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Many rock fractures are entirely driven open by fluids such as ground water, geothermal
water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g.,
dikes, mineral veins and joints) and are referred to as hydrofractures. Field measurements
show that many hydrofractures have great variations in aperture. However, most analytical
solutions for fracture displacement and stress fields assume the loading to be either
constant or with a linear variation. While these solutions have been widely used, it is
clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject
to loading that is neither constant nor with a linear variation. Here we present new
general solutions for the displacement and stress fields around hydrofractures, modeled
as two-dimensional elastic cracks, opened by irregular overpressure variations given by the
Fourier cosine series. Each solution has two terms. The first term gives the displacement
and stress fields due to the average overpressure acting inside the crack; it is given by the
initial term of the Fourier coefficients expressing the overpressure variation. The second
term gives the displacement and stress fields caused by the overpressure variation;
it is given by general terms of the Fourier coefficients and solved through numerical
integration. Our numerical examples show that the crack aperture variation closely reflects
the overpressure variation. Also, that the general displacement and stress fields close
to the crack follow the overpressure variation but tend to be more uniform far from the
crack. The present solutions can be used to estimate the displacement and stress fields
around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided
the variation in overpressure can be described by Fourier series. The solutions add to
our understanding of local stresses, displacements, and fluid transport associated with
hydrofractures in the crust.

Keywords: fractures and faults, mechanics, theory and modeling, permeability and porosity, elasticity and

anelasticity, geomechanics, effusive volcanism

INTRODUCTION
Rock fractures play a fundamental role in a variety of geological
processes. For example, volcanic eruptions worldwide are pri-
marily fed through magma-driven fractures (dikes or inclined
sheets) that significantly affect the tectonic evolution of the crust
(e.g., Spence et al., 1987; Clemens and Mawer, 1992; Rubin, 1995;
Gudmundsson, 2006). Similarly, assessments of likely dike paths
and rates of propagation play an important role in volcanic hazard
maps. Paths for fluids are commonly formed through the gen-
eration of interconnected clusters of fractures. The propagation
and liking up of fractures of various sizes have been widely dis-
cussed and modeled (e.g., Macdonald et al., 1984; Pollard and
Aydin, 1984; Gudmundsson, 1987a,b; Pollard and Segall, 1987;
Baud and Reuschle, 1997; Andrew and Gudmundsson, 2008). The
results indicate that geometric arrangement of the fractures, and
the distances between them, largely control their linking up into
interconnected clusters.

Most fluids transported by rock fractures are less dense than
the host rock and thus buoyant. Many have studied buoyancy
effects on hydrofracture propagation in the crust (e.g., Spence

et al., 1987; Lister, 1990; Lister and Kerr, 1991; Meriaux and
Jaupart, 1998; Roper and Lister, 2005; Becerril et al., 2013; Philipp
et al., 2013). In particular, the effects of neutral buoyancy, that
is, levels in the crust where the magma density in a dike equals
that of the crustal layers through which the dike propagates, has
received considerable attention (Rivalta and Dahm, 2006; Kuhn
and Dahm, 2008; Becerril et al., 2013). One result, discussed in
detail by Chen et al. (2007), is that the dike rate of propagation
may decrease as its tip approaches a level of neutral buoyancy.
However, field observations show that basaltic dikes commonly
propagate easily through less dense crustal layers, suggesting that
neutral buoyancy alone is not sufficient to arrest the dikes or
deflect them into sills (Gudmundsson, 2011, 2012; Galindo and
Gudmundsson, 2012). It has been suggested that simultaneous
injection of narrowly spaced dikes may also reduce their rate
of propagation (Jin and Johnson, 2008), a very interesting pro-
cess which may, however, be rare in nature. An overpressured
elastic crack, with or without buoyancy effects, is the standard
model of dike emplacement, a process that can normally be
detected and monitored through associated crustal deformation,
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gravity changes, and earthquakes (e.g., Okubo and Watanabe,
1989; Okada and Yamamoto, 1991; Davis et al., 2001; Hayashi and
Morita, 2003; Jousset et al., 2003; Klügel et al., 2005; Morita et al.,
2006; Bonforte et al., 2007; Galindo and Gudmundsson, 2012;
Becerril et al., 2013).

There are many analytical solutions for the displacement,
strain, and stress fields around overpressured elastic cracks (e.g.,
Sneddon and Lowengrub, 1969; Okada, 1985, 1992; Pollard and
Segall, 1987; Maugis, 2000; Tada et al., 2000; Becerril et al., 2013).
While some allow the overpressure to vary linearly within the
crack (e.g., Valko and Economides, 1995; Gudmundsson et al.,
2002), most solutions assume that the overpressure is constant
and the crack hosted by a homogeneous, isotropic, elastic mate-
rial. These solutions have been widely used in applied and the-
oretical work (e.g., Sneddon and Lowengrub, 1969; Valko and
Economides, 1995; Economides and Nolte, 2000; Geshi et al.,
2010; Becerril et al., 2013; Kusumoto et al., 2013a) but are less
appropriate for cracks subject to an overpressure that varies irreg-
ularly, such as is common in heterogeneous and anisotropic
rocks. While crack problems in heterogeneous and anisotropic
materials can, theoretically, be tackled using numerical programs
(e.g., Geshi et al., 2012; Gudmundsson et al., 2012), analytical
solutions provide important tests of the numerical results (and
vice versa) and offer insight into the physics of the associated
processes.

Overpressure variations and associated opening displacements
can be modeled analytically in several ways. Some authors use
polynomials (Valko and Economides, 1995; Gudmundsson et al.,
2002), while others use Maclaurin series (Sneddon, 1951). For
example, Bonafede et al. (1985) analyzed the stress field at the
tip of a crack using Chebyshev polynomials to describe overpres-
sure variation in the crack, and Bonafede and Olivieri (1995)
used this approach for dike emplacement at shallow depth in
the crust. Gudmundsson (2011), Gudmundsson et al. (2012)
and Kusumoto et al. (2013b) describe the overpressure varia-
tion in the crack by Fourier series and derived solutions giving
crack shapes for cracks subject to irregular variation in over-
pressure. Kusumoto et al. (2013b) presented the solution for the
inverse model that estimates the fluid overpressure distribution
in the crack from its shape. These solutions are helpful for under-
standing and discussing relationship between fracture shape and
overpressure. However, these solutions would not be suitable for
analysing the deformation and stress fields of a rock hosting a
fracture whose opening is controlled by an irregular overpressure.

Hence, as the principal aim of this paper, we present new,
general solutions for the displacements (opening) and stress
fields generated by fluid-driven cracks (hydrofractures) sub-
ject to irregular overpressure variations. In order to utilize
results and/or modeling methods given by Gudmundsson (2011),
Gudmundsson et al. (2012) and Kusumoto et al. (2013b), we
describe the overpressure in the crack by Fourier cosine series and
derive the solutions from the basic formulas based on the Fourier
transform (e.g., Sneddon, 1951; Sneddon and Lowengrub, 1969).
Our observational motivation for providing the solutions is given
in the next section. Because the Fourier series can express all
overpressure variations in cracks, including those presented by
discontinuity functions, these general solutions can be used to

calculate the displacements or openings and stress fields around a
variety of rock fractures.

MOTIVATION
Field observations show that the apertures (double opening dis-
placements) of rock fractures, when measured along their lengths
(strike dimensions) as well as their heights (dip dimensions),
commonly vary irregularly (Figure 1). This applies, for exam-
ple, to many mineral veins, ranging in lengths from a few tens
of centimeters to many meters. The same applies to dikes, large
tension fractures, and normal faults ranging in lengths from a few
hundred meters to many kilometers or tens of kilometers. For all
these fractures, the aperture variations are normally too large to
be explained in terms of inaccuracy in the measurements.

As an example of large fluid-driven fractures (hydrofractures)
with variable aperture, consider regional dikes. Delaney and
Pollard (1981) and Gudmundsson (1983a) studied the variation
in aperture, measured as thickness, of regional mafic (basaltic)
dikes in New Mexico and East Iceland, respectively, with lengths of
several kilometers. The host rock of the New Mexico dikes is shale,
whereas the host rock of the Icelandic dikes is a pile of basaltic
lava flows and, in between the lava flows, scoria and soil layers. A
200-m-long dike segment studied by Delaney and Pollard (1981)
shows irregular thickness variations of 0.5–1 m near its central
part, while the maximum dike thickness in this central part is
about 3 m. Gudmundsson (1983a) measured the thickness varia-
tion along 2–2.5-km-long parts of two dikes in East Iceland, both
of which have a maximum thickness of 9–10 m. The dikes show
irregular thickness variations of 2–3 m and, in places, by as much
as 4–6 m. Thus, all three dikes vary irregularly in thickness by
about 30%, and the Icelandic dikes by up to 50%, of the maxi-
mum thickness. Thickness variations of dikes along their heights
are also documented (Gudmundsson, 1983a).

FIGURE 1 | Dikes varying in thickness in the caldera walls of the

Miyake-jima volcano, Japan. (A) Dike swarm observed at the
northwestern part of the caldera wall. Area closed by a rectangle at the
center of this figure is presented in (B). (B) Dikes at the center of this
picture have conspicuous thickness variations. Other thin dikes around
these have also thickness variations.

Frontiers in Earth Science | Structural Geology and Tectonics May 2014 | Volume 2 | Article 7 | 2

http://www.frontiersin.org/Structural_Geology_and_Tectonics
http://www.frontiersin.org/Structural_Geology_and_Tectonics
http://www.frontiersin.org/Structural_Geology_and_Tectonics/archive


Kusumoto and Gudmundsson Fractures opened by irregular overpressure

Similar thickness variations occur in mineral veins. As an
example, consider the measurements of the thickness variations
of several 2–3 m long mineral veins in North Iceland (Berg, 2000;
Skurtveit, 2000). The veins are hosted by basaltic lava flows and
are non-restricted, that is, do not end in other veins or structures.
The mineral fill is mostly zeolites, quartz and calcite. Some veins
have a maximum thickness of 10–15 mm, others as much as 20–
25 mm. The thicknesses vary irregularly along the vein lengths,
but commonly by about 5 mm, the variations being generally
larger for the thicker veins, occasionally as much as 10–15 mm.
The variation is normally 20–40%, but in places 50–70%, of the
maximum vein thickness. Similar results were obtained for the
thickness variation of several 2–5-m-long quartz veins in gneiss
in West Norway (Simmenes, 2002). Thickness variations of min-
eral veins along their heights, particularly in layered rocks, are also
documented (e.g., Philipp, 2012; Philipp et al., 2013).

All hydrofractures are primarily driven open by the internal
fluid overpressure. The fluid is magma for dikes and geother-
mal water for mineral veins, but for other hydrofractures the
fluid may be ground water, gas, and oil. Apart from its the-
oretical interest, aperture variation in fractures has important
mechanical implications, in particular as regards flow channel-
ing (Tsang and Neretnieks, 1998). The cubic law implies that the
volumetric rate of flow of fluid through a fracture is related to
the cube (the third power) of the fracture aperture. It follows
that any significant variation in fracture aperture may lead to
much of the fluid flow becoming confined to those segments of
the fracture that have unusually large apertures. Flow channel-
ing is thus of importance for understanding transport of fluids in
the crust, such as in fractured reservoirs, seismogenic fault zones,
and volcanoes.

Consider, for example, the supply of magma during dike-fed
fissure eruptions. Overpressure variations may help explain the
formation of exceptionally wide (large-aperture) segments along
dikes (Delaney and Pollard, 1981; Gudmundsson, 1983a), seg-
ments that subsequently may develop into circular conduits and,
on solidification, plugs, or necks. While thermal erosion may also
play a part in their formation (Delaney and Pollard, 1981; Bruce
and Hubbert, 1989; Ida, 1992), we suggest that flow channeling in
the feeder dike is one principal reason for the formation of crater
cones, a fundamental volcanotectonic feature of fissure eruptions
worldwide (e.g., Thordarson and Self, 1993).

Most fluid-driven fractures (dikes, sheets, sills, mineral veins,
and many joints) are extension fractures. By definition, the
stress acting perpendicular to an extension fracture is the min-
imum compressive (maximum tensile) principal stress, σ3. In
heterogeneous and anisotropic rocks, the mechanical proper-
ties, in particular the Young’s moduli, of the layers and units
through which a fluid-driven fracture propagates commonly vary
abruptly. Even in single Holocene basaltic lava flows, in which
many of the fractures discussed above are located, Young’s modu-
lus may vary considerably (Gudmundsson, 1983b). This follows,
first, because the frequency and orientation of joints, other dis-
continuities and cavities varies throughout the flow. Second,
because cavities such as gas bubbles generally concentrate in lay-
ers or zones within the lava flows (or flow units in pahoehoe
flows), commonly at its bottom and top, where the rock material

also tends to be more compliant (with a lower Young’s mod-
ulus) because of scoria—particularly in aa lava flows. Young’s
modulus may vary by a factor of four within a single flow
(Gudmundsson, 1983b). In addition, as a rule, Young’s modulus
decreases with increasing number of discontinuities and cavi-
ties in a direction perpendicular to the loading (Priest, 1993;
Nemat-Nasser and Hori, 1999). Thus, even when the remote
tectonic loading is constant, the local stresses in the host rock,
including σ3, may change irregularly between layers and units.
Since the fluid overpressure in a fracture depends on the mag-
nitude of σ3 in each rock unit dissected by the fracture,it fol-
lows that the overpressure may also vary irregularly between the
units.

The principal aim of this study is to understand better the
common irregular and large changes in rock-fracture apertures.
In the analytical models, we present the overpressure variations by
Fourier cosine series, allowing calculations of the aperture vari-
ation as well as the local displacement and stress fields around
the factures. The aperture variations of the tension fractures and
normal faults are mostly related to variation in driving (ten-
sile or shear) stress. Because the driving stress is the difference
between the remote applied (tensile or shear) stress and the resid-
ual strength (tensile or shear) on the fracture surface after opening
or sliding, the present method can also be used to model open-
ing and slip variations along tension fractures and faults. In this
paper, however, the focus is on aperture variations and stress
and displacement fields generated by overpressure in fluid-driven
fractures, that is, hydrofractures.

In the next section, we show the basic model describing
displacement and stress fields in two-dimensional elastic crack
problems, and derive the common fundamental solutions for
overpressure expressed by the Fourier cosine series. Moreover, in
the sections of DISPLACEMENT FIELDS and STRESS FIELDS
we will show the solutions for displacement fields and stress fields
under the given conditions. In these sections, we derive each solu-
tion step by step by showing the necessary integral formulas.
Well-known solutions for the uniform overpressure model are
also shown for comparison with our model.

BASIC MODEL
The fundamental solutions for the displacement (ux, uy) and
stress (σxx, σyy, τxy) fields around an elastic crack in the two-
dimensional x–y coordinate system (Figure 2) were obtained by
Sneddon and Lowengrub (1969) by means of the Fourier trans-
form, namely as

ux
(
x, y
) = (1 + ν)

E

√
2

π

∫ ∞

0

(
1 − 2ν − ξy

)
� (ξ) e−ξy sin (ξx) dξ (1)

uy
(
x, y
) = (1 + ν)

E

√
2

π

∫ ∞

0

(
2 − 2ν + ξy

)
� (ξ) e−ξy cos (ξx) dξ (2)

σxx
(
x, y
) =

√
2

π

∫ ∞

0
ξ
(
1 − ξy

)
� (ξ) e−ξy cos (ξx) dξ (3)

σyy
(
x, y
) =

√
2

π

∫ ∞

0
ξ
(
1 + ξy

)
� (ξ) e−ξy cos (ξx) dξ (4)

τxy
(
x, y
) = −y

√
2

π

∫ ∞

0
ξ 2� (ξ) e−ξy sin (ξx) dξ (5)
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FIGURE 2 | Illustration of the basic crack model and boundary

conditions used in this study. The stress field is symmetrical about the
line y = 0. The components of the displacement vector normal to the x-axis
and the shear stress τxy are both zero outside the crack. Inside the crack,
the normal component of stress is prescribed to be equal to p(x) and the
shear stress to be zero. The fluid overpressure inside the crack is given by
even function, p( − x) = p(x).

where E and v are Young’s modulus and Poisson’s ratio, respec-
tively, and:

�(ξ) =
√

π

2

∫ c

0
f (t)J0(ξ t)dt (6)

and J0(ξ t) is the zero-order Bessel function of the first kind. In
addition, f (t) is defined as

f (t) = 2

π
t

∫ t

0

p(x)dx√
t2 − x2

(7)

and p(x) is the function expressing the fluid overpressure in
the crack of which half-length is c. In order to solve this prob-
lem, Sneddon and Lowengrub (1969) set the following boundary
conditions (Figure 2).

τxy(x, 0) = 0, σyy(x, 0) = p(x), |x| ≤ c,

τxy(x, 0) = 0, uy(x, 0) = 0, |x| > c (8)

and the condition for the half-plane y ≥ 0 at infinity(√
x2 + y2 → ∞

)
are as follows

σxx → 0, σyy → 0, τxy → 0 (9)

These boundary conditions indicate that the problem is sym-
metric, the symmetry axes being x = 0 and y = 0. Thus, the
overpressure variation in the crack can be given by the even
function p( − x) = p(x). For the function p(x), describing over-
pressure in the crack, we introduce the Fourier cosine series,
which can cover all function, including discontinuous function,
namely

p(x) = a0

2
+

∞∑
n = 1

an cos (nωx) (10)

where a0 and an (n = 1, 2, 3, . . .) are the Fourier coefficients and
ω is an angular frequency defined by ω = π/c. The initial term
a0/2 indicates the average value; here it denotes the average fluid
overpressure in the crack. The general terms, an, indicates the
variation in amplitude; here it denotes the variation in amplitude
of the overpressure.

Substituting Equation (10) into Equation (7) and applying the
following integral formula (e.g., Gradshteyn and Ryzhik, 2007)

∫ x

0

cos (αη)√
x2 − η2

dη = π

2
J0 (αx) (11)

the function f (t) becomes

f (t) = t

[
a0

2
+

∞∑
n = 1

anJ0 (nωt)

]
(12)

Applying the integral formula

∫ β

0
ηJ0 (αη) dη = βJ1 (αβ)

α
(13)

and the Lommel’s integral formula (e.g., Sneddon, 1951)

∫ η

0
Jν (αη) Jν (βη) ηdη = η

α2 − β2
[αJν (βη) Jν+1 (αη)

−βJν (αη) Jν+1 (βη)] (14)

to the first and second terms of the Equation given by substituting
Equation (12) into Equation (6), we obtain the function �(ξ) as

�(ξ) =
√

π

2
c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0

2

J1(cξ)

ξ
+

∞∑
n = 1

an

[
nωJ0(cξ)J1(nπ)−

ξ J0(nπ)J1(cξ)

]
(nω)2 − ξ 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

Here, J1(cξ) is the first-order Bessel function of the first kind. In
the following equations, we rewrite the second term of Equation
(15) using

ϑ(ξ) =
∞∑

n = 1

an
[nωJ0(cξ)J1(nπ) − ξ J0(nπ)J1(cξ)]

(nω)2 − ξ 2
(16)

so that the function � becomes

�(ξ) =
√

π

2
c

[
a0

2

J1(cξ)

ξ
+ ϑ (ξ)

]
(17)

We can obtain the displacement and stress fields around the
crack by integrating the expressions obtained when the func-
tion �, given by Equation (17), is put into Equations (1) to (5).
Following the tradition in structural geology and rock physics
(e.g., Jaeger et al., 2007; Gudmundsson, 2011), compressive stress
is considered positive and tensile stress negative.
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DISPLACEMENT FIELDS
By substituting Equation (17) into Equations (1) and (2), we
obtain the following expressions for the displacement field

ux
(
x, y
) = (1 + ν) c

E

{
a0

2

∫ ∞

0

(
1 − 2ν − ξy

) J1 (cξ)

ξ
e−ξy sin (ξx) dξ

+
∫ ∞

0

(
1 − 2ν − ξy

)
ϑ (ξ) e−ξy sin (ξx) dξ

}
(18)

uy
(
x, y
) = (1 + ν) c

E

{
a0

2

∫ ∞

0

(
2 − 2ν + ξy

) J1 (cξ)

ξ
e−ξy cos (ξx) dξ

+
∫ ∞

0

(
2 − 2ν + ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

}
(19)

Here we introduce the complex number z = x + iy and the com-
plex conjugate of z̄ = x − iy, and rewrite the first integrals in
Equations (18) and (19) so as to obtain

ux
(
x, y
) = (1 + ν) c

E

{
a0

2

∫ ∞

0

(
1 − 2ν − ξy

) J1 (cξ)

ξ
Im
[
exp (−iξ z̄)

]
dξ

+
∫ ∞

0

(
1 − 2ν − ξy

)
ϑ (ξ) e−ξy sin (ξx) dξ

}
(20)

uy
(
x, y
) = (1 + ν) c

E

{
a0

2

∫ ∞

0

(
2 − 2ν + ξy

) J1 (cξ)

ξ
Re
[
exp (−iξ z̄)

]
dξ

+
∫ ∞

0

(
2 − 2ν + ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

}
(21)

For polar coordinates with the center and tips (edges) of the crack
as the origins (Figure 3), we have

z̄ = re−iθ , z̄ − c = r1e−iθ1 , z̄ + c = r2e−iθ2 (22)

where r = (x2 + y2)1/2, r1 = [(x − c)2 + y2]1/2 and r2 = [(x +
c)2 + y2]1/2. Also, θ , θ1, and θ2 are defined by the counter-
clockwise from the x-axis and their origins are x = 0, c and –c,
respectively.

Using the polar coordinates, the integral formulas∫ ∞

0

J1 (cξ)

ξ

[
exp (−iξ z̄)

]
dξ = i

c

(√
z̄2 − c2 − z̄

)
(23)

∫ ∞

0
J1 (cξ)

[
exp (−iξ z̄)

]
dξ = 1

c

(
1 − z̄√

z̄2 − c2

)
(24)

can be rewritten as∫ ∞

0

J1 (cξ)

ξ
Re
[
exp (−iξ z̄)

]
dξ

= 1

c

(√
r1r2 sin

θ1 + θ2

2
− r sin θ

)
(25)

∫ ∞

0

J1 (cξ)

ξ
Im
[
exp (−iξ z̄)

]
dξ

= 1

c

(√
r1r2 cos

θ1 + θ2

2
− r cos θ

)
(26)

∫ ∞

0
J1 (cξ) Re

[
exp (−iξ z̄)

]
dξ

FIGURE 3 | The coordinates of (r, θ ), (r1, θ1), and (r2, θ2).

= 1

c

[
1− r√

r1r2
cos

(
θ− θ1 + θ2

2

)]
(27)

∫ ∞

0
J1 (cξ)Im

[
exp (−iξ z̄)

]
dξ

= 1

c

r√
r1r2

sin

(
θ − θ1 + θ2

2

)
(28)

From these formulas, the displacement field around a crack
opened by irregular overpressure variations is given by

ux
(
x, y
) = (1 + ν)

E

a0

2

[
(1 − 2ν)

(√
r1r2 cos

θ1 + θ2

2
− r cos θ

)

− r2

√
r1r2

sin θ sin

(
θ − θ1 + θ2

2

)]
(29)

+ (1 + ν) c

E

[∫ ∞

0

(
1 − 2ν − ξy

)
ϑ (ξ) e−ξy sin (ξx) dξ

]

uy
(
x, y
) = (1 + ν)

E

a0

2

{
2 (1 − ν)

(√
r1r2 sin

θ1 + θ2

2
− r sin θ

)

+r sin θ

[
1 − r√

r1r2
cos

(
θ − θ1 + θ2

2

)]}
(30)

+ (1 + ν) c

E

[∫ ∞

0

(
2 − 2ν + ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

]

Equations (29) and (30) consist of a first term and a second term,
including the initial term and the general terms of the Fourier
coefficients. In calculations, one must ensure that the angles θ ,
θ1, and θ2 (Figure 3) are always positive. Also, the reverse of
the sign of y and of the symbol (+ or −) connecting the first
term and second term must be used for y < 0, so as to avoid
divergence of any integration including exp(-y). The integration
of the second terms in Equations (29) and (30) cannot be car-
ried out analytically and so must be done numerically, using the
double exponential transformation method for numerical inte-
gration (e.g., Takahashi and Mori, 1974; Mori, 2005; Davis and
Rabinowitz, 2007).

If the fluid overpressure in the crack is constant, then p(x) =
p0 and we can obtain the following simple formulas (with a0 =
2p0 and an = 0)
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ux
(
x, y
) = p0 (1 + ν)

E

[
(1 − 2ν)

(√
r1r2 cos

θ1 + θ2

2
− r cos θ

)

− r2

√
r1r2

sin θ sin

(
θ − θ1 + θ2

2

)]
(31)

uy
(
x, y
) = p0 (1 + ν)

E

{
2 (1 − ν)

(√
r1r2 sin

θ1 + θ2

2
− r sin θ

)

+r sin θ

[
1 − r√

r1r2
cos

(
θ − θ1 + θ2

2

)]}
(32)

From Equation (32), the crack shape and its maximum opening
displacement (half the maximum aperture for a hydrofracture)
can be obtained. The crack shape is the given as the following
well-known formula (e.g., Sneddon and Lowengrub, 1969) under
the conditions of y = 0, θ = θ2 = 0, θ1 = π , −c ≤ r ≤ c, −2c ≤
r1 ≤ 0, and 0 ≤ r2 ≤ 2c.

uy (x, 0) = 2p0
(
1 − ν2

)
E

√
x2 − c2 (33)

The maximum opening displacement occurs at the point x = 0
and y = 0 (the center of the crack), namely r = 0, r1 = r2 = c
and (θ1 + θ2)/2 = π/2. This follows because this point is at the
greatest distance from the crack tips (the lateral ends of the crack)
where, by definition, the displacement is zero (Figure 2). The rela-
tionship between p0 and uy(0,0), from Equation (32) or (33), is
given by

uy(0, 0) = 2c
(
1 − ν2

)
E

p0 (34)

This well-known Equation (e.g., Sneddon and Lowengrub, 1969)
shows that the maximum opening displacement depends much
on the crack half-length, c, and the host-rock Young’s modu-
lus, E. Fluid-driven fractures seen in the field range in lengths
from a few centimeters (some joints and mineral veins) to
hundreds of kilometers (some dikes) (e.g., Baer and Heimann,
1995; Gudmundsson et al., 2002). Also, the Young’s moduli of
common rocks differ by three orders of a magnitude or more
(Carmichael, 1989; Bell, 2000; Gudmundsson, 2011). By con-
trast, the effect of Poisson’s ratio ν on the displacement is small
because its value is in the narrow range of 0.1–0.3 for most rocks
(Bell, 2000; Gudmundsson, 2011). Equation (34) can be used
not only as a calculation check for the case of a constant over-
pressure in a rock fracture, but also to make crude estimates
of the average fluid overpressure during emplacement of min-
eral veins and dikes and other hydrofractures (e.g., Delaney and
Pollard, 1981; Gudmundsson, 1983a, 2011; Pollard and Segall,
1987; Gudmundsson et al., 2002; Geshi et al., 2010). For man-
made hydraulic fractures, Equation (34) is occasionally used for a
field estimate of Young’s modulus (Valko and Economides, 1995).

STRESS FIELDS
Substituting Equation (17) into Equations (3), (4), and (5), the
stresses are

σxx(x, y) = c

[
a0

2

∫ ∞

0

(
1 − ξy

)
J1 (cξ) e−ξy cos ξxdξ

+
∫ ∞

0
ξ
(
1 − ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

]
(35)

σyy(x, y) = c

[
a0

2

∫ ∞

0

(
1 + ξy

)
J1 (cξ) e−ξy cos ξxdξ

+
∫ ∞

0
ξ
(
1 + ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

]
(36)

τxy(x, y) = −yc

[
a0

2

∫ ∞

0
ξ J1 (cξ) e−ξy sin (ξx) dξ

+
∫ ∞

0
ξ 2ϑ (ξ) e−ξy sin (ξx) dξ

]
(37)

Using complex numbers in each first term, Equations (35–37)
become

σxx
(
x, y
) = c

[
a0

2

∫ ∞

0

(
1 − ξy

)
J1 (cξ) Re

[
exp (−iξ z̄)

]
dξ

+
∫ ∞

0
ξ
(
1 − ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

]
(38)

σyy
(
x, y
) = c

[
a0

2

∫ ∞

0

(
1 + ξy

)
J1 (cξ) Re

[
exp (−iξ z̄)

]
dξ

+
∫ ∞

0
ξ
(
1 + ξy

)
ϑ (ξ) e−ξy cos (ξx) dξ

]
(39)

τxy
(
x, y
) = −yc

[
a0

2

∫ ∞

0
ξ J1 (cξ) Im

[
exp (−iξ z̄)

]
dξ

+
∫ ∞

0
ξ 2ϑ (ξ) e−ξy sin (ξx) dξ

]
(40)

Using Equations (27) and (28) and the formula

∫ ∞

0
ξ J1 (cξ)

[
exp (−iξ z̄)

]
dξ = ic(

z̄2 − c2
) 3

2

(41)

in the following form

∫ ∞

0
ξ J1 (cξ) Re

[
exp (−iξ z̄)

]
dξ = −c(√

r1r2
)3

sin
3

2
(θ1 + θ2) (42)

∫ ∞

0
ξ J1 (cξ) Im

[
exp (−iξ z̄)

]
dξ = c(√

r1r2
)3

cos
3

2
(θ1 + θ2) (43)
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Equations (38–40) can be rewritten to so as to give the stress fields
thus

σxx
(
x, y
) = −a0

2

[
r√
r1r2

cos

(
θ − θ1 + θ2

2

)

− c2(√
r1r2

)3
r sin θ sin

3

2
(θ1 + θ2) − 1

]

+c

∫ ∞

0
ξ(1 − ξy)ϑ(ξ)e−ξy cos (ξx)dξ (44)

σyy
(
x, y
) = −a0

2

[
r√
r1r2

cos

(
θ − θ1 + θ2

2

)

+ c2(√
r1r2

)3
r sin θ sin

3

2
(θ1 + θ2) − 1

]

+c

∫ ∞

0
ξ(1 + ξy)ϑ(ξ)e−ξy cos (ξx)dξ (45)

τxy
(
x, y
) = −a0

2

c2(√
r1r2

)3
r sin θ cos

3

2
(θ1 + θ2)

−cy

∫ ∞

0
ξ 2ϑ (ξ) e−ξy sin (ξx) dξ (46)

The stress field Equations (44–46) have basically the same struc-
ture as the displacement field Equations (29) and (30). Both sets
of Equations consist of first terms, giving the stresses and dis-
placement related to the average fluid overpressure in the crack,
and second terms, giving the stresses and displacements related
to the overpressure variations (amplitudes). The integration of
the second terms of Equations (44–46) cannot be carried out
analytically and must, therefore, be done numerically. Again, the
numerical evaluation was made using the double exponential
transformation method (e.g., Takahashi and Mori, 1974; Mori,
2005; Davis and Rabinowitz, 2007).

If the overpressure in the crack is constant, then p(x) = p0

(and a0 = 2p0, an = 0), we obtain the simple well-known for-
mulas for the stress fields, namely (Sneddon and Lowengrub,
1969)

σxx
(
x, y
) = −p0

[
r√
r1r2

cos

(
θ − θ1 + θ2

2

)

− c2(√
r1r2

)3
r sin θ sin

3

2
(θ1 + θ2) − 1

]
(47)

σyy
(
x, y
) = −p0

[
r√
r1r2

cos

(
θ − θ1 + θ2

2

)

+ c2(√
r1r2

)3
r sin θ sin

3

2
(θ1 + θ2) − 1

]
(48)

τxy
(
x, y
) = −p0

c2(√
r1r2

)3
r sin θ cos

3

2
(θ1 + θ2) (49)

NUMERICAL EXAMPLES AND DISCUSSION
As numerical examples, consider the displacement and stress
fields around a crack subject to the various overpressure con-
ditions illustrated in Figures 4A–C. Each overpressure condition
was approximated by applying Fourier series of 1000 orders.

In these calculations, a static host-rock Poisson’s ratio of 0.25
and a Young modulus of 1 GPa are used; these are common val-
ues for many near-surface volcanic rocks (Carmichael, 1989; Bell,
2000; cf. Gudmundsson, 2011). The crack half length (half the
strike dimension) is taken as 5 km, similar to that of many of
the regional dikes measured in Iceland (Gudmundsson, 1983a).
The crack half length, however, is arbitrary; if it were taken as
0.5 m, rather than 5 km, the length would be similar to that of
many mineral veins (Berg, 2000; Skurtveit, 2000; Gudmundsson
et al., 2002; Philipp, 2012; Philipp et al., 2013). Some of the

FIGURE 4 | Crack-overpressure conditions. (A) Constant overpressure
(1MPa). (B) In the central 2-km-long part of the crack the overpressure is
2 MPa, otherwise 0.2 MPa. (C) In a 2-km-long part at either tip (end) of the
crack the overpressure is 2 MPa, otherwise 0.2 MPa.
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overpressure variations in Figure 4 are made somewhat extreme,
so as to maximize their potential effects on the displacement and
stress fields. Variation in fracture overpressure of the kind shown
in Figures 4B,C are to be expected in lateral and vertical sec-
tions through heterogeneous and anisotropic rocks where Young’s
modulus, hence the local minimum compressive (maximum ten-
sile) principal stress, σ3, changes abruptly between rock units or
layers. Similar local stress changes are well known in layered rocks
(Economides and Nolte, 2000; Gudmundsson, 2011).

The overpressure variation may also, partly, be due to the effect
of gas, which can change its volume rapidly as a result of temper-
ature and/or pressure changes. There is, therefore, a possibility
that gas in the magma might change the overpressure distribu-
tion rapidly and significantly in a short time independently of the
stiffness variation of the host rock along the crack. It is necessary
to study on this potential dynamic effect of gas on overpressure in
a further development of the present work.

The results are shown in Figures 5–8. In each figure, illus-
trations (A–C) correspond to the overpressure condition in
Figures 4A–C. More specifically, Figure 5 is a vector description
of displacement field whereas Figure 6 shows the crack aperture
(geometry) resulting from the overpressure distribution. Close to
y = 0, the numerical integration is unstable and the results are
less accurate although we can calculate aperture near the crack
(e.g., opening displacements at the distance of 1 m from y = 0)
by Equation (30). The exact solutions giving the crack aperture
along y = 0 have been given by Gudmundsson et al. (2012) and
Kusumoto et al. (2013b) as follows.

uy(x) = 2
(
1 − ν2

)
E

⎡
⎢⎢⎣a0

2

√
c2 − x2 +

∫ c

x

t
∞∑

n = 1
anJ0 (nωt)

√
t2 − x2

dt

⎤
⎥⎥⎦(50)

and/or

uy(x) = 2
(
1 − ν2

)
E

∫ c

x

t
∞∑

n = 0

an
εn

J0 (nωt)

√
t2 − x2

dt (51)

Here, εn = 2 if n = 0, and εn = 1 if n �= 0. These exact solutions
are obtained by changing the order of integration in Equation
(2), as described in detail by Kusumoto et al. (2013b). The
crack shapes shown in Figure 6 were calculated using Equation
(50) and Gauss-Legendre numerical integration (e.g., Davis and
Rabinowitz, 2007) was employed for calculations of the second
term of Equation (50). Figure 7 shows the orientations (trajec-
tories) and relative magnitudes (indicated by the lengths of the
ticks) of the maximum (σ1) and minimum (σ3) compressive prin-
cipal stresses. Figure 8 is contour map of the maximum shear
stress, τmax = (σ1-σ3)/2.

Clearly, the displacement field near to the crack (Figure 5) and
the crack shape or aperture variation (Figure 6) closely reflect the
overpressure variations. Comparatively far from the crack, how-
ever, the displacement field becomes more uniform. In the present
models, it is difficult to recognize the overpressure variation in
the displacements at distances of more than about one-fourth of

FIGURE 5 | Vector description of the horizontal displacement field

under the overpressure conditions in Figure 4. Each figure (A), (B) and
(C) shows the results calculated for the conditions shown in Figures 4A–C.
Red bold line in each figure indicates the location of the crack.
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FIGURE 6 | Crack aperture (double crack-opening displacement) as a

result of the overpressure conditions in Figure 4. Each figure (A–C)

shows the results calculated for the conditions shown in Figures 4A–C.

the crack length, that is, for a crack of length 10 km, a distance of
more than 2.5 km (Figure 5).

These results have implications for geodetic measurements
during dike emplacement in volcanoes and rift zones. Although
it is known from field measurements that dike thicknesses
vary considerably along their lengths (Delaney and Pollard,
1981; Gudmundsson, 1983a; Pollard and Segall, 1987), and that
feeder-dikes commonly develop crater cones (Thordarson and
Self, 1993), indicating irregular variations in apertures (frac-
ture opening displacements), the far-field crustal displacements
attributed to a dike emplacement tend to be smooth curves. Thus,
Tryggvason’s (1983, 1984) geodetic measurements of the widen-
ing of the Krafla Fissure Swarm in North Iceland as a results dike
emplacement yielded smooth variation in displacement. Similar
results are obtained through more recent geodetic studies, such as
during the emplacement of a 8-m-thick and 60-km-long dike in
the Afar Rift (Wright et al., 2006). Thus, displacements measured
far from a dike would normally indicate a thickness variation
similar to that of a flat ellipse and, therefore, that the overpres-
sure in the dike was constant. If remote sensing methods such
as InSAR would be applied to observation of crustal movement
due to dike emplacement reaching the free surface, it would be
able to observe complex displacement field reflecting irregular
overpressure at the surface and can be helpful to get details of
emplacement mechanics and/or overpressure information.

Figure 7 shows that the stress field close to the crack also
reflects its overpressure variation quite well. Again, however, at

FIGURE 7 | The principal stresses (stress trajectories) for the

overpressure condition in Figure 4. Each figure (A–C) shows the results
calculated for the conditions shown in Figures 4A–C. Figures shown in the
upper left of each figure are schematic illustrations of the crack aperture
(Figure 6).
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FIGURE 8 | Distribution of the maximum shear stress field,

τmax = (σ 1 − σ 3)/2, under the overpressure conditions in Figure 4. Each
figure (A–C) shows the results calculated for the conditions in
Figures 4A–C. The stress magnitudes are in mega-pascals (MPa). Contour
interval in (A) is 0.1 MPa, and contour intervals in (B) and (C) are 0.05 MPa.

greater distances (more than about 5 km) the stresses become
more uniform and thus difficult to use to distinguish between
the various overpressure distributions, in agreement with the
displacement-field variation (Figure 5). When the crack over-
pressure is constant (Figure 4A) or maximum at the crack tips
(Figure 4C), the shear stress peaks at the tips of the crack
(Figures 8A,C). By contrast, when the overpressure is maximum
in the crack center (Figure 4B), the large shear stress occurs
around the central part of the crack (Figure 8B). However, the
shear stress peaks at the tips of the crack. Thus, for most of
these loading conditions, new shear fractures might be expected
to develop from the tips of the existing fluid-driven crack pro-
vided the fracture toughness of the material is reached (Tada et al.,
2000).

The solutions in this paper for the displacement and stress
fields around a single crack opened by an irregular overpressure
can be extended to problems involving several cracks. Because
the present solutions are based on linear elasticity, superposi-
tion of solutions allows us to consider crack-crack interaction as
well as external loading in addition to internal fluid overpressure.
In Figures 5–8 we present the displacements fields, the fracture
geometry, the stress trajectories, and the maximum shear-stress
magnitudes, but not the strains. The strain fields can easily be
derived by the Hooke’s law between stress and strain (e.g., Jaeger
et al., 2007).

In this paper, we deal with the displacement and stress fields
caused by the overpressure variation along an elastic crack in the
homogeneous material (host rock). However, there is also the case
of host-rock heterogeneity to be considered, namely stiffness vari-
ation, along the crack. For this case, it is generally difficult to
obtain analytical solutions so that the effects of heterogeneity of
the host rock are normally discussed using numerical simulations
(e.g., Geshi et al., 2012; Gudmundsson et al., 2012). These simula-
tions show that the crack opening is large in a soft layer and small
in a stiff layer and that stress fields change abruptly at the layer
boundaries, even if the initial applied overpressure in the crack is
constant.

APPLICATION TO FIELD DATA
Here we apply the solutions given in Equations (29), (30), (44),
(45) and (46) to a mineral vein observed in Norway (Figure 9)
and estimate the displacement and stress fields around the min-
eral vein. The vein is composed of quartz and the host rock is
gneiss. As shown in Figure 9, its central part is somewhat thinner
than the closer to the tips, and the shape is symmetry.

The Fourier coefficients of the overpressure giving its shape
have been estimated already by Kusumoto et al. (2013b) and
their important low degree coefficients, a0 and a1, are 5.717473
and −3.125885, respectively. In the estimation of the Fourier
coefficients, Young’s modulus and Poisson’s ratio of 1GPa and
0.25, respectively, were assumed for the host rock. The compar-
atively low Young’s modulus assumed here is because the host
rock is assumed close to the surface at the time of crack forma-
tion. Figure 10 shows the overpressure distribution given by the
Fourier coefficients, a0 and a1. The overpressure increases toward
the tip of the mineral vein and reaches about 6 MPa near the tip
(Figure 10). This value is close to the maximum in-situ tensile
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FIGURE 9 | Aperture (double opening displacement) variation of a

mineral vein observed in gneiss in West Norway. The mineral filling is
quartz. The vein length in strike dimension is about 205 cm and its
maximum thickness is 9 mm. The Fourier coefficients of the overpressure
giving its shape were estimated using the half aperture geometry within
the rectangle closed by blue dashed lines.

FIGURE 10 | Overpressure distribution explaining the basic geometry

of the mineral vein shown in Figure 9. The overpressure increases
toward the tip of the vein and its maximum magnitude reaches about
6 MPa.

strength of the rock (e.g., Gudmundsson, 2011). In Figure 11,
we show the theoretical geometry of the vein given by the esti-
mated Fourier coefficients, a0 and a1. The theoretical geometry
was calculated using Equation (51) and is shown here as twice
the displacement given by Equation (51). This follows since the
Equation gives the displacement of the upper half of the crack,
so that the aperture in Figure 9 must be double the opening dis-
placements. Figure 11 indicates that the theoretical geometry fits
very well with the actual thickness variation of the mineral vein
and its basic geometry.

Figures 12A–C show the displacement field, principal stress
field and maximum shear stress field, respectively. Since the over-
pressure near the tip is larger than that of the central part, each
distribution pattern of displacement field, principal stress field
and maximum shear stress field is similar to each distribution
pattern shown in Figures 5C, 7C, 8C derived by the overpressure
distribution shown in Figure 4C. In addition, it is difficult to rec-
ognize the overpressure variation in the displacement and princi-
pal stress fields at distances of more than about one-fourth and/or
half of the mineral vein length. This characteristic was found in
Figures 5, 7 as discussed in the previous section, although the
fracture size and the magnitude of the overpressure are different.
Thus, in problems of this kind, it is common characteristic that
the displacement and stress fields near the crack closely reflect the
overpressure variations and become uniform far from the crack.

FIGURE 11 | Theoretical geometry (red line) calculated from Equation

(51) by the overpressure distribution shown in Figure 10. Since the
aperture in Figure 9 is shown as double opening displacement and
Equation (51) gives displacement in the upper half of the crack, the
theoretical geometry here is given as twice the displacement calculated
from Equation (51). Theoretical geometry fits very well with the aperture
variation of the observed mineral vein.

In addition to implications of the results for geodetic measure-
ments, discussed in the previous section, they are important for
understanding better the initiation and development of rock frac-
tures. One basic result is that the stress and displacement effects
of irregular overpressure distribution in a single crack diminish
rapidly with distance from the crack. That is, at a distance from
the crack, the displacements are similar to those generated by a
crack subject to uniform (constant) overpressure. Close to the
crack, however, the irregular variations in overpressure may gen-
erate stress concentrations in the host rock that contribute to the
formation of associated cracks, thereby contributing to the gener-
ation of a damage zone around the crack (Gudmundsson, 2011).
The results also imply that the irregularities in the overpressure
may not have great effects on the chosen large-scale propagation
path of the crack. For example, the general propagation paths of
dikes are known to depend on the regional stress field (e.g., Muller
and Pollard, 1977; Nakamura, 1977) and much less so on mag-
matic overpressures, and their variations, in the dikes. Linking up
of fractures, however, is not only affected by the regional stress
field, but also by the local stress field, partly due to crack-crack
interactions, and the local stress effects related to variation in fluid
overpressure may affect the way the fractures link up (e.g., Pollard
and Segall, 1987; Baud and Reuschle, 1997; Gudmundsson et al.,
2003; Gudmundsson, 2011).

The crack-crack interactions are well known from field obser-
vations and numerical simulations, mostly using the constant-
overpressure models. By combining regional stress field with
the local effects of interacting cracks with varying overpressures,
results presented here should be helpful in understanding better
the development of observed fracture patterns, aperture vari-
ations, and associated fluid transport and flow channeling in
rock-fracture networks.

CONCLUSIONS
The main conclusions of the paper may be summarized as follows:

Field observations show that many extension fractures are
driven open by fluids such as ground water, geothermal water,
gas, oil, and magma. These include dikes, mineral veins and
many joints and are generally referred to as hydrofracctures.
While some of the fractures have smoothly varying apertures or
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FIGURE 12 | Displacement, principal stress and maximum shear stress

fields around the mineral vein shown in Figure 9. (A) Vector presentation
of the horizontal displacement field under the overpressure conditions in
Figure 10. Red bold line indicates the location of the mineral vein. (B) The
principal stresses (stress trajectories) for the overpressure condition in
Figure 10. (C) Distribution of the maximum shear stress, τmax = (σ1 - σ3)/2,
under the overpressure conditions in Figure 10. The stress magnitude is in
mega-pascals (MPa), and contour interval is 0.25 MPa.

thicknesses, many show irregular aperture variations. Variations
in fracture aperture commonly lead to flow channeling, which is
of fundamental importance for understanding fluid transport in
the crust. In particular, flow channeling plays an important role
in fluid flow in fractured reservoirs and in magma transport and
crater-cone formation during volcanic fissure eruptions.

The overpressure of a fluid-driven fracture, such as a dike
or a mineral vein, is the total fluid pressure inside the fracture
minus the normal stress (the minimum principal compressive
stress σ3) perpendicular to the fracture. In anisotropic and het-
erogeneous rocks, such as in layered rocks, σ3 may vary abruptly
from one layer or rock unit to the next. It follows that the over-
pressure varies in a similar way. For such conditions, analytical
solutions where the fluid overpressure is assumed constant or lin-
early varying are not appropriate. Thus, in the present paper we
have derived new, general two-dimensional analytical solutions
for the displacement and stress fields around a crack opened by
overpressure that varies irregularly along its length, using Fourier
cosine series.

The new analytical solutions have two terms. The first terms
give the displacements and stresses caused by the average over-
pressure in the crack. These are given by the initial terms of the
Fourier coefficients and are solved analytically. The second terms
give the displacements and stresses caused by the overpressure
variations (amplitude) in the crack. These are given by the gen-
eral terms of the Fourier coefficients, and are solved by employing
numerical integration. For a crack opened by constant overpres-
sure, only the first terms of each formula are used to calculate the
displacements and stresses around the crack.

As numerical examples, we calculated the displacement and
stress fields around cracks subject to the following loading condi-
tions (Figure 4): (1) constant overpressure, (2) overpressure with
a maximum at the center of the crack, and (3) overpressure with a
maximum at either tip (lateral end) of the crack. The results show
that the crack-opening displacement (Figure 6) and the near-
field stresses and displacements (Figures 5, 7, 8) closely reflect
the overpressure distribution. Thus, for example, if the complex
displacement field due to fissure eruption or dike emplacement
reaching the free surface would be observed by the remote sensing
methods such as InSAR, we would be able to estimate overpres-
sure distribution from displacement field close to fissure eruption
or dike emplacement. And, if the overpressure variation is known,
we can calculate quite accurately the likely resulting aperture of
the crack (Figure 6). By contrast, the far-field displacements and
stresses are more uniform, making it difficult to recognize the
overpressure variation in the displacements at distances of more
than about one-fourth of the crack length. Thus, regional geode-
tic studies made during a dike emplacement would commonly
yield only the average opening-displacement of the dike rather
than the details in the dike aperture and, for a feeder-dike, their
potential for flow channeling and crater-cone formation.

The analytical solutions given here can be used to estimate
the displacement and stress fields around any type of fluid-driven
extension fracture, as well as its aperture variation, so long as the
(sometimes highly irregular) variation in overpressure inside the
fracture can be described by Fourier cosine series. The results
should advance our understanding of fluid transport and flow
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channeling, as well as local stresses, displacements, and crack-
crack interactions in fractured reservoirs, geothermal fields, fault
zones, and volcanoes.
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