data provide a window into this process which can be exploited
for clues on the internal dynamics. Information on shorter time scales of years to decades can
rely on a combination of high quality satellite data and historical data. The respective models
can describe the field up to spherical harmonic degree and order 14 beyond which the small scale
crustal field starts to dominate (Jackson et al., 2000). Archaeomagnetic models cover a period up to
about 10 kyr ago with a spatial resolution equivalent to perhaps degree and order 4 and a temporal
resolution of about 100 yr (Korte et al., 2011; Pavón-Carrasco et al., 2014). On longer times scales,
however, one mostly has to rely on palaeomagnetic data where resolving more than the dipole
component is challenging and the dating is often problematic.
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A combination of the different data sources reveals that dipole
variations have a broad temporal power spectrum shaped by the
nonlinear interaction between processes acting on different time
scales (Constable and Johnson, 2005). Shorter time scales in the
range of years are likely tied to wave phenomena (Gillet et al.,
2010) while decadal to centennial variations reflect the convective
flow dynamics (Christensen et al., 2012). Longer time scales are
typically related to field reversals and excursions. Variations in
the reversal rate over some 10Myr represent the longest time
scale that likely reflects changes in the Earth’s lower mantle
structure (McFadden and Merrill, 1984; Biggin et al., 2012).

Statistical analyses attempt to extract essential information
from the intricate but limited geomagnetic signal. Constable and
Parker (1988) assume that the variations in the individual Gauss
coefficients, that describe Earth’s surface field, obey a so-called
giant Gaussian process (GGP). The statistic of each coefficient
is thus a Gaussian defined by mean and (co)variance. The
advantage of this approach is that the time averaged field can be
deduced without requiring exact dating. Palaeomagnetic records
covering more than the last 5Myr can thus be exploited to
reveal that a strong axial dipolemoment indeed clearly dominates
the time averaged field. But there are also hints for additional,
much weaker and persistent non-axisymmetric (possibly also
equatorially symmetric) contributions. We refer to Hulot and
Bouligand (2005) for an overview of the different refinements
to the GGP suggested over the years. This approach provides,
however, little information on the internal dynamics beyond the
standard deviation as a measure for the mean palaeomagnetic
secular variation.

Statistical approaches have also proven useful when dealing
with full 3D numerical dynamo simulations where the wealth
and complexity of information is hard to interpret. Wicht and
Meduri (submitted), referred to as WM16 in the following,
analyzed the probability distribution of axial and equatorial
dipole moments in several different numerical dynamo models.
With the exception of the largest Ekman number cases which
seem the most remote from Earth conditions, the results obey
a simple statistical systematic. Both equatorial dipole moment
contributions have a Gaussian distribution with zero mean and
a variance that is nearly independent of the Rayleigh number Ra.
The axial dipole moment (ADM) distribution, however, shows
a much more interesting behavior. At relatively small Ra, where
the dipole never reverses, the distribution is also Gaussian but
with a non-zero mean. On increasing Ra the mean decreases
until small ADMs becomemore likely. Reversals (and excursions)
then start and the distribution resembles the superposition of
three Gaussians, two high ADM ones with non-zero means
of opposite sign and a smaller third with zero mean. When
increasing Ra further, the high ADMGaussians combine with the
third: The dipole loses its dominant role and the field becomes
multipolar.

WM16 suggest that the third Gaussian reflects a new weak
dynamo state that facilitates reversals and excursions. The
dynamo may enter this state once the dipole moment has
decreased to at least 30% of its mean, a prerequisite for
reversals and excursions that seems to agree with palaeomagnetic
inferences (Channell et al., 2009). However, reversal and

excursion durations are excessively long in the simulations thus
leading to a too pronounced weak state Gaussian.

A more refined model that concentrates on the statistics of
dipole moment variations was pioneered by Hoyng et al. (2001)
and Schmitt et al. (2001). They suggest that the ADM dynamics
can be described by the Langevin equation

dx

dt
= d(x)+ f (x)L(t) . (1)

This simple stochastic differential equation is used to describe
a wealth of different physical processes where many smaller
fast varying subsystems interact to yield a slower large scale
dynamics (see, e.g., Friedrich et al., 2011). Since small scale
eddies are thought to team up to maintain Earth’s slowly varying
dipole field, the Langevin equation may indeed offer a viable
statistical model for variations in the axial dipole moment x(t).
The slow deterministic large scale dynamics, called drift in the
Langevin formalism, is described by the function d(x) while
the fast small scale dynamics creates the stochastic fluctuations
f (x)L(t) called diffusion. This latter expression refers to the
application to Brownian motion where the stochastic action
of many microscopic particles conspires to induce large scale
diffusion. We will use the term fluctuation instead to avoid
confusion with themagnetic diffusion. The fluctuation amplitude
f (x) formulates the dependence on x, while the random noise L(t)
has a vanishing time average and infinitely small correlation time
(see Section 2.2).

ADM fluctuations can only be expected to be statistically
uncorrelated on time scales longer than the typical time scale
of convective motions. Hoyng et al. (2001) therefore suggest
that only time scales beyond the convective overturn time τc of
approximately 120 yr for Earth obey the Langevin equation and
simply use time resolutions τ > τc for analyzing the magnetic
data. Drift and fluctuation functions are then related to the mean
variation 〈ẋ〉 and root mean square (RMS) variation {ẋ} for a
given discrete data set x(ti) (with ti+1 = ti + τ ) by

d(x) = 〈ẋ〉 (2)

and

f (x) = τ 1/2 {ẋ} . (3)

Details on the formalism are given in Section 2.2.
When a stochastic system starts at time t with a well-defined

value x(t), it can assume different values at time t + τ with
different probabilities. The dynamics can thus be expressed
as an evolution of the associated time dependent probability
distribution p(x, t) which is governed by the Fokker-Planck
equation (FPE) for the Langevin system. Because of the wealth
of applications, the Langevin equation (1) and the associated FPE
have been extensively studied (see, e.g., Risken and Frank, 1996;
Van Kampen, 2007; Friedrich et al., 2011) and lead to interesting
analogies and testable predictions in the dynamo context.

For example, x can be thought of as the position of a stochastic
particle in the potential U(x) defined by dU(x)/dx = −d(x)
and illustrated in Figure 1. The two minima in U(x), say at
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FIGURE 1 | Drift potential U(x) (solid curve, left axis) and steady-state

probability density function p0(x) (dashed curve, right axis) for the

“particle-in-well” analog to reversing dynamos. The potential forces

provide the deterministic slow drift while fast stochastic fluctuations enable the

particle to cross the potential barrier that separates both polarities. p0 is the

analytical solution of the stationary Fokker-Planck equation (Equation 27). The

reversing dynamo model shown is E3R9. After Figure 2 in Schmitt et al. (2001).

±xm, are separated by a hump around x = 0 and reflect the
bistable nature of a reversing dynamo. The drift d(x) models the
mean force that drives the particle to ±xm while the random
fluctuations f (x) allow the particle to leave the potential minima.
When the fluctuations correlate sufficiently, the particle can cross
the potential barrier and may undergo a “field reversal” (Schmitt
et al., 2001).

The stationary solution p0(x) of the FPE provides a prediction
of the ADM probability distribution that can be compared with
the data. Figure 1 illustrates the bimodal p0(x) associated to the
respective potential U(x). Deviations from a pair of Gaussian
distributions like those reported by WM16 are more likely for
small ADM values where the particular form of the potential
well is decisive. The steady-state distribution p0(x) allows several
other properties to be predicted, like the mean ADM 〈x〉 and its
standard deviation σx as a measure for palaeosecular variation.
The mean reversal waiting time 〈TR〉, i.e. the mean time between
successive reversals, can be predicted from the mean first passage
time of the potential well. Fokker-Planck theory also predicts
a Poissonian occurrence of reversals and thus an Earth-like
distribution of reversal waiting times (Schmitt et al., 2001).

Hoyng et al. (2001) developed a simple quenched α�

mean-field dynamo with a stochastic contribution in the α-
forcing that reproduces several important features of Earth’s
reversal behavior. For example, the normal secular variation
is interspersed by relatively short stochastic reversals (and
excursions) that obey an Earth-like statistic (Schmitt et al.,
2001). Using a semi-analytical approach, Hoyng et al. (2001)
confirm that the dynamics of their model is well described by
the Fokker-Planck formalism and suggest that this could hold
for all reversing dynamos including Earth. When adjusting the
free parameters so that p0(x) reproduces the geomagnetic Sint-
800 axial dipole distribution (Guyodo and Valet, 1999), the
model also reproduces the palaeomagnetic σx value of about
0.3 〈x〉. Reversal waiting times, however, are in the order of
1Myr and thus longer than the respective estimates suggested by
palaeomagnetic data for the last 20Myr or so (Ogg, 2012).

The dependence of drift and fluctuation on the ADM provides
clues on the feedback between dynamo and Navier-Stokes

equations. The interpretation is complicated by the nonlinear
nature of the feedback mechanism but the related problems have
been addressed by mean-field theory (Krause and Rädler, 1980)
which predicts a quadratic quenching of field production via
Lorentz force effects on the flow. Hoyng et al. (2001) therefore
suggest the form

dx

dt
= γ

(

1− x2/x2n
)

x , (4)

where γ has the dimension of a growth rate and xn is
a normalization factor. Brendel et al. (2007) analyze the
palaeomagnetic Sint-2000 record that covers the last 2Myr (Valet
et al., 2005). Though the lack of data for particularly small or
large dipole moments is problematic, the quadratic quenching (4)
seems to reasonably describe the drift d(x). For small ADMvalues
the drift grows roughly linearly with a rate γ ≈ (1/20) kyr−1.
Surprisingly, however, the fluctuation f is almost independent of
x and thus shows no obvious quenching (Brendel et al., 2007).

Kuipers et al. (2009) revert to fully self-consistent numerical
dynamo simulations from Wicht et al. (2009) at an Ekman
number of E = 10−3 and three different Rayleigh numbers which
included reversing cases covering much longer timespans than
Sint-2000. At least two of the three analyzed cases show a drift d
reminiscent of quadratic quenching while f remains once more
nearly independent of x.

Buffett et al. (2013) pick up on the idea of interpreting ADM
variations with the Langevin model (1) and, in addition to
Sint-2000, also analyze the newer PADM2M data set (Ziegler
et al., 2011) which covers the same time frame. Their analysis
largely confirms the results of Brendel et al. (2007), including
a roughly constant f profile that seems to slightly increase
toward lower ADMs. Rather than Equation (4), they use the
linear relation ẋ ≈ −γ (x − 〈x〉) around the mean ADM
〈x〉. This also offers a decent fit of the drift for a decay rate
of γ ≈ (1/30) kyr−1 that is similar to the value inferred by
Brendel et al. (2007). The respective decay times are within the
range of τd = 25 kyr to τd = 56 kyr estimated for Earth’s
fundamental dipole mode. The upper value is based on the
higher electrical conductivity of σe = 1.15 × 106 S/m suggested
by Pozzo et al. (2012) that we generally adopt here. Because
of the similarity, Buffett et al. (2013) proposed that the drift
around 〈x〉 reflects the Ohmic decay of additional magnetic
modes that can be regarded as a disturbance of the mean
state. Decay times shorter than τd could be explained by the
fact that these additional modes have a more complex radial
structure.

Themean reversal waiting time inferred by Buffett et al. (2013)
from the analysis of the Fokker-Planck equation is roughly 1Myr
for both Sint-2000 and PADM2M data sets which seems once
more too long. Higher reversal rates would be promoted by
either a lower drift potential well or larger fluctuation amplitudes
around x = 0. Unfortunately, this crucial parameter region is
only poorly constrained by the palaeomagnetic records which
contain very few low ADM instances.

The situation is even worse for the dynamo simulations
analyzed by Buffett et al. (2014). The use of more realistic
parameters (E = 5 × 10−5 and magnetic Prandtl number Pm =
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0.5) than in typical reversing dynamo simulations requires high
spatial resolution and short time steps. To keep numerical costs at
bay, the model was therefore only integrated for an equivalent of
0.83Myr and a relatively low Rayleigh number had to be chosen.
Consequently, the simulation never showed any sign of reversals
or excursions and the ADM varies only by about 10% around its
mean. This severely restricts the usefulness of the dynamo model
for the statistical analysis but the d and f profiles are at least
compatible with their palaeomagnetic counterparts.

The scope of this paper is to apply the Langevin and Fokker-
Planck formalisms to much longer dynamo simulations than
previously analyzed. Models introduced byWM16 form the basis
but are supplemented by runs in the parameter range explored
by Buffett et al. (2014). The longer integration times help to
cover the full ADM spectrum which is essential for reversing
cases. By separately analyzing ADM variations due to magnetic
field production and Ohmic decay, we clarify their distinct
impact and better constrain the nonlinear feedback effects. The
paper is organized as follows: We start by briefly introducing
the analyzed dynamo models in Section 2.1 and describe the
Langevin stochastic model and the methods applied for our
analysis in Section 2.2. Section 3.1 discusses the reconstructed
drift and fluctuation profiles of the Langevin equation for the
numerical dynamo models and for the palaeomagnetic model
PADM2M. Section 3.2 details the results of the statistical analysis.
Section 4 discusses the relative contribution of magnetic field
induction and diffusion to the reconstructed drift and fluctuation
profiles in the numerical simulations. The paper closes with a
discussion in Section 5.

2. MATERIALS AND METHODS

2.1. Numerical Dynamo Models
We employ the MHD code MagIC (Wicht, 2002) for long,
statistically relevant numerical integrations at different
parameters. MagIC solves for convection (under the Boussinesq
approximation) and magnetic field production in a rotating
spherical shell using a pseudo-spectral numerical scheme
with mixed implicit/explicit time stepping. Details on the
mathematical formulation of the problem and the numerical
implementation can be found in Wicht (2005) and Christensen
and Wicht (2015). An updated version of the code is publicly
available at https://github.com/magic-sph/magic. The code uses
a dimensionless formulation that lumps the physical properties
into five dimensionless parameters: the Ekman number
E = ν/�d2, the (modified) Rayleigh number Ra = go1Cd/ν�,
the Prandtl number Pr = ν/κ , the magnetic Prandtl number
Pm = ν/λ, and the aspect ratio a = ri/ro. Physical properties are
the kinematic viscosity ν, system rotation rate �, outer boundary
reference gravity go, thermal diffusivity κ , magnetic diffusivity
λ, outer boundary radius ro, and inner boundary radius ri. The
shell thickness d = ro − ri serves as a reference length scale. The
spherical shell, that represents the Earth’s outer core, is bounded
by an electrically insulating mantle at ro and a conducting inner
core at ri which rotates according to viscous and Lorentz torques
(Wicht, 2002). No-slip flow boundary conditions have been
adopted in this work.

Two forms of convective driving are used. Thermal bottom
driving is modeled using a fixed codensity jump 1C across the
shell. Compositional driving imposes a vanishing codensity flux
at ro and a fixed codensity at ri. Homogeneously distributed
internal sinks compensate the “light elements” entering the
system at the inner boundary. This setup requires a modified
Rayleigh number where the prescribed sinks instead of the
imposed codensity jump define the codensity scale.

Most of the models analyzed here have been introduced by
WM16 and use an Earth-like aspect ratio of a = 0.35 and
a Prandtl number of Pr = 1. Table 1 lists the input model
parameters and some time averaged properties. Four thermally
driven cases at a relatively large Ekman number of E = 10−3 and
a magnetic Prandtl number of Pm = 10 were integrated over
extremely long timespans. They only differ in Rayleigh number
and include two stable dipole dominated models, an Earth-like
reversing model with several hundred reversals, and a multipolar
case. The four chemically driven models at E = 3 × 10−4

cover the same fundamental regimes but could only be run for
much shorter periods because of the larger numerical costs. The
respective Earth-like reversing case at E = 3 × 10−4 covers
only 20 reversals. We have added two additional models in the
regime discussed by WM16 with a low Ekman number of E =

3×10−5, a relatively low Rayleigh number, and the two magnetic
Prandtl numbers of Pm = 0.5 and Pm = 1. These latter models
cover only a short period in time and never reverse. The model
naming convention adopted by WM16 has been extended here
to include Pm. In general ExRyPmz refers to a model with an
Ekman number E whose unsigned exponent is x, supercriticality
Ra/Rac = y (with Rac the critical Rayleigh number for the
onset of convection) and Pm = z. An additional C at the end
of the model name refers to chemical convection mimicked by
setting the buoyancy flux through the outer boundary to zero
as discussed above. Other models use purely thermal driving
with fixed lower and upper codensity condition and no internal
buoyancy sinks/sources.

WM16 also explore compositionally driven cases at E =

10−3. Since the dynamics turned out to be very similar to the
thermally driven cases at the same Ekman number, we refrain
from analyzing these models here. Shorter sections of models
E3R5, E3R9, and E3R13 have been analyzed by Kuipers et al.
(2009).

The magnetic Reynolds number

Rm =
Ud

λ
, (5)

where U is the RMS flow velocity in the fluid volume, is a measure
for magnetic induction relative to diffusion. The local Rossby
number

Roℓ =
U

ℓ�
, (6)

where the length scale ℓ is the typical convective flow scale
introduced by Christensen and Aubert (2006), is a measure for
the relative impact of inertia. Time averaged values of Rm and
Roℓ are listed in columns nine and ten of Table 1. For Roℓ < 0.1
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TABLE 1 | List of input parameters and time averaged properties for the explored dynamo models and for Earth.

Name Regime E Pm BC Ra Ra/Rac Time Rm Roℓ 3o Dgeo

E3R5 D 10−3 10 Temp. 250 4.5 571 202 0.04 2.6 0.60

E3R7 D 400 7.2 242 350 0.09 2.0 0.44

E3R9 R 500 8.9 17 547 436 0.12 1.5 0.31

E3R13 M 750 13.4 229 592 0.17 1.7 0.18

E4R53C D 3× 10−4 3 Chem. 3000 53 46 264 0.09 0.34 0.66

E4R78C D 4500 78 188 340 0.11 0.25 0.59

E4R106C R 6000 106 363 408 0.13 0.14 0.40

E4R159C M 9000 159 83 497 0.27 0.15 0.27

E5R18Pm05 D 3× 10−5 0.5 Temp. 1500 17.6 47 105 0.05 0.20 0.95

E5R18Pm1 D 1.0 Temp. 1500 17.6 17 183 0.04 0.92 0.92

Earth R 10−15 10−6 Flux − ≫1 35 2000 0.09 O(1) 0.79

Column 2 summarizes the dynamical regime of the field (D: stable dipolar, R: Earth-like reversing, M: multipolar). The Ekman number E, the magnetic Prandtl number Pm, the (modified)

Rayleigh number Ra, and the supercriticality Ra/Rac are listed in columns 3, 4, 6, and 7, respectively. Column 5 details the driving mechanism: an imposed constant temperature contrast

across the shell (Temp.) or chemical convection (Chem.). The Prandtl number Pr is unity in all cases. Column 8 shows the total integration time in dipole decay units. For Earth we list

the 2Myr covered by the palaeomagnetic field model PADM2M. The magnetic Reynolds number Rm, the outer boundary Elsasser number 3o, the local Rossby number Roℓ, and the

relative outer boundary dipole strength Dgeo are time averaged values. Earth’s core values refer to molecular diffusivities. The Rayleigh number is hard to estimate for Earth but thought

to be highly supercritical. The estimate of Rm is derived from secular variation data. Dgeo is estimated from the geomagnetic field model gufm1 (Jackson et al., 2000) and Roℓ is the

value reported by Christensen and Aubert (2006).

the dynamo is typically dipole dominated and remains stable,
i.e. neither undergoes reversals nor excursions (models E3R5,
E3R7, E4R53C, E4R78C, and the two cases at E = 3 × 10−5).
Multipolar dynamos which reverse more or less continuously
are characterized by Roℓ > 0.1 (models E3R13 and E4R159C).
Dynamo models with Earth-like rare reversals where the axial
dipole still dominates on time average and the reversals last much
shorter than the stable polarity epochs are found at the transition
(Wicht and Tilgner, 2010).

Column eleven in Table 1 shows the time averaged Elsasser
number

3o =
B2o

µλρ�
, (7)

where Bo is the total RMS field strength at the outer boundary,
ρ the outer core density, and µ the magnetic permeability.
Since the magnetic field is scaled with (µλρ�)1/2 here, the non-
dimensional magnetic field amplitude at the outer boundary is

identical to 3
1/2
o . The relative dipole strength Dgeo shown in

the last column of Table 1 is the ratio of the RMS dipole field
at the surface to Bo when considering only spherical harmonic
contributions up to degree and order 11.

The time throughout this paper is scaled in the core dipole
decay time

τd =
r2o

π2λ
(8)

which amounts to τd = 56 kyr for Earth when based on the
electrical conductivity σe = 1/µλ = 1.15 × 106 S/m suggested
by Pozzo et al. (2012). We will also refer to the magnetic diffusion

time

τλ =
d2

λ
(9)

and the typical time scale of convective motions, the so-called
overturn time

τc =
d

U
(10)

which is roughly 120 yr for Earth when estimated from secular
magnetic field variations. The magnetic field is rescaled to
dimensional units, for example the dipole moment, by assuming
ρ = 1.1 × 104 kgm−3, the magnetic permeability of vacuum for
µ, and � = 7.29× 10−5 sec−1.

2.2. Langevin and Fokker-Planck Analysis
The Langevin equation

dx

dt
= d(x)+ f (x)L(t) (11)

has a slow deterministic drift contribution d(x) supplemented
by fast stochastic variations L(t) with amplitude f (x). The noise
source L(t) is assumed to be Gaussian with a vanishing mean,

〈

L(t)
〉

= 0 , (12)

and an infinitely small correlation time so that

〈

L(t)L(t − τ )
〉

= 2 δ(τ ) . (13)

Here δ(τ ) is the Dirac delta function and the angular brackets
denote a time average. The factor 2 on the right hand side of the
above expression is simply a common convention.
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The evolution of the probability distribution p(x, t) for the
Langevin stochastic process (Equation 11) is governed by the
Fokker-Planck equation (Risken and Frank, 1996; Van Kampen,
2007)

∂ p(x, t)

∂t
= −

∂

∂x
[D(x) p(x, t)]+

1

2

∂2

∂x2
[F(x) p(x, t)] . (14)

The two functions D(x) and F(x) of the FPE are given by the first
and second moments of x,

D(x) = lim
τ→0

τ−1
〈

x(t + τ )− x(t)
〉

(15)

and

F(x) = lim
τ→0

τ−1
〈

[x(t + τ )− x(t)]2
〉

. (16)

Both D and F can be directly calculated from a discrete
time sequence of the ADM when compromising on the limit
τ → 0 and are then simply related to the mean variation
〈ẋ〉 = τ−1

〈

x(t + τ )− x(t)
〉

and RMS variation {ẋ} =

τ−1
(〈

[x(t + τ )− x(t)]2
〉)1/2

already mentioned in Section 1.
This highlights that D and F directly provide fundamental
statistical information about the dynamo process even without
embarking deeper into the Fokker-Planck theory.

An ambiguity in solving the above time averages over
stochastic fluctuations in the limit τ → 0 motivates two different
formalisms for connecting the FPE (14) with the Langevin
equation (11), the so-called Itô and Stratonovich approximations
(Risken and Frank, 1996; Friedrich et al., 2011). This distinction
is of little practical interest for the finite τ used in data analysis.
The discrete Langevin equation

x(t + τ )− x(t)

τ
= d(x)+ f (x) L(t) (17)

with

d(x) = D(x) = 〈ẋ〉 (18)

and

f (x) =
√

F(x) = τ 1/2 {ẋ} (19)

then provides a particularly simple “working-model” that is
consistent with the discrete data x(t). In the following we will
mostly refer to the rescaled fluctuation amplitude

f ⋆(x) = f (x)/τ 1/2 = {ẋ} (20)

which allows a more direct comparison to the drift d(x).
Equation (17), often referred to as the Euler-Maruyama

integration scheme for the Langevin equation (Maruyama, 1955),
is the analog of a first-order Euler forward method for ordinary
differential equations and can easily be forwarded in time to
provide a simulated data set that can be compared with the input
data x(t).

Constructing the drift and fluctuation profiles for the
Langevin equation (or FPE) relies on binning the variations

δx(τ ) = x(t + τ ) − x(t) according to x. The probability
distribution of the unsigned axial dipole moment |x| tells
us which interval we can cover with reasonable statistical
confidence. Only absolute values need to concern us here since
the dynamo equation is insensitive to the sign of x. The interval is
then divided into bins of width 1x that represent a central value
xi. The width reflects a compromise between the number of data
within each bin and the fact that variations over the bin should
be small.

After the discrete variations δxj(τ ) have been calculated for
each data point of the discrete time series xj = x(tj), mean and
RMS are evaluated by averaging over the Ni data in each bin:

〈ẋ〉i =
1

τ Ni

Ni
∑

j=1

δxj(τ ) for xi − 1x/2 ≤ xj < xi + 1x/2 ,

(21)
and

{ẋ}i =
1

τ

(

1

Ni

Ni
∑

j=1

[δxj(τ )]
2

)1/2

for xi−1x/2 ≤ xj < xi+1x/2 .

(22)
The relations

Di = di = 〈ẋ〉i (23)

and

Fi = f 2i = τ {ẋ}2i (24)

yield the discrete counterparts of the D and F (d and f ) terms in
the Fokker-Planck (Langevin) equation.

As discussed in Section 1, the Langevin description can only be
expected to hold once τ exceeds the convective overturn time τc.
This is confirmed by the fact that, for example, D and F become
roughly independent of τ once τ > τc (Buffett and Matsui,
2015). Figure 2 illustrates the dependence of the binned Di and
Fi on τ for models E3R9 and E5R18Pm05. The solid vertical
line marks the convective overturn time in the respective models.
In model E3R9, for example, a time resolution τ of at least five
times τc ≈ 0.1 τd guarantees that drift and fluctuation profiles
become nearly independent of τ . Similar inferences also hold for
the other cases explored here, though the worse statistics of the
shorter runs complicates the choice of τ . For model E5R18Pm05,
for example, variations in both profiles are particularly strong for
the lowest and the highest ADM bins which include relatively
few instances (Figure 2, middle panels). A time resolution τ of
about seven times τc ≈ 0.04 τd has been chosen for analyzing
this model. Tests with the different models have shown that a
larger number of entries per binNi is desirable to provide reliable
profiles. The bin width 1x has therefore mostly been adjusted to
guarantee Ni > 103. Bins with fewer entries have been excluded
from the analysis.

The bottom panel of Figure 2 illustrates the drift and
fluctuation profiles for the palaeomagnetic virtual axial dipole
moment (VADM) from model PADM2M. This model covers the
last 2Myr with a resolution of roughly 5–10 kyr. We nevertheless
started with a 1 kyr resolution calculated from the PADM2M
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FIGURE 2 | Dependence of the drift D and fluctuation F functions on the time resolution τ for models E3R9 (top panels), E5R18Pm05 (middle panels)

and PADM2M (bottom panels). The colors indicate different axial dipole moment bins. In each panel the lowest and the highest bins are identified by the ADM value

at the midpoint of the bin. The bin width 1x/1022 Am2 is 1.47, 0.35, and 1.06 for models E3R9, E5R18Pm05, and PADM2M, respectively. The solid and dotted

vertical lines mark the convective overturn time and the selected time resolution, respectively. In the palaeomagnetic model PADM2M time has been rescaled using an

Earth’s core dipole decay time of τd = 56 kyr.

cubic B-spline representation (Ziegler et al., 2011). The drift and
fluctuation profiles only become independent of τ once τ exceeds
about 4 kyr which is considerably larger than Earth’s overturn
time. The reason is that τ has to be chosen at least as large as
the effective resolution of the model to get rid of any correlations
introduced by the model regularization (Buffett et al., 2013). We
evaluate the drift and fluctuation for τ = 6 kyr in the following.
An even larger time resolution could be in order but would
reduce the already low number of samples even further. To have
a fair number of bins we already had to reduce the minimum
number of entries per bin to Ni = 102 and choose a relative large
bin width 1x.

Since PADM2M covers only few reversals and excursions,
instances of low VADM are rare and we could not constrain this
particularly interesting region with sufficient confidence. Adding
to this problem is the fact that local field in a palaeomagnetic
record is interpreted as being caused by the virtual axial dipole
moment. Contributions from the equatorial dipole and higher

field harmonics can therefore make the VADM significantly
larger than the ADM during reversals or excursions. Drift and
fluctuation are obviously harder to constrain and the profiles
remain relatively uncertain, in particular for VADM values x <

0.5 〈x〉.
Once an appropriate binning scheme and time resolution τ

have been selected, the required functions can be modeled by
least-square-fitting power series expansions to the binned values,
for example

〈ẋ〉 =

N
∑

n=1

Vn x2n−1 , (25)

and

{ẋ} =

M
∑

m=0

Wm x2m . (26)
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The exponents reflect that the mean variation is an odd function
while the RMS variation is even. Generally low truncation values
ofN = 3 orN = 4 andM = 2 suffice for an adequate description.

The steady-state probability density function (PDF) p0(x),
solution of the stationary FPE, can then be calculated analytically

p0(x) =
N

F(x)
exp

(∫ x

0

2D(x′)

F(x′)
dx′
)

. (27)

In the above expression N denotes the normalizing constant. A
comparison with the PDF of the data provides some means to
verify the Langevin and Fokker-Planck approaches for a given
data set. The mean 〈x〉 and standard deviation σx predicted by p0
provide measures to judge the similarity, at least when the PDF is
simple enough.

Knowing p0 allows us to infer additional statistical properties
of the system. For example, for a stochastic particle starting at
x(t = 0) = x′ > 0 the mean time to leave the positive part of the
drift potential (0 ≤ x < ∞) is given by Van Kampen (2007):

〈Te〉 = 2

∫ x′

0
dx

1

F(x) p0(x)

∫ ∞

x
dy p0(y) . (28)

The mean escape time 〈Te〉 is also often referred to as the mean
first passage time at x = 0. Hoyng et al. (2001) report that 〈Te〉

is nearly independent of x′ as long as x′ lies near the bottom
of the potential well. According to standard theory (Risken and
Frank, 1996; Van Kampen, 2007), the escape time statistic can be
proven to be Poissonian which is intuitively plausible since the
crossings of the potential barrier are rare events and the stochastic
fluctuations are completely uncorrelated. Consequently, the PDF
of Te is the exponential p(Te) = 〈Te〉

−1 exp (−Te/ 〈Te〉).

At the escape time Te, the stochastic particle will be located
close to the top of the drift potential at x = 0 so that the
fluctuations can easily yield a polarity change. The particle
can then be expected to have an equal chance of falling in
either potential trough. When the particle ends up in the same
trough from where it started, the event is classified as a “grand
excursion” rather than a reversal. WM16 introduced the term
grand excursions for excursions during which the ADM ventures
into the reverse polarity. Following this reasoning, the mean
waiting time for a reversal is expected to be 〈TR〉 = 2 〈Te〉

which can be shown to hold analytically (Hoyng et al., 2001;
Van Kampen, 2007). Forwarding the discrete Langevin equation
(17) allows us to calculate the probability distribution p(Te) and
to estimate the mean escape time 〈Te〉 to verify the theoretical
predictions discussed above.

3. RESULTS

3.1. Drift and Fluctuation Profiles
Table 2 lists the selected time resolutions τ and some
characteristic properties of the stochastic models for all the
cases explored here. Figure 3 illustrates how drift and fluctuation
profiles change when increasing the Rayleigh number for the
E = 10−3 models. The polynomial expansions (Equations 25 and
26) permit to draw profiles for ADMvalues that are never reached
in the simulations. This does not necessarily make sense in all
cases but allows, for example, a tentative prediction of the reversal
rate where no reversals have been observed. We will discuss this
point further below.

The ADM value xm where the drift (or mean variation) d
becomes negative marks the point where the potential U(x) has a
minimum and the probability distribution a maximum, i.e. xm

TABLE 2 | Characteristic properties of the stochastic model for all the cases explored.

Model τc τ 〈|x|〉 xm SV τH τL x∗ d(x∗) f⋆(〈|x|〉) f⋆(0)

E3R5 0.021 0.201 20.62 21.42 0.14 0.37 0.46 10.87 15.20 12.86 36.57

E3R7 0.012 0.198 11.79 11.74 0.24 0.54 0.64 6.38 6.40 11.39 10.33

E3R9 0.010 0.145 6.32 7.30 0.48 1.03 1.02 4.23 2.70 11.47 9.58

E3R13 0.007 0.150 0.38 0.50 − 0.94 1.08 0 0 13.16 12.73

E4R53C 0.018 0.100 7.73 7.82 0.12 0.56 0.36 3.46 6.09 5.87 9.68

E4R78C 0.011 0.100 5.40 5.87 0.26 0.76 0.82 2.93 2.29 6.41 5.36

E4R106C 0.009 0.140 2.63 2.73 0.60 3.64 3.10 1.95 0.42 5.45 5.18

E4R159C 0.009 0.300 0.09 0.03 − 1.66 1.84 0 0 4.31 4.27

E5R18Pm05 0.040 0.300 9.95 10.06 0.06 0.47 0.25 4.32 10.78 1.99 25.47

E5R18Pm1 0.016 0.200 15.03 15.05 0.05 0.34 0.13 6.33 30.23 3.60 58.20

PADM2M 0.0021 0.107 5.32 5.74 0.28 0.42 0.28 2.41 5.48 8.43 13.32

Columns 2 and 3 list the convective overturn time τc and the time resolution τ selected for the analysis, respectively. Columns 4 to 6 give the unsigned ADM mean 〈|x|〉, mode xm, and

relative standard deviation SV (Equation 30) as a measure for secular variation. τH (column 7) and τL (column 8) are the time scales characterizing the slow drift at x = xm and x = 0

respectively. Column 9 gives the ADM value x∗ where the drift d is maximum. The maximum drift value is listed in column 10. The last two columns report the rescaled fluctuation f⋆ at

x = 〈|x|〉 and x = 0. For the multipolar dynamo models E3R13 and E4R159C all the listed measures are based on the signed axial dipole moment x instead of |x|. In the palaeomagnetic

model PADM2M time has been scaled assuming a core dipole decay time of τd = 56 kyr. The convective overturn time τc, the time resolution τ , and the time scales τH and τL are given

in dipole decay units. The listed axial dipole moment statistics are in units of 1022Am2, and the drift d and rescaled fluctuation f⋆ values are in units of 1022Am2/τd .
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FIGURE 3 | Drift d (circles) and rescaled fluctuation f⋆ (squares) as

function of the axial dipole moment x for the four dynamo models at

Ekman number E = 10−3. The curves are the respective low order

polynomial fits based on Equations (25) and (26). The solid and dotted vertical

lines mark, respectively, the mean and the mode of the (signed) unsigned axial

dipole moment distribution in the (multipolar) stable dipolar and reversing

models.

is the mode of the ADM distribution (dotted vertical lines in
Figure 3). The fact that xm does not coincide with the unsigned
axial dipole moment mean 〈|x|〉 in case E3R9 highlights the
asymmetric nature of the distribution in a reversing model (see
WM16). Note that mean and mode in Table 2 are based on the
signed ADM in the multipolar cases E3R13 and E4R159C but on
the unsigned ADM in the other cases. For x > xm (x < xm)
the slow negative (positive) drift drives the system back toward
the mean. The fluctuation (or RMS variation) f ⋆, always larger in
amplitude than the drift, is instrumental in driving the system to
other values that fill the ADM probability distribution.

Buffett et al. (2013) suggest that the drift decreases linearly
around 〈x〉 and that seems to be also roughly true for the
simulations explored here. The authors characterize the drift
dynamics with the time scale τH defined by 〈ẋ〉 ≈ 〈x〉 /τH . We
use the power series expansion (25) to yield:

τ−1
H =

d 〈ẋ〉

dx

∣

∣

∣

∣

xm

. (29)

This time scale provides an estimate for the slow relaxation time
into either potential trough in U(x). The values listed in Table 2

demonstrate that τH increases with the Rayleigh number, ranging
from 0.37 τd formodel E3R5 to about one τd for the reversing case
E3R9.

In the non-reversing cases (top two panels of Figure 3), the
drift d starts to level off for smaller ADM values and finally
bends over to meet x = 0 in the reversing case (third panel).
For small ADMs the drift increases roughly linearly and can be
characterized by the growth time scale τL which is, like τH in
Equation (29), defined by the drift derivative but now evaluated
at x = 0. This time scale is overall quite similar to τH and
also increases with Ra (see Table 2). Note, however, that τL is
not directly supported by data for E3R5 and E3R7 where the
ADM always remains relatively strong. The somewhat large value
of τL ≈ τd for the reversing model E3R9 is consistent with
the increased probability for low ADM values which WM16
explained with a distinct low dipole moment state.

As expected, both time scales τL and τH roughly coincide
in the multipolar case E3R13 where the drift decreases
monotonically (Figure 3, bottom panel). The negative drift slope
at x = 0 means that the drift is always destructive while the
fluctuations drive the ADM toward positive or negative values
and thus play a key role in reversals that happen more or less
continuously in this case.

The variation of the ADM value x∗ where the drift reaches
its maximum reveals further interesting insights. Table 2 shows
that the maximum drift value d(x∗) decreases significantly with
increasing Rayleigh number. This can be compared with the
amplitude of the rescaled fluctuation f ⋆ characterized by the
values at x = 〈|x|〉 and x = 0 in Table 2. For the non-reversing
model E3R7 the ratio of f ⋆(〈|x|〉) to maximum drift is roughly 1.8
but increases to about 4.2 in the reversing case E3R9. Fluctuations
thus have an easier time to overcome the restoring drift force and
potentially lead to reversals.

In the particle-in-well analogy, x∗ represents the point where
the drift potential U(x) changes curvature and its slope starts to
become shallower. When Ra increases both x∗ and 〈|x|〉 decrease,
but the former slower than the latter. This effectively means
that the height of the drift potential well decreases and polarity
changes can happen more easily.

The fluctuation f ⋆ has a concave shape in the non-reversing
case E3R5 (Figure 3, top panel) with a somewhat weaker slope on
the lower ADM flank and a minimum around the mean ADM.
In the other cases f ⋆ monotonically increases with x and nearly
doubles its value. Table 2 shows that the value f ⋆(〈|x|〉) changes
relatively mildly with Ra and is similar to the value at x = 0. The
exception is the low Rayleigh number case E3R5 where the latter
value is not directly supported by data.

The drift and fluctuation curves for the E = 3× 10−4 models
shown in Figure 4 are very similar to those just discussed. The
drift profile shows clear steepening for large ADM values that is
only evident for case E3R13 at the larger Ekman number. The
dependence of the selected drift and fluctuation measures on
the Rayleigh number also follows the trend discussed above (cf.
Table 2). However, the characteristic drift time scales τH and τL
are particularly large for the reversing case E4R106C and reach
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FIGURE 4 | Same as Figure 3 but for the four dynamo models at Ekman

number E = 3 × 10−4.

more than three dipole decay times. The particular parameter
combination promotes amuch slower drift than in all other cases.

Finally, Figure 5 shows the remaining two models with the
smallest Ekman number E = 3 × 10−5. Since the Rayleigh
number is relatively small and the models have only been run
for a comparatively short time, they sample only a limited ADM
range. Little more can be said than that the linear drift and
concave fluctuation curves are very similar to those discussed
above. The difference in magnetic Prandtl number in these two
low Ekman number cases has virtually no impact.

Figure 6 presents the drift and fluctuation profiles for the
palaeomagnetic model PADM2M. As already discussed in the
previous section, the scarcity of low VADM instances makes it
difficult to constrain the profiles below about 50% of the mean
VADM. Drift and fluctuation profiles are similar to those for
the numerical simulations. However, there is no sign that the
drift d levels off toward lower ADM values as in the numerical
cases. Overall, the drift data seem more or less consistent with
a linear decrease, except perhaps for the lowest and the highest
ADMbins. The fitted drift profile (solid curve in Figure 6) tries to
meet individual points even though they are not well constrained
and should not be over interpreted. The typical relaxation time
toward the equilibrium state τH is about 0.42 τd or 23 kyr, in
agreement with the value found by Buffett et al. (2013). The
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FIGURE 5 | Same as Figure 3 but for the two dynamo models at Ekman

number E = 3 × 10−5. The upper (lower) panel shows the case at magnetic
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FIGURE 6 | Same as Figure 3 but for the palaeomagnetic (virtual) axial

dipole moment variations from model PADM2M. Time is rescaled using

an Earth’s core dipole decay time of τd = 56 kyr.

typical time for the palaeomagnetic axial dipole moment to leave
the low field intensities is τL = 16 kyr which is similar to the
20 kyr suggested by Brendel et al. (2007) for Sint-2000 data. The
fluctuation profile slightly rises toward lower ADM values, a
behavior only found for the lower Rayleigh number simulations
E3R5, E5R18Pm1, and E5R18Pm05.

3.2. Validation of the Stochastic Model
The stochastic model represented by the Langevin and Fokker-
Planck equations should be validated against the original
data, i.e. against the numerical simulation results and the
palaeomagnetic model PADM2M. The validation presented here
has two levels. In the first level we compare with integrations
of the discrete Langevin equation (17). Hundreds of such
realizations, each integrated as long as the original numerical
dynamo model, provide a statistical ensemble that allows us to
estimate the error for statistics based on the respective integration
time. The ensemble mean, on the other hand, is equivalent to
very long integrations that usually cannot be afforded in the full
numerical dynamo simulation. The second level of validation
consists in a comparison with the analytical predictions from the
FPE discussed in Section 2.2. An agreement between the results
from very long integrations of the Langevin equation and the FPE
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confirms that the latter indeed describes the statistical behavior of
the former and that we have correctly linked the two differential
equations.

Figure 7 visually compares part of the original axial dipole
moment time series from model E3R9 (top left panel) with one
realization of the respective stochastic model (bottom left panel)
which was initialized with the same ADM as the numerical
simulation. The two time series seem to show very similar
temporal variations on different time scales. For example, longer
stable polarity epochs are interspersed with abrupt reversals and
excursions. Naturally, the stochastic model can only capture
variations on time scales longer than τ .

The unsigned ADM mean for model E3R9 is 〈|x|〉 = 6.32 ×

1022 Am2 with a standard deviation of σ|x| = 3.01 × 1022 Am2.
The ensemble average over 104 realizations integrated as long
as the original numerical model (more than 17 thousand dipole
decay times or about 950Myr for Earth) yields a mean of 〈|x|〉 =
6.42 × 1022 Am2 and a standard deviation of σ|x| = 3.03 ×

1022 Am2, in good agreement with the numerical simulation.
The overbar indicates the ensemble average here. A comparison
of column four in Table 2 and column two in Table 3 reveals
similarly good agreement for all numerical models and for
PADM2M, not only for the mean but also for the mode values
xm. As expected, 〈|x|〉 and xm are practically identical in the
non-reversing cases while the ADMmean is systematically lower
than the mode for the reversing models (and for PADM2M)
due to the significant contribution of low axial dipole moment
instances. The VADM time series obtained from a realization of
the stochastic model (Figure 7, bottom right panel) seems also to

capture the different temporal variations present in the original
palaeomagnetic time series (Figure 7, top right panel).

Figure 8 illustrates the similarity of the various ADM
distributions for the two reversing models E3R9 (top panel)
and E4R106C (middle panel). The predicted steady-state
distributions from the FPE p0 (thick light gray curves)
agree nicely with the numerical simulations (open squares)
and perfectly overlap long numerical realizations of the
respective stochastic model (black curves). The very long
simulation run for E3R9 provides a tight constraint and
leads to very good agreement of all PDFs. The much shorter
integration time for E4R106C, however, is also the reason
for the PDF asymmetry. This asymmetry should ultimately
vanish for longer integrations as shown by the stochastic
realization.

The good agreement of the VADM distribution from
PADM2M with the simulated distribution suggests that the
stochastic model successfully reproduces the variability of the
palaeomagnetic time series (Figure 8, bottom panel). Once more,
the predicted steady-state PDF p0 overlaps with the distribution
from a long numerical realization as expected. Both distributions
closely follow the original data PDF. Since PADM2M covers
only the last 2Myr of palaeomagnetic variations, however, the
confidence intervals on the estimates of the ADM mean and
mode remain relatively large (see Table 3). A minor difference
between p0 and the data PDF occurs for low dipole field
intensities: The stochastic model predicts a small, but still
non-zero probability whereas the data probability is vanishingly
small. One reason for this discrepancy might be related to the
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FIGURE 7 | Axial dipole moment variations for the reversing dynamo model E3R9 and for the palaeomagnetic model PADM2M (top panels) with the

respective realizations of the stochastic model (bottom panels). E3R9 is shown over an interval of 250 dipole decay times τd while PADM2M covers 2Myr or

about 36 τd . The horizontal dashed lines mark the unsigned axial dipole moment mean values. The stochastic realizations have been started with the same initial

(V)ADM values of the original time series.
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TABLE 3 | Relevant statistical properties of the axial dipole moment inferred from numerical realizations of the stochastic model for all the cases

explored.

Model 〈|x|〉 xm SV 〈Te〉

Analytical Realizations Simulation

E3R5 20.58± 0.12 20.92± 0.26 0.15± 0.01 224 221± 8 −

E3R7 11.75± 0.22 11.64± 0.45 0.25± 0.02 183 195± 6 −

E3R9 6.42± 0.03 6.78± 0.25 0.469± 0.003 12.8 13.8± 0.6 16.5

E3R13 0.002± 0.298 0.009± 0.794 − 0.16 0.18± 0.02 −

E4R53C 7.73± 0.13 7.73± 0.25 0.12± 0.01 57 328 − −

E4R78C 5.48± 0.12 5.48± 0.25 0.23± 0.02 437 444± 16 −

E4R106C 2.69± 0.12 2.77± 0.60 0.57± 0.03 5.7 5.9± 0.4 6.5

E4R159C 0.005± 0.374 0.006± 0.887 − 0.03 0.09± 0.02 −

E5R18Pm05 9.94± 0.08 9.92± 0.10 0.06± 0.01 44 152 − −

E5R18Pm1 15.03± 0.13 15.03± 0.13 0.05± 0.01 506445 − −

PADM2M 5.18± 0.26 5.41± 0.39 0.29± 0.04 19.9 25.5± 1.2 −

Columns 2 to 4 list the ensemble averages of, respectively, the unsigned axial dipole moment mean 〈|x|〉, mode xm, and relative standard deviation SV (Equation 30). Columns 5 and 6

give the mean escape time 〈Te〉 predicted by the Fokker-Planck theory (Equation 28) and the ensemble average estimate, respectively. The last column shows the mean escape time

calculated using the theoretical relation 〈Te〉 = 〈TR〉 /2. The mean reversal waiting times 〈TR〉 for models E3R9 and E4R106C are taken from WM16. For the multipolar cases E3R13 and

E4R159C the listed statistics are based on the signed axial dipole moment x instead of |x|. The ensemble averages of 〈|x|〉, xm, and SV are performed over 10
4 realizations and the errors

denote the 68% confidence intervals. The mean escape time 〈Te〉 for the stochastic model is evaluated using at least 2×10
3 repeated realizations and the respective ensemble average

is performed over at least 3× 103 of such estimates. The error on 〈Te〉 denotes the 95% confidence interval. The statistics relative to the ADM are expressed in units of 1022 Am2 and

〈Te〉 is given in dipole decay units.

few instances of low VADMs in the palaeomagnetic record.
The left flank of the original VADM data distribution is only
somewhat more populated than the right flank. While this
slightly asymmetric profile might indicate the presence of a
“weak dynamo state” as discussed by WM16, it is certainly
much less pronounced than in model E3R9 or E4R106C. The
latter model shows a particularly high probability for low field
intensities, but choosing slightly lower Rayleigh numbers for the
simulation should reduce this effect. The analytical steady-state
distributions of non-reversing and multipolar dynamos show
similarly good agreements with simulation data and stochastic
model realizations but are not illustrated here.

The relative standard deviation

SV =

(

〈

x2
〉

− 〈|x|〉2
)1/2

〈|x|〉
(30)

quantifies the variability of the unsigned axial dipole moment
around its mean value and this provides a measure for the secular
variation (SV). Ensemble averages of SV are reported in Table 3

together with the estimated standard errors. In the E = 10−3

and E = 3 × 10−4 cases SV increases with the Rayleigh number
Ra as expected. The two models at E = 3 × 10−5 show a less
pronounced SV of the order of 5% consistent with their highly
dipolar character and the relatively small Rayleigh number.
In PADM2M the relative standard deviation is SV ≈ 0.30,
significantly smaller than both the reversing dynamo models
analyzed here. In the limits of statistical errors, the SV ensemble
averages are identical to the SV values in the original numerical
simulation (cf. Table 2). In the multipolar cases the measure SV

must be based on the signed ADM x but, since 〈x〉 vanishes in
these models, it is not well-defined. The signed ADM standard
deviation σx for the multipolar case E3R13 (E4R159C) is 3.50 ×
1022 Am2 (2.03 × 1022 Am2). The ensemble average over 104

realizations yields a standard deviation σx of (3.43 ± 0.15) ×
1022 Am2 ((1.98± 0.16)× 1022 Am2) which well agrees with the
numerical simulation.

The stochastic model allows us to calculate the mean escape
time 〈Te〉, i.e. the average time required by x to change sign
or to cross the drift potential barrier in the particle-in-well
paradigm. Once more, we can rely on numerical realizations of
the stochastic process and on the analytical prediction (28) based
on the FPE. Both values are listed in columns five and six of
Table 3 for all the explored models. In addition we list values
based on the mean reversal waiting times 〈TR〉 for models E3R9
and E4R106C provided by WM16, using the relation 〈Te〉 =

〈TR〉 /2 (see Section 2.2).
The reversing and multipolar models at E = 10−3 and

E = 3 × 10−4 present ensemble averages of 〈Te〉 close to the
respective analytical predictions. Though the escape time Te is
not well constrained by the simulation data for stable dipolar
dynamos, the fitted drift and fluctuation functions nevertheless
yield a prediction. The analytical 〈Te〉 ranges from few hundred
dipole decay times for the E = 10−3 cases to very large
values for the highly dipolar models at E = 3 × 10−5. Since
the stochastic realizations showed too few or no reversals for
models E4R53C, E5R18Pm05, and E5R18Pm1 we could not list
the respective estimates in Table 3. The 〈Te〉 values from the
stochastic realizations match the analytical predictions for the
stable dipolar models E4R78C and E3R5 in the limits of statistical
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FIGURE 8 | Comparison of axial dipole moment probability distributions for the reversing dynamo models E3R9 (top panel) and E4R106C (middle

panel), and for the palaeomagnetic model PADM2M (bottom panel). The binned probability density function of the original (V)ADM data is shown with open

squares. The thick light gray curve is the analytical steady-state solution of the Fokker-Planck equation p0 (x) (Equation 27) and the black curve is the PDF obtained

from a long (several tens of thousand dipole decay times) numerical integration of the stochastic model.

errors. The ensemble average of 〈Te〉 is close to the predicted
value for E3R7.

The average Earth’s reversal rate is about 4Myr−1 when
estimated from palaeomagnetic reversal chronologies for the last
20Myr or so (Biggin et al., 2012). During the last 2Myr either
seven or five reversals are discussed depending on whether the
Cobb Mountain event that occurred 1.2Myr ago is regarded as
a subchron. This translates into rates of 3.5 or 2.5 Myr−1. The
Fokker-Planck analysis, however, predicts a much smaller rate of
only 0.45Myr−1. A possible explanation for the discrepancy is
the poor coverage of low VADMs in the PADM2M data. Figure 6
shows that we fail to sufficiently constrain drift and fluctuation
profiles for values below about 50% of the mean VADM in our
analysis. Even for larger VADMs the size of the data sample is
not at all at the level of the numerical simulations. Since the
dynamics at small axial dipole moments is particularly important
for determining the reversal likelihood, it seems conceivable

that additional data may lead to more realistic predictions of
the reversal rate. A smaller drift maximum d(x∗) or larger
fluctuations at small x values would both help.

Fokker-Planck theory also predicts that the escape times
are exponentially distributed with a mean value 〈Te〉 given
by Equation (28) and listed in Table 3. Figure 9 shows the
binned PDF p(Te) for the reversing dynamo models and for
PADM2M together with the predicted exponential distributions.
The analytical predictions are in very good agreement with the
numerical realizations. Once more, this demonstrates the validity
of the Fokker-Planck description of the stochastic process.

The stochastic model allows us to predict more than just
the mean reversal waiting times. For example, we can access
the mean waiting time 〈TW〉 for the axial dipole moment to
reach any given value x when starting with the configuration
x = xm. Since xm is the most likely ADM value, this is a
relevant scenario. Small variations can be achieved by direct
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FIGURE 9 | Probability density functions of the escape time Te

obtained from 104 numerical realizations of the stochastic model for

the reversing dynamo models E3R9 and E4R106C, and for the

palaeomagnetic model PADM2M. The solid lines are the exponential PDFs

p(Te) = 〈Te〉
−1

exp(Te/ 〈Te〉) predicted by the Fokker-Planck theory with 〈Te〉

the mean escape times (28) listed in Table 3. The error bars mark the

estimated standard errors in each bin (mostly smaller than the symbol sizes

themselves).
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FIGURE 10 | Mean waiting time 〈TW 〉 as function of the axial dipole

moment x for the reversing dynamo models E3R9 and E4R106C, and

for the palaeomagnetic model PADM2M. The ADM is normalized with its

mode xm (see Table 3). The averages are calculated over 104 realizations of

the stochastic model started with x = xm.

fluctuations and can therefore be rather fast. However, Figure 10
shows that the waiting time increases rapidly away from xm once
several fluctuations have to team up to lead to more substantial
variations. The combined fluctuations have to overcome the slow
drift and the large 〈TW〉 values prove that this is quite difficult.
The waiting times are generally longer than a simple dipole decay
and larger for x > xm than for x < xm. The palaeomagnetic
model PADM2M generally shows the longest mean waiting times
and they are longer in model E3R9 than in E4R106C. The values
at x = 0 are consistent with the predicted mean escape times
〈Te〉 listed in Table 3. Smaller reversal rates thus reflect a general
tendency for a slower axial dipole decrease over a large range of
dipole moments.

The results shown in Figure 10 permit to estimate how much
more likely a reversal (or grand excursion) becomes when the
ADM has already decreased to a certain value. An ADM decrease
to 50% requires two to three dipole decay times. For model
E4R106C the event then still lies, on average, about four decay
times or roughly 200 kyr in the future. For PADM2M the next
reversal or grand excursion will occur, on average, in 1Myr and
the fact that the ADM is already half of its preferred value hardly
matters.

4. INTERIOR DYNAMO ACTION

Changes in the axial dipole moment are either of inductive
or diffusive origin. The ratio of magnetic field production to
the Ohmic decay is often estimated by the magnetic Reynolds
number Rm = Ud/λ, where U is a characteristic flow velocity.
Rm can also be interpreted as the ratio of the diffusive to the
inductive or convective time scale. For the dynamo simulations
explored here, Rm ranges from about 100 to about 500 and is
perhaps 2000 for Earth. Induction can clearly happen on much
faster time scales than Ohmic decay.

To explore the role of the two processes in the drift and
fluctuation contributions discussed above, we have performed
additional shorter runs for models E3R5, E3R9, and E3R13.
During these simulations we stored the axial dipole contribution
of magnetic field induction and diffusion within the spherical
shell. No-slip boundary conditions force the flow and thus the
induction to vanish at both boundaries. We therefore analyze
the axial dipole variation just below the outer Ekman boundary
layer which was identified by inspecting the radial kinetic energy
profile.

The analysis of both contributions follows the scheme already
outlined above. MagIC actually solves for inductive and diffusive
changes of all spherical harmonics contributions to the radial
magnetic field. Variations in the axial dipole contribution B10
of the radial field are directly related to variations in the axial
dipole moment. For accessing induction and diffusion separately
we integrate both contributions to the degree ℓ = 1 and order
m = 0 harmonic dynamo equation over τ :

B10(t + τ )− B10(t)

τ
=

1

τ

∫ t+τ

t

[

r̂ · ∇ × (U× B)
]

10
dt

+
1

τ

τd

τλ

∫ t+τ

t

[

r̂ · ∇2
B
]

10
dt (31)

= Ḃ
(I)
10 (τ ) + Ḃ

(D)
10 (τ ) . (32)

The superscripts (I) and (D) mark inductive and diffusive effects
respectively. The square brackets with the subscript 10 refer to
the axial dipole (ℓ = 1, m = 0) contributions and r̂ denotes
the unit vector in the radial direction. Equation (31) provides
the recipe for separating axial dipole field changes into Langevin
(or Fokker-Planck) drift and fluctuation profiles for the inductive
and diffusive contributions. For example, the two binned drift
contributions are

d
(I)
i =

〈

Ḃ
(I)
10

〉

i
(33)

and

d
(D)
i =

〈

Ḃ
(D)
10

〉

i
. (34)

The two induction and diffusion related fluctuation functions are

f
⋆(I)
i =

(〈

(

Ḃ
(I)
10

)2
〉

i

)1/2

(35)
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and

f
⋆(D)
i =

(〈

(

Ḃ
(D)
10

)2
〉

i

)1/2

. (36)

The angular brackets now refer to averages over the entries in B10
bins of width 1B10.

Since the dipole field within the dynamo region is not a
potential field, it cannot be expressed in terms of a dipole
moment to facilitate a direct comparison with the ADM analysis
presented in the previous sections. We therefore simply use non-
dimensional values for time and B10, that are given in units of τd

and (µλρ�)1/2 respectively, and compare relative variations and
the general form of drift and fluctuation profiles.

The left panels in Figure 11 show the drift functions for
models E3R5, E3R9, and E3R13. Included are results when using
all available data in gray and for time resolutions of τ = 0.1
or τ = 0.05 in black. Results for all data cannot provide an
appropriate Langevin model but nevertheless give an interesting
reference. For time resolutions τ > τc the profiles are very
similar to those for the ADM sequences of the respective models
presented in Section 3.1. The absolute diffusive contribution
(dashed curves) increases roughly proportional to B10 (or x) in
all three cases. It depends only mildly on the time resolution

FIGURE 11 | Axial dipole variations beneath the outer Ekman boundary layer in models E3R5 (top panels), E3R9 (middle panels) and E3R13 (bottom

panels). The left panels show separate drift profiles for induction d(I) (solid lines with open symbols), negative diffusion −d(D) (dashed lines with gray filled symbols)

and the total d (dotted lines with black filled symbols). Two different time resolutions τ have been used, the smallest available for the respective numerical data set

(squares), and a value τ > τc when the Langevin and Fokker-Planck formalisms can be expected to hold (circles). The right column shows the respective rescaled

fluctuation profiles f⋆. For E3R9 (E3R13) the black profiles have been amplified by a factor 3 (5). The solid (dashed) vertical line marks the axial dipole mean (mode). All

values are given in dimensionless units.
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because diffusion is a slow process. As expected, Ohmic decay
acts destructively and exerts a simple linear drift toward B10 = 0.
The diffusive effects level off for small B10 values in model E3R5
which also shows some other distinct properties that we will
discuss below.

The inductive contribution (solid curves in Figure 11, left
panels) generally shows a more complex dependence on B10,
on τ , and also on Ra. For small time resolutions τ < τc,
this constructive term generally grows with increasing B10. The
increase is roughly linear for model E3R5 but slightly levels off
for larger dipole field intensities in models E3R9 and E3R13.
Inductive and diffusive profiles cross at a value slightly larger than
the mean axial dipole intensity 〈B10〉, with diffusion dominating
for larger and induction for smaller values. This is equivalent
to the point where the total drift (dotted curves) vanishes and
defines the preferred B10 value and/or the minimum in the
respective drift potential as discussed above. Solid and dashed
vertical lines in the left panels of Figure 11 mark 〈B10〉 and the
crossing point respectively.

When τ is increased beyond the overturn time, the d(I)

profiles (solid black curves in Figure 11, left panels) assume
a different form that remains roughly constant for yet larger
τ in agreement with our discussion in Section 2.2. For model
E3R5, the profile now decreases for larger B10 but still crosses
the negative diffusive contributions. The decrease is likely a
sign of magnetic flow quenching. The dominance of diffusive
effects beyond and inductive effects below the preferred B10 value
becomes much more pronounced once the faster fluctuations
have been filtered out. The inductive profiles for E3R9 and E3R13
increase roughly linearly for small B10 values and seem to show
quenching effects for larger field strengths, for case E3R9 more
so than for E3R13. In the multipolar case E3R13 the induction
profile remains always smaller than the diffusive one which
explains the negative total drift toward B10 = 0.

Profiles of the fluctuation contributions f ⋆(I) and f ⋆(D) are
shown in the right panels of Figure 11. Most profiles simply
increase monotonically with B10 and, contrary to the drift,
inductive effects clearly dominate. The exception is once more
E3R5 at τ = 0.1, the only model where quenching seems to
significantly impact the fluctuation. For larger B10 values, f ⋆(I)

decreases so significantly that diffusive effects start to dominate
the rescaled fluctuation in this model. Note that the fluctuation
amplitude, contrary to the drift, also strongly depends on τ .

We refrain from fitting analytical functions to the drift and
fluctuation profiles and use the ratio

τV = B10/Ḃ10 (37)

for estimating the respective time scales from the Langevin
analysis. Using this definition for the total drift would bear the

problem that the respective profile passes through zero at the

preferred B10 value. We can, however, calculate the time scales

that characterize purely inductive or purely diffusive mean or

RMS variations, keeping in mind that they may not reflect the
true variations which are generally a combination of both effects.

For example, the resulting time scales for the mean variations d

are defined as

τ
(D)
V = B10/d

(D) (38)

and

τ
(I)
V = B10/d

(I) . (39)

Similar definitions hold for the RMS variations f ⋆.
Figure 12 compares all four such time scales for mean and

RMS variations and the selected τ values. As expected, time scales
based on the RMS variations f ⋆ (gray curves) are shorter than
the respective scales based on the mean d (black curves). The
differences remain smaller for diffusive contributions which have
predominately one sign. Since the rescaled fluctuation profiles
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depend strongly on τ , however, the respective time scales are hard
to constrain and decrease with τ .

The diffusive drift time scales (dashed black curves) remain
close to one for dynamo E3R5 but decrease to roughly 0.4
for E3R9 and 0.35 for E3R13. This indicates that dipole
contributions with a more complex internal radial structure than
the fundamental decay mode contribute to the axial dipole, as
suggested by Buffett et al. (2014). Inductive mean variations
(solid black curves) are somewhat faster for lower B10 values
but can reach much larger values when B10 increases. The
shortest drift time scales are clearly associated to mean inductive
variations which therefore dominate the B10 dynamics. These
time scale estimates somewhat differ from those in Section 3.1
which were based on the total drift and thus on the difference
between inductive and diffusive profiles.

We started this section with discussing the magnetic Reynolds
number as a measure for the ratio of diffusive to inductive time
scales. Our analysis allows us to calculate the ratio of these time
scales based on, for example, the mean axial dipole variations d
for τ > τc which reflect the long time scale dynamo balance. The

respective magnetic Reynolds numbers τ
(D)
V /τ

(I)
V decrease with

B10 and cross unity where induction and diffusion profiles meet.
Maximum values at low B10 only reach about two for models
E3R5 and E3R9 but never exceed unity for E3R13. This is in
strong contrast to the much larger values between Rm = 100
and 500 based on RMS flow velocities which may reflect local fast
magnetic field fluctuations but not the balance that rules the slow
axial dipole dynamics.

The decrease of inductive effects with increasing field strength
offers interesting clues on the nonlinear feedback between flow
and magnetic field that establishes the dynamo balance. Classical
mean-field theory predicts a quadratic quenching of the so-
called α-effect that parametrizes the production of axisymmetric
field via the interaction of non-axisymmetric field and non-
axisymmetric flow (Roberts, 1967; Krause and Rädler, 1980). The
field induction then scales like

Ḃ ∼ α
(

1− B
2
/B2α

)

B , (40)

where B is the axisymmetric field, α is a generic simplified
scalar representing the strength of the interaction between non-
axisymmetric field and flow, and Bα is a normalization factor.
Following Brendel et al. (2007), we adapted the above expression
to the analysis of axial dipole fluctuations considered here by
assuming that the quenching only depends on the axial dipole
field:

Ḃ
(I)
10 ≈ α

(

1− B210/B
2
α

)

B10 + Ḃ
(I)
10 (B10 = 0) . (41)

The variation at vanishing dipole field, Ḃ
(I)
10 (B10 = 0), is

an additional parameter only required when describing the
fluctuation profile which remains non-zero at B10 = 0.

Figure 13 shows fits of the form (41) to the mean (black)
and RMS (gray) induction profiles for model E3R9. While the
agreement is not perfect, in particular for the mean induction
d(I), the results nevertheless indicate that the quadratic quenching
predicted by mean-field theory may indeed apply. The fitting
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FIGURE 13 | Quenching of mean axial dipole induction d(I) (black) and

RMS induction f⋆(I) (gray) for the dynamo model E3R9 with τ > τc

depicted in Figure 11. Dashed lines show the quadratic quenching models

described in the text. All quantities in dimensionless units.

parameters are (α = 3.27, Bα = 2.13) for d(I) and (α = 2.40,
Bα = 3.00) for f ⋆(I) which confirm the much weaker quenching
of field fluctuations. Note, however, that fluctuations are more
strongly quenched in model E3R5.

5. DISCUSSION

Our analysis has confirmed that a stochastic Langevin model
can describe the axial dipole moment variations in numerical
dynamo simulations and in a palaeomagnetic field model.
Separating the dynamics into a slow drift and faster stochastic
fluctuations requires to exclude time scales where correlations
of flow features still matter. On time scales longer than about
a millennium, however, the stochastic model offers a viable
description of the axial dipole field dynamics and provides useful
prediction of, for example, its probability distribution (Hoyng
et al., 2001; Buffett et al., 2013).

Fokker-Planck theory also allows us to predict the mean
reversal rate which reasonably well agrees with the rates in the
two reversing dynamo simulations explored here. For Earth,
however, the stochastic model based on the palaeomagnetic
PADM2M data predicts a rate about 10 times lower than the
4Myr−1 suggested by the marine magnetic anomaly record
for the last 20Myr (Biggin et al., 2012; Ogg, 2012). A similar
stochastic Langevin model for PADM2M by Buffett et al. (2013)
suggests amean reversal rate of about one reversal perMyr, which
is roughly twice the value we predict but still four times lower
than Earth’s estimates. A possible reason for these discrepancies
could be that the palaeomagnetic data are insufficient to constrain
the stochastic model.

Figure 14 subsumes our results by comparing drift and
fluctuation for the reversing dynamo model E3R9 and for
PADM2M. At the lowest ADM where the palaeomagnetic data
still allow us to roughly constrain the stochastic model, the
drift is already significantly larger than for E3R9. This strong
drift away from the polarity transition translates into the low
reversal rate. Larger fluctuation amplitudes partly compensate
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this effect in the analysis of Buffett et al. (2013). Additional
palaeomagnetic records, containing a larger fraction of low ADM
instances, would help to better pin down the drift and fluctuation
profiles. As discussed above, the fundamental problem that
palaeomagnetic sequences provide virtual axial dipoles rather
than the true axial dipole contribution can also become an issue
when the ADM is so low that its signal is blurred by other field
contributions.

Experiments with synthetic drift and fluctuation profiles could
help to reconstruct the axial dipole moment variations at small
field intensities leading to more realistic predictions of the
reversal rate. Another problem are the slow changes of the Earth’s
reversal rate over time, for example due to variations in the lower
mantle structure, and normal statistical fluctuations may also
play a role (Biggin et al., 2012). After all, the last reversal occurred
about 780 thousand years ago.

The secular variation, measured by the relative standard
deviation SV , is smaller in model PADM2M than in the two
reversing dynamo models studied here. One possible reason is
the coarse time resolution of the palaeomagnetic model. For
the simulations we chose a time resolution τ of 15 times the
convective overturn time while this factor has to be increased to
about 60 for PADM2M. Perhaps more significant is the fact that
the palaeomagnetic model is based on sedimentary data which
are known to average out faster field variations due to the long
locking time. It is therefore likely that the palaeomagnetic model
misses extreme variations or averages them out. Both effects
potentially lead to narrower distributions which could be tested
for the numerical models, an analysis we plan to conduct in the
future. Alternatively, a slight decrease in Rayleigh number may
not only reduce the reversal rate but also lead to leaner probability
distributions.

Following the ideas of Hoyng et al. (2001), we explored
the drift and fluctuation profiles for clues on the nonlinear
interaction between flow and magnetic field. An analysis of the
axial dipole variations just below the outer Ekman boundary layer
allowed separating inductive and diffusive contributions in the
simulations. The results seem to confirm the classical picture
also illustrated in Figure 14. For a very weak field, the mean
field generation grows linearly with the field amplitude. The
diffusion also increases linearly but the slope is slightly shallower,

at least when the dynamo is not multipolar. The positive net
slope results in a growing drift toward stronger axial dipole
fields. At some intermediate field strengths, however, the mean
induction become gradually less efficient likely due to Lorentz
forces quenching the flow dynamics. The net slope then decreases
until diffusive effects start to dominate where the total drift
crosses the zero line. The crossing point establishes the ADM
mode or most likely value xm.

Buffett et al. (2014) suggest that diffusive effects are
responsible for the drift toward xm from both sides, i.e. also
for x < xm. Our analysis confirms the more classical view
that diffusion always acts destructively while any drift toward
stronger fields is an inductive effect. The idea by Buffett et al.
(2014) was motivated by the fact that the involved drift time
scales are always very slow. We confirm that the drift is indeed
never significantly faster than dipole decay but for a different
reason: The drift (or mean axial dipole variation) reflects the
slow fundamental induction-diffusion balance of the dynamo
mechanism that is established via the nonlinear interaction
between flow and magnetic field. The strong quenching effects
evident in most drift profiles support this view and suggest that
this fundamental aspect could actually be inferred from axial
dipole moment observations.

The fluctuations (or RMS axial dipole variations) act on time
scales at least a factor two faster. The much weaker quenching
effects suggest that the fluctuations are too fast to establish a
balance. Note, however, that the fluctuation time scale decreases
with the temporal resolution τ and we have chosen relatively
large τ values here. Fluctuation quenching is bound to become
even smaller when τ is decreased further.

Is the idea of an additional weak field state in reversing
dynamos, suggested by WM16, supported by the analysis
presented here? As stated above, the modes xm of the unsigned
ADM distribution are determined by the values where the drift
crosses zero with a negative slope (or equivalently where the drift
potential has a local minimum). A distinct weak dipole moment
state would thus require the drift to assume a negative slope
around x = 0, which is exactly the configuration we find for
multipolar dynamos. For reversing dynamos, however, the slope
is positive around x = 0 so that the net drift drives the system
away from the origin toward xm. This suggests that Earth-like

0 2 4 6 8 10 12 14

[1
0
2
2
A
m
2
/τ

d
]

-10

0

10

20

-20

linear growth 

of relative 

induction

quadratic decrease 

of relative 

induction dominant diffusion

ADM [1022 Am2]

A
D

M
 v

ar
ia

ti
o
n

FIGURE 14 | Drift d and rescaled fluctuation f⋆ for the reversing dynamo model E3R9 (solid and dashed curves respectively) and for the
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contributions found in the simulations.

Frontiers in Earth Science | www.frontiersin.org 18 April 2016 | Volume 4 | Article 38

http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Meduri and Wicht Stochastic Model for Dipole Moment Fluctuations

rare reversals are actually not interludes where the dynamo
ventures into the multipolar state. Instead they are facilitated
by the simple fact that the drift amplitude decreases toward
x = 0 while the fluctuation amplitude remains large. Once
the stochastic fluctuations have conspired to reduce the axial
dipole moment sufficiently enough, any further fluctuation has
an easy game to accomplish a polarity change. The likelihood for
reaching weak dipole moments, on the other hand, is determined
by a combination of different effects. For example, smaller mode
values xm, shallower negative drift slopes around xm, a late
turning point x∗ of the drift slope, or a small positive drift
slope around x = 0 all increase the likelihood that the dynamo
assumes weak ADM values and thus make reversals more
likely. Further analysis should clarify the role of these different
factors.

We have only started to analyze quenching effects and a more
in depth comparison with predictions from mean-field theory
would be certainly interesting. An extension of the internal
induction and diffusion analysis to deeper depths, other field
harmonics, and more dynamo cases could clarify how widely
the simple picture we paint here actually applies. Unfortunately,
it remains very difficult to include low Ekman number cases
with E < 3 × 10−5 since the respective simulations are too
computationally demanding.
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