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Magnetic anisotropy and the elongation/inclination (E–I) approaches have been

increasingly employed as two important means for detecting and correcting the

paleomagnetic inclination shallowing in sedimentary rocks that was first recognized

60 years ago. Both approaches are based on certain assumptions, and thus have

advantages and intrinsic limitations in investigating shallow inclinations in sedimentary

rocks. The E–I approach is relatively easy to use, but it needs a large dataset

to adequately sample paleomagnetic directions due to paleosecular variation (PSV)

of the geomagnetic field. Also, slow sediment accumulation rates (SARs) and local

tectonics could lead to under- or over-corrections using the E–I approach. For the

magnetic anisotropy technique, labor-intensive, sophisticated laboratory rock magnetic

experiments are required in order to accurately determine both bulk magnetic anisotropy

of remanence-carrying grains and magnetic anisotropy of an individual particle, i.e.,

“a” factor, of samples. Our review shows that, despite the intensive laboratory work

necessary for applying anisotropy-based inclination corrections, it is worth investing the

effort. In addition, the joint use of magnetic susceptibility and remanence anisotropy

measurements as well as detailed rock magnetic measurements for determining the

particle anisotropy “a” factor have the advantage of retrieving direct evidence of inclination

shallowing and correcting for it with high confidence. We caution against use of either of

the two approaches without full appreciation of the underlying assumptions and intrinsic

limitations of each technique. The use and comparison of both techniques could provide

the most robust inclination shallowing correction for sedimentary rocks.

Keywords: inclination shallowing, sedimentary rocks, magnetic anisotropy, elongation/inclination, rock

magnetism, paleomagnetism

INTRODUCTION

One of the outstanding problems in understanding paleomagnetic records of sedimentary rocks
is inclination shallowing, i.e., the recording of magnetic remanence inclination that is shallower
than that of the ambient field in which sedimentary rocks were magnetized. Recognition of non-
ideal paleomagnetic recording in sedimentary rocks raises concern because our knowledge of the
spatial-temporal behavior of the geomagnetic field is largely based on paleomagnetic records from
sedimentary rocks due to their widespread occurrence and ability to record geomagnetic field
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variations relatively continuously. Recognition of inclination
shallowing in sedimentary rocks has led to efforts to investigate
processes that can cause this problem since it was first discovered
60 years ago (King, 1955). Laboratory re-deposition experiments
and modeling work have shown that inclination shallowing
could occur during sediment deposition and can be related to
factors such as particle shape, viscosity, pH, and current shear
(e.g., Griffiths et al., 1960; Verosub et al., 1979; Tauxe et al.,
2006). Paleomagnetic studies of recent sediments and ancient
sedimentary rocks have demonstrated that inclination shallowing
could also take place after deposition and is associated with
sediment compaction (Deamer and Kodama, 1990; Kodama,
1997). The degree of inclination shallowing can be described by
the empirical formula (King, 1955):

f = tan (Io)/tan (If ) (1)

where f is the flattening factor, Io is the observed, shallowed
inclination and If is the inclination of the ambient field. The
flattening factor f ranges from 1.0 (no inclination shallowing) to
0 (total inclination shallowing).

While our knowledge of the acquisition mechanism of
depositional remanent magnetization (DRM) and post-
depositional remanent magnetization (pDRM) continues
to advance via modern, more sophisticated laboratory re-
deposition experiments and novel modeling work (Katari and
Tauxe, 2000; Jezek et al., 2012; Spassov and Valet, 2012; Roberts
et al., 2013), examining the reliability of paleomagnetic records
from sedimentary rocks is of paramount importance before
these data are used to test tectonic models and to examine
geomagnetic field behavior. Not all sedimentary paleomagnetic
records are plagued by inclination shallowing, but many have
been significantly biased by this phenomenon (Kodama, 2012).
Hence, it is critical to detect and correct for shallowing to ensure
the reliability of paleomagnetic data from sedimentary rocks.

To detect inclination shallowing in sedimentary rocks, one
straightforward approach is to compare paleomagnetic data
from sedimentary rocks with those from coeval igneous rocks,
provided that the contemporaneous age of both types of rocks
can be assured and a sufficient number of igneous cooling
units are sampled to adequately average secular variation. These
requirements can be satisfied in some sections where multiple
basalt layers are sandwiched between sedimentary layers (Gilder
et al., 2003; Li et al., 2013). However, in reality, such conditions
are rare and are not commonly present in a sedimentary section
of interest. For situations like this, two means of detecting
and correcting for inclination shallowing are widely used,
the magnetic anisotropy-based approach (Jackson et al., 1991;
Kodama, 1997) and the elongation/inclination (E–I) technique
(Tauxe and Kent, 2004). While numerous studies have used these
two approaches, it is important to note that both approaches are
based on certain assumptions and, thus, each has its intrinsic
limitations. In this brief review, we comparatively assess these
two approaches by highlighting their basic assumptions and
associated limitations. Our analysis cautions against blind use
of these techniques and emphasizes that the combined use
of different types of magnetic anisotropy data could provide

stronger evidence for inclination shallowing and offer new
insights into detecting and correcting for inclination shallowing.

THE ELONGATION/INCLINATION (E–I)
APPROACH

The E–I approach takes advantage of the characteristic
directional distributions of paleomagnetic directions due
to geomagnetic secular variation. Tauxe and Kent (2004)
constructed a statistical model of geomagnetic paleosecular
variation (PSV), i.e., TK03.GAD, to quantify directional
distributions. The TK03.GAD model was configured to fit the
paleomagnetic directional data from lava flows erupted over
the past 5 Myr and accounts for the latitudinal dependence
of virtual geomagnetic pole (VGP) scatter S(λ). This model
is designed to have a circular distribution of VGPs and thus
predicts an elongated distribution of magnetic directions along
the magnetic meridian. The degree of elongation, E, decreases
with increasing latitude, and therefore increasing inclination,
I. Thus, an E–I curve is created from this model. Deviations
of the E–I relationship of observed paleomagnetic directions
from the expected E–I curve could indicate the existence of
inclination flattening. Specifically, an elongated distribution of
directions along the perpendicular to the meridian, i.e., E–W
in the horizontal plane, is considered diagnostic of inclination
shallowing. Once inclination shallowing is recognized, the degree
of shallowing can be quantified utilizing the model’s E–I curve.
Because the flattening factor, f, ranges from 1.0 to 0, varying the
f factor leads to different E–I pairs. Once an E–I pair matches
the E–I curve of the model, an optimum f value is found and the
corrected inclination If is obtained by correcting the data using
the obtained f value (Tauxe and Kent, 2004).

One obvious advantage of the E–I approach is that it
is relatively easy to use and no additional rock magnetic
measurements are required (see Section The Magnetic
Anisotropy-Based Approach). Only the E–I data analysis is
necessary for standard paleomagnetic data. This approach has
been widely used since its introduction.

While it is easy to use and often provides reasonable
interpretations, the intrinsic limitations associated with the
assumptions are noteworthy. First, the TK03.GAD model is
based on fitting paleomagnetic data from the past 5 Myr and it
assumes that the geomagnetic field behaved similarly throughout
geological time. To test whether the model is valid further
back in time, Tauxe et al. (2008) analyzed paleomagnetic data
from large igneous provinces (LIPs) with ages back to the
Cretaceous and found that the E–I pairs of these data agree with
the model’s prediction. Paleomagnetic data from ∼1.1 Ga lava
flows also appear to agree with the model (Tauxe and Kodama,
2009). So far, the model has not been tested with data from
the Paleozoic and Neoproterozoic. Furthermore, the previously
mentioned LIP data are mainly from middle-high latitudes and
data from middle-low latitudes are lacking. It will be important
to test the model with data from mid-low latitudes where the
elongation feature of magnetic directions is most pronounced
as predicted by the model. Second, a large dataset (n > 100)
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is needed to represent a sufficiently long period of time so that
directional distributions caused by PSV are adequately sampled.
For sedimentary rocks, the time period recorded by a sample is a
function of sediment accumulation rate (SAR; Kodama, 2012).
SARs in pelagic or hemipelagic settings are usually about 1.0–
10.0 cm/kyr or less. A typical paleomagnetic specimen of 2.2 cm
thickness would average 220–2200 years or more, which suggests
that PSV has been smoothed even in one specimen. This is in
sharp contrast to the spot reading of the geomagnetic field from
lava flows over the past 5 Myr on which the PSV model is based.
Therefore, the E–I method is not suitable for sedimentary rocks
with slow SARs. While the dataset should be large enough to
adequately sample PSV, the duration sampled should not be so
long that the results are affected by plate motion (Tauxe and
Kodama, 2009). Third, local tectonics need to be taken into
account. Relative vertical-axis rotations between sampling sites
can lead to an apparent E–W elongation, which is not related to
inclination shallowing. Kodama (2012) pointed out that the E–
I method led to an over-correction of inclination shallowing in
Oligocene–Miocene redbeds from coastal California (Hillhouse,
2010), where the over-correction was attributed to unrecognized
vertical-axis rotations. Fourth, the TK03.GAD model assumes
hemispheric symmetry of the geomagnetic field. Asymmetrical
field behavior at high latitudes may persist and the model can
only predict field behavior at high latitudes of the northern
hemisphere (N.H.) reasonably well (Cromwell et al., 2013), which
would thus limit its use to N.H. data only. Finally, Linder and
Gilder (2012) recently stated that circular VGP distributions, as
required by the TK03.GAD model, are based on paleomagnetic
directions derived from a wide distribution of site longitudes.
However, because paleomagnetic studies are usually from one
or two localities, they argue that a Fisherian distribution of
directions and the associated precision parameter, k, should be
used for a paleomagnetic study instead. No details are given as to
how k can be used for E–I corrections. Nonetheless, while the E–
I approach is relatively easy to use, its assumptions and intrinsic
limitations should be kept in mind, and uninformed use of the
approach may lead to over- or under-corrections.

THE MAGNETIC ANISOTROPY-BASED
APPROACH

Magnetic anisotropy, or magnetic fabric, is described by a
second-rank tensor that is graphically represented by an ellipsoid
(Tarling and Hrouda, 1993). Magnetic anisotropy can thus be
characterized by the shape and orientation of the principal axes
(Kmax, Kint, Kmin) of the ellipsoid. During deposition and post-
depositional compaction, bedding-parallel flattening can cause
shallower inclinations than that of the ambient field and the
development of an oblate fabric, which is characterized by Kmin

perpendicular to bedding with Kint and Kmax lying within the
bedding plane (Tarling and Hrouda, 1993). The presence of
oblate fabrics is commonly taken as evidence for inclination
shallowing (Kodama, 1997).

Jackson et al. (1991) developed a theoretical model for
correcting inclination shallowing that links the flattening factor

f to magnetic anisotropy:

f =
Kmin (a+ 2)−1

Kmax (a+ 2)−1
(2)

where Kmax and Kmin are the normalized maximum and
minimum axes of the bulk magnetic anisotropy, and a is the
anisotropy of individual magnetic particles. For remanence-
carrying hematite grains, Tan and Kodama (2003) modified
Equation (2) as follows:

f =
Kmin (2a+ 1) − 1

Kmax (2a+ 1)−1
(3)

assuming that hematite occurs as platelets with the remanence
confined to the basal plane of the particle. The advantage of
this approach is that inclination shallowing is directly linked
to evidence for shallowing, i.e., magnetic anisotropy. In this
approach, it is assumed that the initial magnetic anisotropy at
deposition is nearly isotropic or negligible and that magnetic
particles initially align faithfully with the ambient field. Also,
the degree of inclination shallowing corresponds to the degree
of magnetic anisotropy development. This assumption appears
to be supported by field data. For instance, laminated rocks
have been shown to have a stronger foliation and shallower
inclinations than mass-flow faces in an extensional basin on
the Iberian margin (Garcés et al., 1996). Also, well-foliated
Cretaceous marine sedimentary rocks from Baja California
have shallower inclinations than non-foliated samples (Vaughn
et al., 2005). Besides these end-member scenarios, development
of magnetic anisotropy was found to generally correspond to
the degree of inclination shallowing in a Quaternary marine
succession that is undergoing compaction on the northern slope
of the South China Sea (Li et al., 2014).

In Equations (2) and (3), inclination shallowing is a function
of both bulk magnetic anisotropy and individual particle
anisotropy (Figure 1). Therefore, in addition to standard
paleomagnetic data acquisition, detailed laboratory rock
magnetic experiments are needed to determine the bulk
magnetic remanence anisotropy and the individual particle
anisotropy.

Determining Bulk Magnetic Anisotropy
Anisotropy of magnetic susceptibility (AMS) is perhaps the most
widely measured bulk magnetic anisotropy in paleomagnetic
studies. However, AMS is carried by all types of magnetic
minerals in a rock, i.e., diamagnetic, paramagnetic, and
ferrimagnetic minerals. For inclination shallowing corrections,
the bulk magnetic anisotropy used must be the remanence
anisotropy, i.e., the anisotropy of only the remanence-carrying
grains. If the remanence is carried by magnetite, the remanence-
carrying magnetite grains are identified by the coercivity
range over which the characteristic remanent magnetization
(ChRM) was isolated by alternating field (AF) demagnetization.
The bulk anisotropy of these grains can be determined by
measuring, in theory, three orthogonal partial anhysteretic
remanent magnetizations (pARM). In practice, redundant
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FIGURE 1 | Schematic diagram that indicates how inclination shallowing is a function of both bulk anisotropy and individual particle anisotropy “a”

factor.

measurements (e.g., nine orientations in McCabe et al., 1985)
are necessary to accurately define a second-rank tensor.
Between each step of pARM acquisition and measurement,
the sample is demagnetized at a peak AF high enough to
remove the previously applied pARM. The measurements
are then used to compute the anisotropy of anhysteretic
remanence (AAR), i.e., the bulk remanence anisotropy of the
sample.

If the remanence resides in hematite, remanence-carrying
grains are identified by the unblocking temperature ranges
over which the ChRM was isolated. Bulk magnetic anisotropy
of these grains can be determined by measuring isothermal
remanent magnetization (IRM) acquired with an applied direct
current (DC) field high enough to magnetize the coercivity
component that carries the ChRM (Tan and Kodama, 2002;
Tan et al., 2003, 2007). For example, Tan et al. (2003)
used a DC field of 1.2 T applied along nine orientations,
following McCabe et al. (1985), for the Cretaceous Kapusaliang
Formation redbeds of central Asia. Thermal demagnetization
at 680◦C was performed between each step of IRM acquisition
and measurement, and the nine orientation IRMs were
then used to determine the bulk magnetic anisotropy of
isothermal remanence (AIR). Alternatively, samples can be
given partial thermal remanent magnetizations (pTRM) along
nine orientations using the unblocking temperature range
determined by thermal demagnetization of the ChRM and the
bulk magnetic anisotropy can be determined by the anisotropy
of thermal remanence, i.e., ATR (Tan and Kodama, 2002;
Schmidt and Williams, 2013). Repeated heating can cause
transformation of mineral phases and changes in the magnetic
grain size distribution of samples. Also, AIR determination

for IRMs acquired at a low field following the approach of
McCabe et al. (1985) can be severely undermined by the
effects of magnetic history on IRM acquisition (Tauxe et al.,
1990; Mitra et al., 2011). To overcome these issues, high-
field IRM (hf-IRM) can be alternatively used to measure
the bulk remanence anisotropy (Kodama and Dekkers, 2004).
The applied field is strong enough to saturate all hematite
grains along each orientation, therefore, there is no need to
demagnetize the samples between each hf-IRM orientation to
remove the influence from the previously applied IRM. For
instance, a hf-IRM can be imparted at an applied field of 5 T
along nine orientations and measured accordingly (Bilardello
and Kodama, 2009). Regardless of the type of remanent
magnetization used to determine the bulk anisotropy, all of
these techniques require labor-intensive laboratory experiments.
Simplified procedures have, therefore, been proposed. One
procedure involves imparting and measuring the remanent
magnetization along only three orthogonal directions, two
within and the other perpendicular to the bedding plane
(Tan and Kodama, 2002; Tan et al., 2003; Schmidt et al.,
2009). Alternatively, multiple subsamples collected along three
orthogonal directions can be treated separately (Bilardello,
2015). Another procedure involves imparting an IRM at 45◦

to the bedding plane to quantify the anisotropy (Hodych and
Buchan, 1994). These simplified treatments essentially estimate
the bulk anisotropy based on partial anisotropy measurements.
The partial bulk anisotropy needs to be compared with one
determined from a complete second-rank tensor to ensure that
they are equivalent. Also, for the multiple subsample approach,
a non-uniform distribution of magnetic particles could bias bulk
anisotropy determination.
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Determining Individual Particle
Anisotropy a
Individual particle anisotropy a can be determined by
redeposition-compaction experiments, direct measurement
of magnetic mineral extracts, or a curve fitting technique
(Kodama, 1997, 2009). Redeposition-compaction experiments
are conducted in a known field to mimic deposition and natural
post-depositional processes. Compacted samples are treated
as if they were natural samples so that their ChRM and bulk
anisotropy can be measured. Since the ambient field at which
the experiments were conducted is known, particle anisotropy
“a” can be determined by joint use of Equations (1) and (2).
For magnetic extracts, magnetic particles are dispersed in
epoxy that is exposed to a static magnetic field to align the
particles along the field as the epoxy solidifies. The remanent
magnetization along the hard- and easy-axis are measured
and particle anisotropy is defined by the ratio of the easy-axis
component over the hard-axis component. Both redeposition-
compaction experiments and direct measurements of magnetic
extracts involve a significant amount of laboratory work. To
simplify the procedure, Kodama (2009) developed a curve-fitting
approach that involves least-squares fitting of bulk anisotropy
data to a theoretical correction curve to find the effective particle
anisotropy.

The advantage of the anisotropy-based method is that
it focuses directly on the magnetic grains that carry the
shallowed inclination. The disadvantage is that it requires
intensive laboratory rock magnetic experiments. Many of these
experiments need specialized instruments that are not commonly
available in paleomagnetism laboratories, thus limiting their
use. In addition, there are two main challenges in using
this method. One is isolating bulk anisotropy of ChRM-
carrying grains and the other is determining individual particle
anisotropy. Rocks often contain different types of minerals
with different grain sizes. Isolating the anisotropy of ChRM-
carrying grains can be challenging because it can be masked
by the anisotropies of co-existing magnetic minerals that do
not carry a ChRM. Combined use of different treatments can
help to isolate contributions from different magnetic mineral
fractions. For example, AF demagnetization at 100 mT and
thermal demagnetization at 125◦C have been combined with the
nine position anisotropy measurement to eliminate the influence

of magnetite and goethite on ChRMs carried by hematite
(Bilardello andKodama, 2010).Monitoring AMS during stepwise
chemical demagnetization allows determination of bulkmagnetic
anisotropy of pigmentary hematite by subtraction of AMS
between two demagnetization steps and isolation of bulk
magnetic anisotropy of detrital hematite grains (Tan and
Kodama, 2002; Tan et al., 2003). The other challenge is that
it is difficult to accurately determine the individual particle
anisotropy a factor.

OUTLOOK

Comparative studies of the E–I and anisotropy-based approaches
yield generally consistent results (e.g., Tauxe et al., 2008), which

demonstrate the effectiveness of both approaches for correcting
shallow inclinations. However, either of these approaches should
not be used without full appreciation of their underlying
assumptions and intrinsic limitations. The E–I approach is easy
to use, which presents both opportunities and dangers, such
as inadequate sampling of PSV or local vertical axis rotations.
The anisotropy-based approach involves intensive laboratory
rock magnetic experiments, thus making it less desirable, but
magnetic anisotropy provides direct evidence for the inclination
shallowing. Use and comparison of both techniques would
be valuable for robust inclination shallowing correction in
sedimentary rocks.
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