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The sizes of earthquakes are measured using well-defined, measurable quantities such
as seismic moment and released or transformed elastic energy. No similar measures
exist for the sizes of volcanic eruptions, making it difficult to compare the energies
released in earthquakes and eruptions. Here I provide a new measure of the elastic
energy (the potential mechanical energy) associated with magma chamber rupture and
contraction (shrinkage) during an eruption. For earthquakes and eruptions, elastic energy
derives from two sources: (1) the strain energy stored in the volcano/fault zone before
rupture, and (2) the external applied load (force, pressure, stress, displacement) on the
volcano/fault zone. From thermodynamic considerations it follows that the elastic energy
released or transformed (dU) during an eruption is directly proportional to the excess
pressure (pe) in the magma chamber at the time of rupture multiplied by the volume
decrease (−dVc) of the chamber, so that dU = −pedVc. This formula can be used as
a basis for a new eruption magnitude scale, based on elastic energy released, which
can be related to the moment-magnitude scale for earthquakes. For very large eruptions
(>100 km3), the volume of the feeder-dike is negligible. Then the decrease in chamber
volume during the eruption corresponds roughly to the associated volume of erupted
materials Ver and the elastic energy is Uer = peVer . Using a typical excess pressures of
5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La
Garita Caldera eruption (27–28 million years ago) and largest single (effusive) Colombia
River basalt lava flows (15–16 million years ago), both of which have estimated volumes
of about 5000 km3, released elastic energy of the order of 1019 J. For comparison, the
seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake,
is estimated at 1023 J and the associated elastic energy release at 1019 J. Thus, the
largest eruptions release elastic energy of the same order of magnitude as the largest
earthquakes, suggesting that 1019 J may be close to the maximum elastic energy that is
available for driving earthquakes and volcanic eruptions.
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INTRODUCTION
Earthquake sizes have for a long time been calculated from well-
established magnitude scales. The early scales were based on the
logarithm of the amplitude (maximum displacement) of the wave
trace (signal) on a seismogram. This is, for example, the basis for
the scales using the Richter local-magnitude (ML), the surface-
wave magnitude (Ms), and the body-wave magnitude (mb). These
scales all relate to the effects of the energy transformed or released
(both terms will be used here) during an earthquake on seismo-
grams at a certain distance from the earthquake source or foci.
These amplitude scales have, to a large degree and certainly for
moderate to great earthquakes (larger than M4), been replaced by
the moment-magnitude (Mw) scale (Kanamori, 1977; Hanks and
Kanamori, 1979; Aki and Richards, 2009). This scale derives from
the concept of a moment magnitude for earthquakes and mea-
sures the sizes of earthquakes in terms of seismic moment, which
has the units of Nm.

The seismic moment and the elastic energy transformed dur-
ing an earthquake are directly related to measureable parameters.
For example, the seismic moment is related to the area of the

fault rupture, the average displacement or slip during the rup-
ture, and an elastic constant (Figure 1). All these factors have
clear operational definitions and can normally be measured or
estimated with modern technology. The rupture areas can also
be inferred from palaeo-seismological studies so as to estimate
the seismic moments of earthquakes that occurred before instru-
mental data became available (Kanamori and Brodsky, 2004).
The elastic energy that is transformed during earthquakes into
other types of energy, partly seismic waves (kinetic energy) and
heat, can be calculated using well-tested formulas from fracture
mechanics, as is explained below.

No similar measures exist for the elastic energy released or
transformed during volcanic eruptions. There have been several
proposed measures of eruption sizes. The eruption-magnitude
measures tend to focus on the amount of tephra produced dur-
ing explosive eruptions (e.g., Tsuya, 1955; Hedervari, 1963; Pyle,
2000; Mason et al., 2004; Crosweller et al., 2012). Perhaps the best
known of these magnitude measures is the Volcanic Explosivity
Index (VEI) of Newhall and Self (1982) which, again, relates par-
ticularly to the amount or mass of tephra produced during an
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Gudmundsson Energies of great earthquakes and eruptions

FIGURE 1 | Schematic illustration to explain the seismic moment. Here
the slip surface or rupture plane is shown as forming a part of the general
and much larger fault plane. The slip surface itself for this particular
earthquake does not reach to the surface. The slip surface/rupture plane
has an area of size A. The slip is denoted by �u and the shear modulus of
the rock by μ.

eruption, although other indicators are also used. A second mea-
sure of an eruption size is its intensity (Fedotov, 1985; Carey and
Sigurdsson, 1989; Pyle, 2000). This measure relates to the mass
eruption rate, that is, the mass of eruptive materials produced
per unit time. Both these measures are logarithmic, using the
common logarithm.

The third measure of eruption size, which relates directly to
energy, is the thermal energy released or transformed during the
eruption. This has been estimated by many (e.g., Yokoyama, 1957;
Pyle, 1995, 2000). The thermal energy released in eruptions is
normally several orders of magnitude larger than any other energy
transformed during the eruption (e.g., Pyle, 2000; Smil, 2008).
However, the total thermal energy released in eruptions each year
is only a tiny fraction of the thermal energy released through the
worldwide geothermal flux. Some estimates put the total thermal
energy released in eruptions each year as 0.5–2% of the energy
released through the general cooling of the Earth (Elder, 1976;
Verhoogen, 1980).

The thermal energy released in an eruption is primarily
related to the solidification and cooling of the erupted materi-
als. Solidification of magma and the subsequent cooling of the
volcanic rock to ambient temperatures is a continuous process
in all volcanic areas, particularly in the shallow source magma
chambers of individual polygenetic volcanoes. Thermal energy,
however, is a “low-grade” energy since only a fraction of it can
be transformed into other types of energy, such as mechanical
energy, elastic energy, electric energy, and (mechanical) work.
Some thermal energy may be transformed into work related
to driving the upward movement of fine particles in a buoy-
ant plume (Sparks et al., 1997; Mason et al., 2004). Generally,

however, thermal energy has little, if any, role to play in magma-
chamber rupture and feeder-dike formation, namely the pro-
cesses that lead to an eruption and, subsequently, squeeze the
magma out of the chamber.

None of the measures for an eruption size discussed above
relate to the elastic energy released or transformed during the
eruption. The principal aim of this paper is to propose such
a measure and show that it can be directly compared with the
energy released in earthquakes. Further development of this mea-
sure could include the thermal energy associated with eruptions
and earthquakes, changes in the potential energy of the magma,
and other forms of energy transformation, but here the focus is
on the elastic energy. Using this new elastic-energy measure for
volcanic eruptions, it is shown that the largest known eruptions
release elastic energy that is comparable with that released in the
largest recorded earthquakes.

SIZES OF EARTHQUAKES AND ERUPTIONS
The size distributions of earthquakes and volcanic eruptions fol-
low power laws. Power laws are part of heavy-tailed distributions,
but are characterized by their yielding straight-line plots when
the data have been log-transformed on so-called log-log plots
(Figure 2). More specifically, power-law size distributions are very
common in various human-made and natural structures and pro-
cesses (e.g., Newman, 2005; Mohajeri and Gudmundsson, 2012;
Gudmundsson and Mohajeri, 2013). Such laws imply that the
number of small events, processes, or objects in a given popu-
lation is large in comparison with the number of large events,
processes, or objects in the same population.

For a cumulative frequency (probability) distribution, a power
law has the form:

P( ≥ x) = Cx−D (1)

P( ≥ x) is here the number or frequency of earthquakes or erup-
tions equal to or larger than x, C is a constant, and D is referred to
as the scaling exponent. For a first check as to whether a size dis-
tribution is a power-law, one plots the logarithms of the value (x)
and its probability P(x), namely log (P(x)) = log (C) − D log (x).
When such as bi-logarithmic plot, referred to as log-log plot,
yields a straight line then the distribution is commonly regarded
as power law. More accurate test, however, are available and
needed so as to compare the fit of the distribution to power laws in
relation to other possible functions. The main tests are discussed
by Clauset et al. (2009) and applied to geological populations
by Mohajeri and Gudmundsson (2012) and Gudmundsson and
Mohajeri (2013).

Here the focus is on large earthquakes and eruptions.
Earthquakes are classified as moderate if their magnitude is in
the range of 5–5.9, strong if the magnitude is in the range of
6–6.9, major if the magnitude is in the range of 7–7.9, and
great if the magnitude is 8 or larger. For the earth as a whole,
there are normally 800 moderate, 110 strong, 12 major, and 1
great earthquakes each year, in accordance with their power-
law size distribution (Figure 2). The largest earthquake that has
ever been instrumentally recorded is the M9.5 earthquake in
Chile in 1960 (the Valdivia Earthquake). The estimated rupture
length is between 800 km and 920 ± 100 km (Barrientos and
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FIGURE 2 | Number (frequency) of earthquakes per year vs. their

magnitudes. The plot shows the earthquakes in the world during the
period from 1904 to 1980 (modified from Kanamori and Brodsky, 2004).
This is a semi-logarithmic plot with a slope of −1. For the Gutenberg-Richter
law, log N = a − bM, where a and b are constants and M the magnitude (a
logarithmic measure), the slope of −1 implies a b-value of 1.

Ward, 1990). The maximum slip is estimated at 25–30 m (Fujii
and Satake, 2013), although one estimate reached 90 m, while
the average slip is thought to be about 24 m (Kanamori and
Cipar, 1974; Barrientos and Ward, 1990). Other large instrumen-
tally recorded earthquakes include the 1964 earthquake in Alaska
(M9.2), the 2004 Sumatra-Andaman Earthquake (M9.1), and the
2011 Tohoku-Oki Earthquake close to Japan (M9.0). The details
of these earthquakes are widely reported (e.g., Kanamori, 1977;
Park et al., 2005; Iinuma et al., 2012; Fulton et al., 2013; Gupta
and Gahalaut, 2013). All these earthquakes released very great
energies, as discussed in the next section.

Eruption sizes also follow power laws (Figure 3). The largest
instrumentally monitored eruption is the one in Mount Pinatubo
in the Philippines in 1991 (Newhall et al., 1998). This eruption
produced some 10 km3 of eruptive materials and generated a col-
lapse caldera with a diameter of roughly 2.5 km. Another eruption
in the twentieth century was significantly larger, namely the 1912
eruption of Novarupta in Katmai, Alaska. This eruption produced
some 28 km3 of eruptive materials, mainly acid and intermediate
tephra (tuff) and resulted in the formation of a collapse caldera,
not in Novarupta itself (the volcano was formed in the erup-
tion, and thus a new volcano) but in the nearby Mount Katmai.
The maximum diameter of the caldera is about 4 km. However,
the Novarupta eruption occurred before the time of modern
instrumentation. Both eruptions have VEI 6-6.5 (Pyle, 2000).

It is unlikely that much larger earthquakes than the instrumen-
tally recorded 1960 Chile earthquake have occurred in the past
millions of years. This follows because for a large earthquake to
occur a very large zone or volume of the brittle part of the earth’s
lithosphere must be stress-homogenized (Gudmundsson and
Homberg, 1999). This implies that a large volume in the litho-
sphere must have essentially the same stress field at a particular
time. So long as significant stress heterogeneities exist within a
fault zone, they tend to generate stress barriers—layers or rock

bodies with local stresses unfavorable to the propagation of a par-
ticularly type of fracture—and thus encourage arrest of the fault
propagation (Gudmundsson, 2011). Since the rupture length
(strike dimension) of the 1960 Chile earthquake was somewhere
between 800 and 920 ± 100 km, the width (dip dimension) about
200 km, and the focus at a depth of about 33 km, it is clear that
a fault zone of a very great size was stress homogenized prior
to the earthquake rupture. The thickness of the fault zone (the
thickness of damage zone, including the much thinner core) is
unknown. Close to the surface (the uppermost few kilometers)
the thicknesses of the damage zones of major fault zones may be
hundreds of meters to several kilometers, as is observed in major
transform faults and other large fault zone (e.g., Gudmundsson,
2007; Mooney et al., 2007). At greater depths, say at 5–10 km or
more, however, many fault zones seem quite thin, less than 100 m
thick (Furlong, 2007), while the “slip zone” for individual earth-
quakes may be much thinner, or of the order of centimeters or
less (Mooney et al., 2007). For a major slip to occur, a signifi-
cant fraction of the core/damage zone must have favorable stresses
for that type of slip, so that, given the dimensions of the large
fault zones such as for the 1960 Chile earthquake, very large vol-
umes must be stress-homogenized. Because of the great variation
in rock properties, hence in local stresses, in the lithosphere in
general and in a fault zone in particular, it is not very likely that
much larger active zones than these can be stress-homogenized at
any particular time.

The largest instrumentally recorded volcanic eruptions, how-
ever, are much smaller than the largest eruptions that have
occurred in the past several million years (e.g., Carey and
Sigurdsson, 1989; Pyle, 2000; Mason et al., 2004; Crosweller et al.,
2012). This applies even to the past hundred thousand years, of
which the eruption of Toba eruption in Sumatra some 75,000
years ago is a good example. This eruption produced around
2800 km3 of eruptive materials (e.g., Pyle, 2000).

Going further back in time, there are even larger eruptions,
both explosive and effusive. In what is presumably the most
up-to-date listing (List of largest volcanic eruptions, Wikipedia,
2014), there are several explosive eruptions that reach volumes of
4000–5000 km3, including the La Garita Caldera eruption which
generated the Fish Canyon Tuff some 27–28 million years ago
(Lipman, 1997; Mason et al., 2004). The caldera itself is located
in southwestern Colorado (the United States). It is an elliptical
caldera, with a major axis of 75 km and a minor axis of 35 km,
that gave rise to several large eruptions during its active period,
but is now regarded as extinct. Several larger volumes generated
in explosive eruptions are listed, but for most it is unclear if the
volume estimates (reaching close to 7000 km3) are correct and if
they were generated in single eruptions.

Some of the basaltic lava flows of the Columbia River Basalt
Group (United States), which were generated in effusive erup-
tions 15–16 Ma ago, apparently reach volumes of up to 5000 km3.
Many of the lavas identified as single flows (singe eruptions) range
in volume between 1000 and 4000 km3 (List of the largest vol-
canic eruptions, Wikipedia, 2014), although volumes of several
thousand cubic kilometers for these flows are disputed by some
(Hooper, 2000). If these volume estimates are correct, these lava
flows would be two orders of magnitude larger than the largest
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FIGURE 3 | Size distribution of eruption volumes. Here the eruptive
volumes are shown in cubic kilometers in relation to the number of
eruptions with volumes above a certain size (modified from Pisarenko and
Rodkin, 2010). The bi-logarithmic (log-log) plot shows that a straight (blue)
line fits much of the distribution rather well, suggesting that the volume
distribution of eruptive materials follows approximately a power law. There
are various methods for testing how well a power law fits such a
distribution in relation to other functions, and also whether more than one
straight line (power law) fits the distribution better than a single law
(Clauset et al., 2009; Mohajeri and Gudmundsson, 2012; Gudmundsson and
Mohajeri, 2013).

Holocene lava flows, such as the 1783 Laki eruption (15 km3),
the 934 Eldgja eruption (18 km3), and the 25 km3 Thjorsarhraun
eruption (about 8700 years ago), all of which are located in
South Iceland. Because basaltic lava flows have higher densi-
ties than tuff layers, the mass of some of the lava flows may
be greater than that of the Fish Canyon Tuff. These considera-
tions indicate that the largest Colombia River eruptions are, in
terms of volume, of a size similar to that of the largest explosive
eruptions.

ELASTIC ENERGY
EARTHQUAKES
Seismic moment M0, which has the units of Nm, forms the
basis of the moment-magnitude scale introduced by Kanamori
(1977) and Hanks and Kanamori (1979; cf. Aki and Richards,
2009). Commonly, the seismic moment M0 is defined as (e.g.,
Madariaga, 1979; Figure 1):

M0 = μ

∫
A

�u(x, y)dA (2)

where A is the total slip or rupture area or slip surface during
the seismogenic faulting, μ is shear modulus, and �u is the slip.
This equation is a scalar and applies when the fault is a plane.
For a curved fault and a fault composed of many segments, both
of which are common, the seismic moment is given as the tensor

(e.g., Madariaga, 1979; Scholz, 1990):

Mij = μ

∫
A

(
�ui(�r)nj + �uj(�r)ni

)
dA (3)

where n̂ is the unit normal, r the position vector on the fault,
and �u is the fault slip vector at the point r. In Equation (3)
the fault surface may be curved or segmented, or composed of a
set of smaller faults. There is, however, no opening or extension-
fracture component in the slip, that is, the mode I component (cf.
Gudmundsson, 2011) is zero (�uI = 0).

The seismic moment can also be expressed in terms of the
driving stress or, roughly, the static stress drop associated with
the fault slip. The static stress drop is a measure of the relaxation
(drop) in shear stress on the rupture area or slip surface as a result
of slip. The stress drop or driving stress τd may be defined as:

τd = τi − τf (4)

where τi is the initial shears stress on the rupture area or slip sur-
face before slip and τf is the final shear stress on the plane after
slip. For a constant stress drop τd and average slip �ua that is
everywhere parallel on the slip surface (non-curving fault plane),
the scalar moment may be given by:

M0 = k

∫
A

τd�uadA (5)

where k is a constant that depends on the geometry of the fault
plane—circular, rectangular; a through crack rupturing the sur-
face, or buried interior crack—(e.g., Kanamori and Anderson,
1975). A single rupture plane or area A is not necessary because
this equation can be generalized to many fault planes, or a
segmented fault plane, as discussed above (e.g., Madariaga, 1979).

Using the symbol �ua to mean the average slip, then for a
shear modulus μ and rupture area (slip surface) A, it follows from
Equation (2) that the seismic scalar moment is:

M0 = μ�uaA (6)

Similarly, from Equation (5) the seismic scalar moment may be
written as:

M0 = kτd�uaA (7)

The seismic moment can also be expressed in forms where the
average slip �ua is omitted, such as in the equation (cf. Kanamori
and Brodsky, 2004):

M0 = qτdA
3
2 = qτdL3 (8)

Here q is a constant (depending, like k, on the fault geome-
try and other factors), and L is the characteristic dimension of
the earthquake rupture area (slip surface), which is commonly
defined as

√
A.

It follows from the above equations that the seismic scalar
moment can be expressed either in terms of shear modulus or
stress drop (driving shear stress). In terms of shear modulus
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FIGURE 4 | Three main ideal modes of rock fractures. These are mode I,
mode II, and mode II cracks. For rock fractures, strike-slip faults are most
commonly modeled as mode III (but as mode II if there is a magma
chamber/reservoir at the bottom of a through-going fault), whereas dip-slip
faults are commonly modeled as mode II (but as mode III if there is a
magma chamber/reservoir at the bottom of a through-going fault).
Extension fractures (dikes, tension fractures, most joints) are modeled as
mode I cracks (cf. Gudmundsson, 2011).

[Equation (6)], the seismic moment is shear modulus [N m−2] ×
average slip during the rupture [m] × rupture area [m2], so that
the units are Nm, as indicated above. In terms of stress drop
[Equation (7)], the seismic moment is stress [N m−2] × average
slip during rupture [m] × the rupture area [m2], so the units are,
again, Nm. Although these are the same units as for energy, Nm,
they are not strictly interchangeable (for they do not measure the
same), and it is only the energy unit that is named joule [J]. For
these reasons, the units for moment are sometimes given as mN
rather than, as for energy, Nm (e.g., Radi and Rasmussen, 2013).

In seismology the relation between moment, fault geometry,
size (area), slip, and stress drop (driving shear stress) is commonly
written in a form similar to that in Equation (7). In fracture-
mechanics formulation of seismogenic faulting, the equations
used are different. This difference is partly because Young’s mod-
ulus E and Poisson’s ratio ν are more commonly used in fracture
mechanics than shear modulus μ, where E = 2μ(1 + ν). But the
difference is also because the fracture-mechanics equations are a
direct measure of the elastic energy transformed or released dur-
ing an earthquake, rather than its moment. Of the three main
ideal fracture modes, I, II, and III (Figure 4), strike-slip faults are
most commonly modeled as mode III, whereas dip-slip faults are
commonly modeled as mode II. However, some strike-slip faults
may be modeled as mode II; particularly large faults that rup-
ture the entire seismogenic layer of a region where there is a free
surface (implying a fluid reservoir) at the bottom of the fault in
addition to the Earth’s free surface.

When the fault is modeled as mode II crack, the energy trans-
formed or released UII is given, in terms of stress drop or driving
shear stress τd, by Gudmundsson (2011):

UII = τ 2
d (1 − ν2)πaA

E
(9)

and in terms of slip �u by:

UII = E�u2
IIπA

16(1 − ν2)a
(10)

where a is half the strike dimension (rupture length) of the
slip surface. The slip �u is strictly the maximum slip, but is
often regarded as the average slip measured anywhere along

the fault except near its tips or ends (Gudmundsson, 2011).
Equations (9, 10) apply to plane strain conditions; in the case of
plane stress conditions (appropriate when the lateral dimensions
of the slip surface is much greater than its dip dimension) the
term 1 − ν2 in both equations drops out (becomes equal to 1).

Similarly, when the fault is modeled as a mode III crack, the
energy transformed or released is given, in terms of stress drop,
by:

UIII = τ 2
d (1 + ν)πaA

E
(11)

and in terms of slip �u by:

UIII = E�u2
IIIπA

16(1 + ν)a
(12)

Equations (9–12) can be used to calculate the energy released or
transformed during an earthquake slip modeled either as a mode
II or a mode III crack. Similar, but more complex, equations can
also be derived for mixed-mode cracks (partly mode II and partly
mode III, for example). The transformed energies calculated from
Equations (9–12) can then be compared with the standard seis-
mic moment calculations from Equations (6–8) and other similar
equations (cf. Kanamori, 1977; Madariaga, 1979; Kanamori and
Brodsky, 2004; Aki and Richards, 2009).

ERUPTIONS
Elastic energy has not previously been used as a measure of erup-
tion sizes. The eruption-size estimates have, up till now, focused
almost exclusively on measures such as eruption volume, eruption
mass, the mass eruption rate, volcanic plume (eruption column)
height, and the amount of thermal energy released (e.g., Pyle,
2000; Mason et al., 2004; Crosweller et al., 2012). Using thermo-
dynamic arguments, I shall show that the eruption volume can,
however, be related to elastic energy.

The first law of thermodynamics states that the change in
internal energy of a thermodynamic system is equal to the heat
absorbed or received by the system plus the work done on the sys-
tem. Here we regard the heat supplied by the surroundings to the
system as positive; similarly, the work done by the surroundings
on the system is regarded as positive. It follows from this defini-
tion that the change in internal energy of the system, �U , is equal
to the sum of the heat, �Q, and work, �W , that the system has
exchanged with its surroundings, namely:

�U = �Q + �W (13)

When the internal energy change is attributable to very small
(infinitesimal) changes in heat and work, the first law can be
written in the familiar differential form as:

dU = dQ + dW (14)

In Equation (14), dQ and dW are inexact differentials since they
depend on the path taken from the initial to the final value, that
is, they are path (rather than state) functions. Here dQ and dW
are not denoted by special symbols, as is sometimes done, since
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FIGURE 5 | Magma chamber as a thermodynamic system. Here the
magma chamber is the thermodynamic system. The hosting crustal
segment, including the volcanic edifice for which the magma chamber is a
source (it supplies magma to the volcano) as well as the deeper reservoir,
for which the magma chamber acts as a sink (it receives magma from the
reservoir), acts as the surroundings to the magma-chamber system. In the
present notation, heat received by the magma chamber and work done on
the magma chamber (by the surroundings) are regarded as positive.

their path dependence is supposed to be known (cf. Sommerfeld,
1964). By contrast, the internal energy dU is a state function and
thus a proper or exact differential. More specifically, the values
of a state function are independent of its path from the initial to
the final stage, and depend only on the state or conditions of the
system.

Here the thermodynamic system is the shallow crustal magma
chamber in the volcano, and its surroundings are the volcano
itself and the associated volcanic field or zone, including the
deep-seated source reservoir (Figure 5). Since we focus on the
(potential) elastic energy of the system, we consider the case of
a magma chamber that is receiving heat through new magma at
the same rate as heat is conducted away from the chamber (into
the host rock and to the surface), so that there is no net gain of
loss in heat for the chamber in the period prior to the eruption.
Then we have dQ = 0, and Equation (14) becomes:

dU = dW (15)

Work is defined as force × displacement in the direction of the
force, so that work is preformed when the force moves. The
work done by the volcano and its surroundings in compressing

a magma chamber during an eruption may, to a first approxima-
tion, be considered analogous to the work done in compressing
fluid (say gas) by a piston in a cylinder. This analogy is particularly
appropriate for piston-like caldera collapses (Figure 6).

Before an eruption starts, there is excess pressure pe in the
magma chamber (Figure 5). This excess pressure causes magma-
chamber rupture and dike (or inclined sheet) injection into the
roof of the chamber. If the dike reaches the surface, then an erup-
tion occurs. Some volcanoes apparently have a continuously open
conduit to the surface, in which case no large excess pressure can
build up in the magma chamber. These volcanoes are few but
include Stromboli in Italy, Erta Ale in Ethiopia, and other volca-
noes with lava lakes. For most volcanoes, however, the condition
for an eruption is that a magma-filled fracture, normally a dike
or an inclined sheet, is able to propagate from the chamber to
the surface and supply magma. Even some cylindrical or ellipti-
cal conduits appear, to a large degree, to be composed of dikes
(Nakada et al., 2005). Thus, the focus here is on eruptions fed by
magma-filled fractures and the word “dike” will be used for any
sheet-like intrusion.

The conditions for magma-chamber rupture and dike injec-
tion is as follows (Gudmundsson, 2011):

pl + pe = σ3 + T0 (16)

where pl is the lithostatic pressure (overburden pressure), pe is
the excess magmatic pressure in the magma chamber at the time
of rupture and dike injection, σ3 is the minimum compressive
(maximum tensile) principal stress, and T0 is the in-situ tensile
strength of the host rock (the roof). In the absence of unrest in
the volcano (such as magma flow into the chamber, extension, or
doming), the magmatic pressure in the chamber and the state of
stress in the chamber roof are normally close to lithostatic, so that
σ3 = pl and the excess pressure pe is zero. For a magma chamber
to rupture and inject a dike, there must be positive excess pressure
in the chamber and the condition to be satisfied is [from Equation
(16)] pe = T0, that is, the excess pressure must reach the in-situ
tensile strength of the roof at the location of rupture.

The in-situ tensile strength of rocks down to crustal depths of
9 km varies between 0.5 and 9 MPa, with most values between
2 and 5 MPa (Gudmundsson, 2011). From Equation (16) and
the considerations above it follows that the excess pressure at the
time of magma-chamber rupture is in the same range. To squeeze
magma out of the chamber and supply magma to an eruption,
some excess pressure has to be maintained in the chamber. The
excess pressure tends to decrease exponentially during most erup-
tions (Woods and Huppert, 2003; Galindo and Gudmundsson,
2012). One likely exception to this exponential decrease is dur-
ing a piston-like caldera collapse when the subsidence of the
caldera floor (the piston)—commonly in many ring-fault slips—
presumably maintains the excess pressure at close to constant
until near the end of the eruption (Gudmundsson, 1998), at
which state the excess pressure rapidly falls to zero. This and other
similar mechanisms for maintaining the excess pressure encour-
age the generation of large eruptions. However, for all eruptions,
large and small, it is primarily the elastic energy that drives the
magma out of the chamber during the eruption.
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FIGURE 6 | Caldera subsidence largely maintains the excess pressure

pe in the magma chamber during a caldera-forming eruption. The
excess magma pressure pe in the chamber is equal to the average force F
on the cross-sectional area A of the caldera. To reduce the volume of the
chamber (to shrink or contract the chamber), the piston-like caldera roof has
to move the differential distance dx. These considerations allow us to
derive the general relation between the elastic energy associated with
magma-chamber volume reduction or shrinkage [Equation (21)] and the
elastic energy in terms of eruptive volume and excess magmatic pressure
[Equation (23)].

The thermodynamic principles above can now be used to
develop an expression for the elastic energy associated with erup-
tions from crustal magma chambers. Consider a magma chamber
of total volume Vc that is initially in lithostatic equilibrium with
the surrounding host rock. Let the volume of the magma chamber
change by �Vc, the change being either through expansion (infla-
tion) or contraction (shrinkage, deflation). Since the chamber
is regarded as the thermodynamic system (Figure 5), contrac-
tion or shrinkage is regarded as work done by the surround-
ings on the system and is thus considered positive. By contrast,
magma-chamber expansion is work done by the chamber on its
surroundings and is regarded as negative.

Consider the magma chamber in Figure 6. The illustrated sce-
nario is most appropriate for a collapse caldera, the roof being
the piston-like caldera floor. However, the analysis that follows
applies to magma chambers of any shape. The excess pressure
at the time of magma-chamber rupture and dike injection is pe.
Work is defined as force × displacement in the direction of the
force (or force component). The excess pressure is force F per unit
area A of the boundary of the magma chamber or, in the case of
an ideal piston-like collapse caldera (Figure 6), the average force
on the cross-sectional area of the caldera. Thus we have:

F = peA (17)

To reduce the volume of the chamber (to shrink or contract the
chamber), the piston-like caldera roof has to move the differential
distance dx (Figure 6). The associated work done on the chamber
is then:

dW = Fdx = peAdx (18)

The contraction or shrinkage of the magma chamber thus results
in a volume change dVc given by:

−dVc = Adx (19)

Here the minus sign is because the chamber volume decreases
during caldera collapse. The minus sign also ensures that the
work done by the surrounding host rock (the volcano) on the
magma chamber is positive when the chamber volume decreases.
By contrast, during magma-chamber expansion, elastic energy
is transferred from the chamber into the host rock and thus
the volcanic edifice. From Equations (18, 19) it follows that
the work done during the contraction or shrinkage of the
chamber is:

dW = −pedVc (20)

where, again, the minus sign is to ensure that the work is positive
when the volume of the chamber decreases. From Equation (15) it
follows that the energy change during the contraction or volume
decrease of the chamber associated with an eruption is:

dU = −pedVc (21)

Equation (21) provides a direct measure of the elastic potential
energy dU transformed during an eruption in terms of the excess
pressure pe in the source magma chamber and the contraction or
shrinkage of the chamber dVc. The size of dVc can be assessed
in several ways. Generally, for active volcanoes undergoing unrest
periods in the past decades, an estimate of dVc can often be
obtained from geodetic measurements of the surface deforma-
tion using, for example, GPS and InSAR data (e.g., Burgmann
et al., 2000; Dzurisin, 2007; Masterlark, 2007; Kusumoto and
Gudmundsson, 2009; Segall, 2010). Similarly, for piston-like col-
lapse calderas (Figure 6), the size of dVc is indicated by the caldera
volume.

There are several notable implications of Equation (21). First,
the equation can be rewritten in the following form:

pe = − dU

dVc
(22)

which shows that the magmatic pressure in the chamber (and
pressure in general) can be interpreted as energy per unit vol-
ume or as energy density. This interpretation, however, assumes
that no heat is added to the system—as is indicated in Equation
(15). Since pressure is analogous to stress, it follows that stress
may be similarly interpreted as energy per unit volume or as
energy density. This relates to the energy release rate during
dike and fault propagation and material toughness—energy per
unit volume or unit area—both of which connect with the
energy budget of volcanic and seismic zones (Gudmundsson,
2013).

The second implication follows from the essentially con-
stant value of pe. As indicated above [Equation (21)], pe is
roughly equal to the in-situ tensile strength T0 of the roof
of the magma chamber. The in-situ tensile strength has been
measured worldwide as between 0.5 and 9 MPa, with most val-
ues at 2–5 MPa (Gudmundsson, 2011). Thus, the in-situ ten-
sile strength is essentially constant and, from Equation (16),
so must be the excess pressure pe at chamber rupture and
dike injection. This means, from Equation (21), that the elas-
tic potential energy of an eruption is directly related to the
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volume change of the chamber during the eruption dVc times a
constant pe.

The third implication relates to the interpretation of dVc. As
discussed below, the details of the contraction of the magma
chamber, its shrinkage, depends on the compressibility of the
magma and other factors (Gudmundsson, 1987; Rivalta and
Segall, 2008). For the order-of-magnitude calculations presented
here, however, the contraction may be regarded as correspond-
ing roughly to the volume of material the leaves the chamber
during an eruption. This includes the erupted material but also
the intruded material, the latter being primarily the volume of
the feeder-dike. The feeder-dike volume may be a large part of
dVc for small to medium eruptions, that is, eruptions with erup-
tive volumes of as much as several cubic kilometers. For the very
large eruptions we focus on here, however, the feeder-dike vol-
ume is insignificant. For example, a very long feeder-dike would
be 27 km, such as the one that supplied magma to the 1783
Laki eruption in Iceland. A feeder-dike with a strike dimension
(length) of 27 km, dip dimension (height) of 20 km, and a thick-
ness of 10 m—all dimensions similar to those estimated for the
Laki feeder-dike (Thordarson and Self, 1993)—would have a vol-
ume of about 5 km3. Many of the large caldera-forming eruptions
were presumably supplied with magma from much smaller dikes
while the eruptive volumes reached hundreds of cubic kilome-
ters and, in extreme cases, thousands of cubic kilometers. For
such eruptions, as well as similar-sized effusive eruptions, the
feeder-dike volume may be regarded as included in the total esti-
mated eruptive volume (commonly with an uncertainty much
larger than several cubic kilometers), as is done in the calculations
below.

ELASTIC-ENERGY SCALE FOR ERUPTIONS
Equation (21) is formally similar to the expressions for the seis-
mic scalar moment in Equations (7, 8) and the elastic energy in
Equations (9–12). The equations either express, or can be writ-
ten in a form that expresses, moment and elastic energy (Nm)
in terms of change in volume (m3) times driving stress/pressure
(Nm−2). This similarity suggest a new magnitude scale for vol-
canic eruptions that is analogous to the moment-magnitude scale
for earthquakes but relates directly to the elastic energy released
or transformed during the eruption.

For the presentation of the new eruption magnitude scale,
we denote the elastic energy of the eruption by Uer , the excess
fluid pressure in the magma chamber by pe, and the volume of
the eruptive materials issued during the eruption by Ver . In con-
trast to the chamber contraction or shrinkage, when there is a
negative volume change (−dVc), the eruptive volume (Ver) is
always a positive figure. It is known that estimated erupted vol-
umes are normally larger than the estimated volume decrease of
the associated magma chamber. This is partly related to magma
compressibility (Rivalta and Segall, 2008), and partly because of
density difference between the magma and its eruptive materials
and related factors. These differences, however, are well within an
order of magnitude and therefore within the error limits of the
elastic energy release calculations for eruptions presented here.
On the assumption that magma-chamber volume change corre-
sponds roughly to the volume of eruptive (including intrusive)

materials, it follows from Equation (21) that elastic energy can be
written in terms of the eruptive volume as follows:

Uer = peVer (23)

Equation (23) can now be used as a basis for the new magni-
tude scale for volcanic eruptions. Since it is the volume change
of the chamber that is the initial measure of the elastic energy
[Equation (21)], it follows that, for this scale, the volume of the
eruptive (plus intrusive) materials generated during an eruption
is used rather than the mass (in kg) of the eruptive materials.
The estimated eruptive volumes have of course an uncertainty.
However, the uncertainty is normally within a factor of 2–3, so
that the estimated volume may be regarded as of the correct order
of magnitude, which is normally all what is needed, particularly
for large to great eruptions (namely, those of the greatest concern
for mankind).

The general form of the new magnitude scale for volcanic
eruptions is:

Me = A log Uer − B (24)

where Me is the eruption magnitude, Uer is the elastic potential
energy, log is the common logarithm (to the base of 10), and A
and B are empirically determined constants. When the constants
have been determined, from empirical data (e.g., similar to those
in Figure 3), the scale can be fine-tuned and applied to all volcanic
eruptions for which the volumes are known or can be estimated.
This is particularly fortunate because for most pre-instrumental
eruptions, that is, eruptions earlier than last century—not to
speak of eruptions dating back millions of years—the only quan-
titative information we have is a rough estimate of the volume
of their erupted materials. The new magnitude scale for vol-
canic eruptions is, however, not the main focus of the present
paper and will be elaborated and presented in detail in another
publication.

COMPARABLE ENERGY RELEASES IN GREAT EARTHQUAKES
AND ERUPTIONS
Consider first some of the largest recorded earthquakes. As indi-
cated above, the largest earthquake ever recorded, the 1960 Chile
earthquake, had a surface rupture (strike dimension) that is var-
iously estimated at 800 km or at 920 ± 120 km; here we shall use
the conservative estimate of 800 km. The width or a dip dimen-
sion of the slip plane of the earthquake is estimated at around
200 km. If the stress drop was 5 MPa (Barrientos and Ward, 1990)
then, using a typical Young’s modulus of 100 GPa, a Poisson’s ratio
of 0.25, the elastic energy released—the energy drop—during the
earthquake is, from Equation (9), about 2.5 × 1019 J. Equation
(9) is a mode II crack model, as is common to use for dip-slip
earthquakes. However, a mode III crack model [Equation (11)]
for the same earthquake yields a very similar result, or about
3.5 × 1019 J.

The fault slip of the 1960 Chile earthquake is not known accu-
rately. In Equations (10, 12) the maximum slip is used; it is
generally estimated as somewhere between 25 and 30 m (Fujii and
Satake, 2013). Using the above values for Young’s modulus and
Poisson’s ratio, a mode II model [Equation (10)] yields an energy
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release of about 1.0 × 1019 J for a 25 m slip and 1.5 × 1019 J for
a 30 m slip. Similarly, a mode III model [Equation (12)] yields
an energy release of about 7.9 × 1018 J for a 25 m slip and 1.1 ×
1019 J for a 30 m slip.

As regards the seismic moment equations, we can use the rela-
tion E = 2μ(1 + ν) to estimate the shear modulus μ based on
the values for Young’s modulus and Poisson’s ratio given above.
The result, 40 GPa, can then be used in Equation (6) to calculate
the seismic moment. Note, however, that while seismic moment
[Equations (6–8)] and elastic energy release [Equations (9–12)]
have the same units, namely Nm, the do not measure the same.
The equations for elastic energy release and seismic moment are
different but related. For example, the elastic energy U may be
related to the seismic moment M0 and shear modulus μ through
the equation (Kanamori, 1977):

U = τdM0

2μ
(25)

This equation assumes a complete stress drop. In case there
is only partial stress drop, Equation (25) becomes modified to
(Kanamori, 1977):

U = τdM0

2μ
+ τf �uaA (26)

where τf is the final stress on the fault plane, following the fault
slip, as defined in Equation (4), �ua is the average slip, and A
is the rupture area. Generally, Equation (25) gives the minimum
elastic energy release or drop associated with the fault slip.

With the relation between seismic moment and elastic energy
release clarified, we now proceed to calculate the seismic moment
associated with the 1960 Chile earthquake. Using Equation (6)
with the values above for the rupture area (A = 1.6 × 1011 m2)
and the shear modulus (μ = 40 GPa), then for an average slip
of 24 m (Kanamori and Cipar, 1974; Barrientos and Ward, 1990)
we obtain a seismic moment of about 1.5 × 1023 J. This value is
similar to many of those obtained previously, which are generally
in the range of 0.7–2 × 1023 J (Kanamori and Anderson, 1975;
Kanamori, 1977; Barrientos and Ward, 1990; Fujii and Satake,
2013).

A total agreement as to the seismic moment value cannot be
expected since the estimated rupture area, the estimated average
slip, and the estimated shear modulus for the fault zone all vary
to a certain degree. Nevertheless, the results indicate that a seis-
mic moment of the order of 1–1.5 × 1023 J is a very reasonable
estimate. Assuming complete stress drop, the corresponding elas-
tic energy release is, from Equation (25), 6.3–9.4 × 1018 J. This
is very similar to the elastic energy release values obtained above
for an assumed maximum slip of 25 m, namely 7.9 × 1018 and
1 × 1019 J, depending on which energy formula is used. We con-
clude that the largest earthquake ever recorded had a seismic
moment of around 1 × 1023 J and released or transformed elastic
energy of close to 1 × 1019 J.

Let us now compare these results with the elastic energy
released or transformed during the largest known eruptions on
Earth. The largest explosive eruptions have produced volumes
of the order of 4000–5000 km3. There is no doubt that all large

explosive eruptions are associated with caldera collapses. In fact,
what is perhaps the largest explosive eruption in the past several
tens of millions of years, that of the Fish Canyon Tuff, with a vol-
ume of this order, is clearly associated with the La Garita Caldera
(Lipman, 1997; Mason et al., 2004). A piston-like compression of
the magma chamber is then a good model (Figure 6). Consider
first the case where the volume of the eruptive material corre-
sponds to the volume reduction, dVc, that is, the shrinkage (here
largely due to the paving in of the caldera floor), of the magma
chamber. The excess pressure at rupture is roughly the same as
the in-situ tensile strength of the roof. The in-situ tensile strength
of rocks is generally in the range of 0.5–9 MPa (Gudmundsson,
2011); here we use the value of 5 MPa, the same as for the esti-
mated driving stress of the 1960 Chile earthquake. Using these
values, from Equation (21) the change in elastic energy, energy
release (or transformation), is 2.5 × 1019 J.

The total volume of eruptive materials may be somewhat
larger than the corresponding volume of magma that leaves
the chamber (and causes its volume reduction or shrinkage)
during the eruption. This follows because of the magma com-
pressibility factor (Rivalta and Segall, 2008) and because the
density of eruptive materials, particularly pyroclastics, is normally
less than that of the magma from which they derive. However,
the “dry rock equivalent” of the eruptive materials of pyrol-
castics such as the Fish Canyon Tuff is still 4500 km3 (Mason
et al., 2004), suggesting that the estimated total volumes may
be used as a crude measure of the magma-chamber volume
change during the eruption. Also, the estimated volumes of large
explosive eruptions are generally underestimates, since part of
the volume of each eruption may be unrecorded. To a degree
the unknown part includes the portion of the eruptive material
that may have ended in the sea or been carried by rivers, sub-
ject to subsequent erosion, buried by younger formations (lava
flows, sediments) and thus inaccessible for volume estimates.
Furthermore, even a reduction by a factor of 2 would still yield
an elastic energy release or transformation of the order of 1019 J,
which is the same order of magnitude as that for the largest
earthquakes.

There are, as indicated above, several known explosive erup-
tions of a volume similar to that of the Fish Canyon Tuff, that is, of
the order of thousands of cubic kilometers. In addition, there are
many effusive eruptions of volumes up to about 1000–5000 km3.
But there are, at present, no accurately known volumes, either of
explosive or effusive eruptions, that exceed 5000 km3 by a large
margin. Thus, we do not know of any single eruptions produc-
ing, say, 15,000 km3 or 20,000 km3. Even if they existed, the elastic
energy release would still be of the order of 1019 J. Similarly, we
do not know of any earthquakes releasing elastic energy of the
order of 1020 J, that is, with seismic moments of the order of
1024 J. The results thus indicate that the largest known eruptions
and earthquakes on Earth both release elastic energies of a similar
magnitude, that is, of the order of 1019 J.

DISCUSSION
Earthquakes and volcanic eruptions both require energy to drive
them, driving energy. Part of the energy is transformed into
surface energy used for fracture propagation, and part into the
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displacement of the elastic crustal segment that hosts the seis-
mogenic fault (for earthquakes) or the magma chamber (for
eruptions). The focus in this paper is on the elastic energy released
or transformed during earthquakes and eruptions.

Volcanoes release large amounts of thermal energy both during
eruptions and non-eruptive periods. Magma in the source cham-
ber is continuously loosing heat, which is then transported to the
surface through convection (e.g., by geothermal circulation) and
conduction. Similarly, recently erupted materials (such as lava
flows and pyroclastic deposits and flows) and recent intrusions
(such as dikes, inclined sheets, and sills) solidify and cool down
and loose heat to the surrounding host rock and, eventually, to
the surface. Thermal energy, however, is unlikely to play anything
like the same role as elastic energy in squeezing magma out of
the chamber during an eruption, a process which largely controls
the size or magnitude of the eruption. Furthermore, for a direct
comparison of the sizes or magnitudes of eruptions and earth-
quakes, elastic energy is preferable to thermal energy, the latter
being poorly constrained for earthquakes.

There are three main new results in this paper that are likely
to have significant impact on earthquake and eruption stud-
ies. These are (1) the new method presented to assess the size
of an eruption through the elastic energy released or trans-
formed, (2) the possibility of a direct comparison of the elas-
tic energy transformed or released during eruptions and an
earthquakes, and (3) the conclusion that the maximum elas-
tic energy released in the largest recorded earthquakes is of the
same order of magnitude as that released in the largest volcanic
eruptions.

As to the first point, the method presented here to estimate the
size of an eruption is analogous to that for estimating the size of
an earthquake. Before an eruption or an earthquake occurs there
must be energy input into the system, that is, the volcano host-
ing a magma chamber or the fault zone hosting a seismogenic
fault [Equations (13, 14)]. When the thermal energy is neglected,
and there are good reasons for doing so at this stage when
assessing the main driving pressure/driving stress available for
eruptions/earthquakes, the available energy that remains derives
from the work done on the system—the magma chamber/fault
zone [Equation (15)]. Simple analysis [Equations (17–21)] shows
that, for volcanic eruptions, the elastic energy available to drive
out the magma during an eruption is equal to the excess fluid
pressure in the chamber multiplied by the volume change of the
chamber as it contracts or shrinks [Equation (21)]. This analysis
allows us, for the first time, to estimate directly the elastic energy
associated with an eruption in terms of a measureable parameter,
namely the eruptive volume, which is normally reasonable well
known. And the volume is known not only for recent and instru-
mentally studied eruptions but can commonly be estimated for
eruptions that date back to millions or tens of millions of years,
thereby covering presumably the largest eruptions that can be
expected on Earth.

As for the second point, a direct comparison between the
elastic energy released in eruptions and earthquakes is of great
value. Ultimately, volcanic eruptions and earthquakes relate
to forces and stresses associated with plate-tectonic move-
ments. These movements, to a large degree, furnish the energy

input for maintaining active fault zones and volcanoes (e.g.,
Gudmundsson, 2013). It is thus important to be able to assess
and compare the elastic energy transformed during eruptions
and earthquakes, particularly in the largest eruptions and earth-
quakes. The elastic energy formulas used for these calculations
for earthquakes [Equations (9–12)] and eruptions [Equations
(18–21)] are analogous and make such a comparison possi-
ble. Furthermore, both can then be compared with the seismic
moments of earthquakes [Equations (6–9)] and, through the seis-
mic moments, with the moment magnitudes (Kanamori, 1977;
Hanks and Kanamori, 1979; Aki and Richards, 2009).

The moment-magnitude scale for earthquakes is directly
related to the moment, and can also be related to the elastic
energy released (Kanamori, 1977; Kanamori and Brodsky, 2004).
Here I suggest a similar scale for the sizes of volcanic eruptions
[Equations (23, 24)]. This scale is a measure of the elastic energy
released or transformed during volcanic eruptions and depends
almost entirely on the change in magma-chamber volume—the
chamber contraction or shrinkage—during the eruption. The
magma-chamber volume change, in turn, can be related to the
volume of eruptive (and intrusive) materials leaving the cham-
ber during the eruption. This new scale, elaborated in a separate
publication, is very simple to use, and applies to any eruption,
recent or old, for which a reasonable estimate can be made as
to the magma volume squeezed out of the chamber during the
eruption. For medium to small eruptions, that volume, −dVc =
Ver , must include the volume of the feeder (normally a dike)
to the eruption. For larger eruptions, say in excess of 100 km3,
the feeder-dike volume becomes gradually negligible (but can
often be estimated crudely) and the volume of eruptive materi-
als becomes the main measure of the magma-chamber volume
reduction.

The third point may be the one of greatest interest and, per-
haps, surprise. That the elastic strain energy released is of the
same order of magnitude in the largest earthquakes and eruptions
is perhaps an indication of certain limits as to the strain-energy
storage capacity of the Earth’s crust before failure. Alternatively,
it shows the amount of strain energy that can be released from
a crustal segment during a single volcanic or tectonic event.
The similarities are perhaps less surprising when one takes into
account that the driving stresses of earthquakes are very similar
to the excess pressures of magma chambers before rupture and
eruption. Theoretically, these should differ by a factor of about
2. This follows from the Modified Griffith Criterion for fault slip,
given by (e.g., Gudmundsson, 2011):

τd = 2T0 + μf σn (27)

where τd is the driving shear stress for fault slip, T0 is the in-situ
tensile strength of the rock, μf is the coefficient of internal fric-
tion (not to be confused with the shear modulus, μ), and σn is
the normal stress on the rupture (fault) plane. This equation is
often used to describe the conditions for fault slip in laboratory
experiments, and applies to dry conditions. In the crust, there are
always fluids present, and it is widely thought that there are no
major earthquakes without high fluid pressures in the associated
fault zone. When there is total fluid pressure pt in the fault zone
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at the site of the potential earthquake rupture, then Equation (27)
becomes modified to:

τd = 2T0 + μf (σn − pt) (28)

Except for very deep earthquakes, the driving shear stress or
stress drop τd is normally in the range of 1–10MPa, and most
commonly 2–6 MPa (Kanamori and Anderson, 1975; Kanamori,
1977). This suggests that during most earthquakes the term
μf (σn − pt) is close to or actually zero (and possibly negative).
Since μf is always positive, this implies that the term (σn − pt) is
zero, so that the fluid pressure is equal to the normal stress on the
slip surface (cf. Gudmundsson, 2011). Thus, for an earthquake
the driving shear stress is commonly equal to twice the in-situ ten-
sile strength, or 2T0, whereas for the rupture of a magma chamber
and dike injection the excess pressure is equal to T0. Since the
in-situ tensile strength of crustal rocks is most commonly a few
mega-pascals, the excess pressure in the magma chamber and the
driving shear stress are likely to be mostly in the range of about
2–6 MPa, as is, indeed, the common estimate.

While the volumes of rocks strained prior to large earthquakes
is much larger than the volumes strained prior to large eruptions,
the displacements and volume changes associated with erup-
tions such as caldera collapses are several orders of magnitude
larger than those associated with large earthquakes. Thus, while
the maximum displacement in the 1960 Chile earthquake was
25–30 m and that in the 2011 Japan earthquake perhaps 50 m, the
displacements during large caldera collapses can reach kilometers.
That is, the displacements during the contraction or shrinkage of
a magma chamber can be two orders of a magnitude larger than
the displacements in the largest earthquakes. The consequence
is that the elastic energy released in the largest earthquakes and
eruptions is essentially the same.
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