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Ensuring the safety of drugs is a critical aspect of healthcare. Accurate
interpretation of drug safety evidence is vital to understand the safety profile
and to evaluate the benefits and risks of the medicinal product. However, validity
of this evidence has numerous challenges that must be carefully considered,
highlighting the need for a heightened appreciation of data interpretation pitfalls.
This paper aims to delve into the intricacies of analytic considerations in drug
safety data interpretation aiming at providing insights into the safety profile of
pharmaceutical interventions. The applicability of these analytic considerations
extends to controlled and observational data as well as spontaneously reported
individual case reports. Increasing the understanding of scientific underpinnings
of evidence interpretation empowers Pharmacovigilance professionals to grasp
fundamental concepts, use appropriate terminology, engage in meaningful
discussions with colleagues conducting analyses, and critically evaluate
evidence. These skills and knowledge enable them to make informed
decisions and enhance their expertise in drug safety. By correct utilization of
analytic approaches while appreciating their strengths and limitations, one can
advance drug safety and benefit-risk research using evidence-based decision-
making and ultimately ensure better healthcare outcomes for patients.
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1 Introduction

Ensuring the safety of drugs is of paramount importance in healthcare. Robust and
accurate interpretation of drug safety data plays a major role in assessing the benefit risk
profile of the medicinal product. Investigating drug safety findings optimally is not only a
mere assessment of causal associations between the products and adverse events, but it also
involves characterizing the different aspects of their associations based on the available data.
To gain a comprehensive understanding of drug safety, it is important to delve into the
nuances of evidence underlying these associations as it holds significant value for patients,
healthcare practitioners, and regulators in making informed treatment decisions.
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Conceptually, some of the topics discussed in this paper may not
be new to the readers. However, this paper adopts a drug safety
perspective to explore these topics. Given the scarcity of safety
endpoints, the sources of inaccuracy in evidence interpretation
might have a larger impact on the benefit-risk conclusion. Since
methodological concepts can present challenges for some healthcare
professionals who are not accustomed to interpreting the
methodological parameters underlying the evidence related to
safety findings, this paper avoids unnecessarily complex or
theoretical jargon and focuses solely on the relevant aspects. As
this is not an epidemiology or statistics paper, the concepts are
presented in plain English, without the use of equations or statistical
terminology.

We advocate for the promotion of critical appraisal of evidence
to facilitate the understanding of drug safety findings. To accomplish
this, we outline the available data and methods to evaluate drug
safety signals. This approach aims to provide PV professionals with
sufficient knowledge to appreciate the fundamental concepts,
employ appropriate terminology, engage in meaningful
discussions with colleagues conducting safety data analyses, and
critically evaluate evidence related to drug safety investigations.
Some of these concepts might be applicable to controlled trials,
observational data, or spontaneously reported individual case
reports based on the context of the data collected.

2 Analytical insights in deciphering drug
safety evidence (part 1: data
integrity concepts)

The accurate interpretation of associations heavily relies on the
validity of the results obtained from analyzing available data and the
evidence derived from it. In order to evaluate if exposure to a
medicinal product is associated with an adverse event, an
interpretation of the available data and the methods used to
analyze the data is necessary. However, threats to the validity of
evidence can arise throughout the assessment process, highlighting
the need for a heightened appreciation of data interpretation pitfalls.

Potential sources of error include, among others, confounding,
selection bias, information bias, and not investigating effect
modification. It is also important to consider the role of data
from different study arms and the uncertainties of the evidence
in understanding the safety profile. Each of these factors has the
potential to distort the interpretation of safety data and will be
discussed in this Part 1 of the paper.

2.1 Confounding

Confounding occurs when an extraneous factor is associated
with both the exposure to a drug and the outcome of interest
(Rothman et al., 2008), potentially leading to a spurious
association. Figure 1 illustrates this concept. Confounding, when
left unaddressed, can have significant implications on the
interpretation of drug safety findings. Its impact can be either
overestimation or underestimation of the true association
between exposure and an adverse event, potentially leading to the
introduction of spurious associations or obscuring real ones. It is
important to note that confounding does not necessarily require a
concurrent presence of the confounding factor with the exposure to
the drug of interest. For instance, a previous long-term exposure to a
cytotoxic drug can potentially be a confounder for an AE that was
reported if the AE caused by this drug appeared after starting a new
one. This scenario might also be applicable when the treatment is
switched between drugs resulting in potentially false attribution and
AE to the latter treatment. Another potential caveat for switching
scenarios will be explained later in this section under the
“confounding by indication”.

With the increasing use of emerging data sources such as
electronic medical records (EMR), social media, and patient-
generated health data via wearables and mobile devices, it is
important to appreciate the nuances of the data attributes and
the inherent risk of bias and confounders associated with
interpretation of data from these sources. For example, EMR data
often includes more detailed patient information, which can
improve confounder adjustment but also introduces complexities

FIGURE 1
Confounding Factors. This diagram shows how a confounding factor (C) relates to both the exposure (E) and the adverse event (O), potentially
leading to a spurious association between E and O.
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such as varying data quality and completeness as well as differences
in coding practices. These variations must be considered when
analyzing data from these sources.

A confounder possesses three key properties: It should be a risk
factor for the adverse event (AE) under investigation, it should be
associated with the drug exposure of interest, and importantly, a
confounder should not function as an intermediate variable on the
causal pathway between the exposure and the AE, as controlling for
an intermediate variable would distort the actual effect that is being
measured. For example, if acute myocardial infarction (MI) is being
assessed as an adverse event, we should not consider the presence of
hypertension in a patient’s medical history as a confounder if the
drug being investigated is known to cause hypertension. Although
hypertension is a risk factor for MI, it would be an intermediate
variable in the causal chain in this particular scenario (Hammad
et al., 2023). Effort should be made to quantify the extent of such
association from the published literature to understand the
likelihood of a particular risk factor exerting a confounding effect.

In general, some analytic techniques might help control for
confounding effect in a study setting, e.g., in a PASS (Post-
Authorization Safety Study), albeit it is more challenging
sometimes with RWE (Real World Evidence) studies because of
the lack of measurements of all pertinent confounders. The specifics
of controlling for confounders would be provided by the colleagues
analyzing the data. When adjusting for confounders through
statistical models, it is important to examine the impact on the
reported association, between the drug and the AE of interest, after
accounting for each individual confounder. This step allows us to
discern which confounder(s) may be primarily driving the observed
results and assess the clinical plausibility. It should be noted that
after adding each confounder, the association could also be
unaffected. In other words, observe how the association between
the drug and the AE changes after adding each confounder and if
this change is reasonable in direction and magnitude.

Notably, the magnitude of the observed association between drug
exposure and AEs is important as unmeasured confounding is
particularly plausible to potentially explain small effects. The
magnitude of risk may also influence regulatory decision making in
classifying the risk as potential or identified, per the FDANISSMAPP.1

Additionally, there is a legal dimension to the magnitude of the risk.
Russellyn and Goldstein (2001),2 published a report where they
reviewed 31 legal cases of toxicity to assess whether “epidemiological
data demonstrating a relative risk [RR] greater than 2 is required to
meet the standard for proof (more likely than not) or to admit an
expert’s opinion of causation.”The reportmentioned that the frequency
of references to RR greater than 2 in judicial opinions appears to be
increasing, although it is not yet widespread.

Another related concept is confounding by indication.3

Confounding by indication occurs when the indication or
contraindication for treatment, as well as the severity of the
disease, influence the decision to initiate, switch, or withhold

certain treatments. This can confound the relationship between
the treatment and a particular AE, making it challenging to
isolate the true effect of the treatment itself. Proper consideration
for confounding by indication is important to ensure accurate and
unbiased assessments of treatment outcomes, the safety profile, and
the benefit-risk. For example, a patient with risk factors for
gastrointestinal bleeding has an increased probability of being
prescribed COX-2 inhibitors. Such risk factors inherently
predispose patients to subsequent bleeding. Consequently, a
spurious association might emerge between the use of COX-2
inhibitors and gastrointestinal bleeding due to the common
causes of both COX-2 prescription and subsequent bleeding,
which are the gastrointestinal bleeding risk factors acting as
confounders. Other examples include suicide or suicidal ideation
secondary to depression, which may appear spuriously associated
with SSRI treatment since the severity of depression influences the
decision to initiate SSRI therapy. Similarly, acute myocardial
infarction (AMI) secondary to advanced diabetes may seem
spuriously linked to insulin use, as insulin is often prescribed at
later stages of diabetes when the risk of AMI is already higher.
Additionally, if renal failure is a known risk with some drugs in a
particular class, this can lead to patients with relevant risk factors
being channeled towards a specific drug within that class that is not
associated with renal failure. In turn, this can create a spurious
association between the alternative drug and renal failure due to
confounding. In a study setting, appropriate study design and
analysis should consider addressing these risk factors to account
for their influence and mitigate the confounding effect (Yoshida
et al., 2015).

It is worth noting that the confounding effect might also be
encountered in some scenarios in randomized clinical trials (RCT)
(Hammad et al., 2011). Conceptually, randomization used in clinical
trials is primarily designed to mitigate the impact of pre-existing
differences between study groups at the outset of a study by ensuring
that these, measured and unmeasured, factors are evenly distributed
across treatment groups and as such minimize potential for
confounding. However, randomization alone cannot guarantee
perfect balance between groups, especially in small sample sizes
of high variable patient population where chance imbalances in
important, measured and measured, confounding factors may
occur. The tendency for achieving the balance between
comparator groups increases as the sample size increases
(Rothman et al., 2008). However, even if randomization initially
successfully balances variables between groups, confounding might
still play a role due to differential dropouts among other reasons.
Because of this, we should not consider all RCTs equal in the weight
of evidence. Critical assessment of the design and conduct of these
trials is a prerequisite to appropriate decision making. More detailed
information about the intricacies of various scenarios in drug safety
can be found in Hammad et al., 2011 and CIOMS X report,4 but In
short, confounding effect can arise due to the frailty of
randomization caused by differential discontinuation between the
comparison groups leading to an imbalance in the distributions of
risk factors among study groups. Another contributing factor is the

1 https://www.fda.gov/media/137475/download

2 http://www.jstor.org/stable/29762698

3 https://catalogofbias.org/biases/confounding-by-indication/ 4 https://cioms.ch/working_groups/working-group-x/
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frailty of blinding, as the occurrence of some known drug-related
AEs can unmask the assigned treatments, leading to increased
awareness and surveillance for other AEs. Furthermore, subgroup
analysis can introduce confounding because the comparability
achieved by randomization in the main study groups may not
extend to the subgroups (Groenwold, et al., 2009). Additionally,
when pooling data from multiple RCTs without preserving
randomization boundaries (i.e., without stratifying by study, also
known as simple or “crude pooling”), summary estimates can be
biased due to confounding by study (Hammad and Pinto, 2016). For
example, in some scenarios, simple pooling of trial data can result in
a phenomenon known as Simpson’s paradox leading to spurious
results potentially reversing the association between a drug and an
AE (Chuang-Stein and Beltangady, 2011; FDA guidance
document, 20185).

In addition to scenarios involving observational and controlled
studies, the confounding concept might apply to the review of
individual case safety reports (ICSRs) when investigating
preliminary evidence for causality assessment and evaluating the
role of pre-existing medical conditions and concomitant
medications as potential confounders or alternate etiology for the
AE. Being mindful of all these nuances will enable recognizing and
appropriately accounting for confounding factors by PV
professionals, enhancing the validity of their findings and
providing more robust evidence for drug safety assessments.

2.2 Effect modification

Effect modification, also referred to as “interaction” or
“treatment effect heterogeneity,” occurs when the relationship

between an exposure and an outcome differs across levels of a
third variable, known as the effect modifier (Rothman et al.,
2008). Figure 2 demonstrates this concept. Common effect
modifiers include demographic factors such as gender or race,
as well as variables like age, genetics, ethnicity, co-morbidity, and
co-medication. Unlike confounding, effect modification is
considered a clinically informative finding to patients and
healthcare practitioners and should be reported for all levels
of the effect modifier, rather than solely being adjusted for. In
drug safety studies, effect modification can help identify
subgroups of patients who may be particularly susceptible or
resistant to certain AEs. It is important to request the assessment
of effect modification on safety findings from the analytical study
team, whether the study is controlled or observational.
Analytically, assessing effect modification involves examining
interaction terms in regression models or conducting
subgroup analyses to understand how the drug’s safety profile
varies across different subpopulations. Failing to evaluate effect
modification can result in the observed safety effects representing
the average effect across all levels of the effect modifier, masking
potentially important variations in the safety findings. As an
example of effect modification by race, some studies suggested
reduced efficacy and increased cardiovascular and
cerebrovascular morbidity and mortality with angiotensin-
converting enzyme (ACE) inhibitors and angiotensin receptor
blockers (ARBs) monotherapy in Black hypertensive patients
(Helmer et al., 2018).

This phenomenon might also be encountered even in
individual post-marketing reports when a synergistic effect on
an AE is observed, indicating that the impact of the treatment on
the AE is modified by other factors. Drug-drug interaction is an
example of effect modification in drug safety. For example,
moderate to strong CYP3A4 inducer, can reduce progestin or
estrogen exposure to an extent that could decrease the
effectiveness of hormonal contraceptives. Similarly, drugs that
inhibit an enzymatic pathway of CYP may cause increased
concentrations of other drugs metabolized by the same

FIGURE 2
Hypothetical example of effect modification: This graph illustrates how the effect of an exposure (Drug X) on an outcome (Cardiovascular Events)
varies across different levels of a third variable (gender), indicating effect modification. (A): The risk of CV events is higher in men than in women, in both
the Drug X and control groups. (B): The risk of CV events is higher in men than in women, with a greater difference in the Drug X group compared to the
control group. Therefore, gender modified the risk associated with the drug.

5 https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/meta-analyses-randomized-controlled-clinical-trials-

evaluate-safety-human-drugs-or-biological
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pathway, resulting in drug toxicity (McDonnell and Dang, 2013).
Assessing and reporting effect modification is needed for a
comprehensive understanding of the relationship between
treatment and AEs, enabling tailored treatment approaches
and improved patient care.

2.3 Selection and information bias

Various biases, including selection, recall, and information
bias, can affect the validity of the findings of drug safety
investigations. For instance, such biases might arise from
flawed study designs or conduct. Many of these biases can be
avoided or at least minimized through a well-principled design,
e.g., in the case of RCTs. Methods like quantitative bias analysis
(QBA) and sensitivity analyses can be utilized to evaluate the
robustness of results and underlying assumptions (Petersen et al.,
2021). Proper expertise is pertinent not only for conducting these
studies but also for interpreting their results. Some of these biases
might also come into play impacting the validity of the
assessment of AEs in individual patients, not just in a study
setting. In this section we will familiarize the readers with some of
these sources of bias to take it into consideration when
interpreting pertinent data.

Selection bias in drug safety can manifest during the inclusion
process of patients and also throughout the follow up period of a
study. In terms of inclusion, selection bias occurs when
individuals self-select themselves for participation in a study,
leading to a biased sample (Gajda et al., 2021) or when study
design allows inclusion of subjects with specific conditions or risk
factors. The “volunteer bias”6 arises when participation is
associated with both the exposure and the outcome being
investigated. For example, individuals who are more health-
conscious, have advanced disease stages, or have experienced
treatment failures may be more likely to volunteer for the
study. As a result, the study sample may not accurately
represent the general population, leading to biased results.
Although, in a controlled clinical trial, randomization might
neutralize the effect maintaining internal validity of the study,
the external generalizability might not be as high. This issue can
also occur in prospective observational studies or registries that
depend on patients volunteering to be part of the activity. During
the conduct of a study, selection bias can also occur, for example,
if subjects are more likely to drop out from the placebo group
compared to the drug group if they are not responding to the
intervention. This phenomenon can result in informative
censoring (Olivier and Prasad, 2024), where the reasons for
dropout might be related to the outcome being studied.
Consequently, the drug group may end up with an apparently
higher proportion of patients with more severe conditions
experiencing more AEs or vice versa, potentially biasing the
observed treatment effect.

Information bias, also known as measurement bias or
misclassification, can arise from inadequate or inaccurate

measurement or classification of study variables such as
exposures, outcomes, or confounders. This bias occurs when
there are errors in capturing and categorizing the relevant
information, leading to distorted or incomplete data ultimately
affecting the validity of safety findings. Information bias can take
two forms: non-differential and differential misclassification
(Rothman et al., 2008).

Non-differential misclassification occurs when the degree of
misclassification is similar across all study groups and is
random in nature. This type of misclassification tends to bias
the results towards the null, meaning it attenuates the observed
association or fails to detect a safety finding, although some
exceptions exist (Jurek et al., 2005). Non-differential
misclassification is more likely to occur in drug safety studies
compared to efficacy studies, as safety outcomes may be less
precisely defined at the outset of the study than efficacy
endpoints. For example, if a study investigating the
association between a specific medication and the occurrence
of liver toxicity, non-differential misclassification may occur if
the diagnostic criteria for liver toxicity are inconsistently applied
across the study population. If the misclassification is random
and occurs to the same extent in both the exposed and
unexposed groups, it would be considered non-differential
misclassification. This could lead to an underestimation of the
true association between the medication and liver toxicity, as the
misclassification dilutes the observed effect measures.
Additionally, when non-differential misclassification affects
confounders, it can lead to residual confounding, meaning
there is residual distortion in the association between the
exposure and safety outcome even after adjusting for known
confounding factors.

In contrast, differential misclassification occurs when the
errors in measurement or classification of AEs differ between
the comparator groups. This type of misclassification introduces
a systematic bias that can distort the observed associations
between a drug and an AE, making them appear stronger or
weaker than they truly are, potentially leading to erroneous
conclusions. For example, detection or surveillance bias is a
type of differential misclassification (Hammad and Pinto,
2016). This bias can introduce spurious or overestimated
associations in various scenarios. It arises when patients in
one group have a higher probability of having the AE detected
due to increased surveillance, screening, or testing of the outcome
itself or an associated symptom. One example is when patients
become inadvertently unblinded in clinical trials due to
experiencing AEs known to be associated with the class of the
studied intervention. For instance, in trials evaluating
antidepressant drugs, patients may report a side effect of
sexual dysfunction (Serretti and Chiesa, 2009), which can lead
someone in the study staff to realize that the patient is in the
active drug group, thus increasing the likelihood of close
monitoring and capture of other AEs inflating the rate of
overall AEs. Similar situations can arise with other
medications, such as ACE inhibitors, where patients become
unblinded because of reporting dry cough (Pinto et al., 2020),
or with 5-alpha reductase inhibitors like finasteride, which
may prompt patients to report gynecomastia (Hagberg
et al., 2017).6 https://catalogofbias.org/biases/volunteer-bias/
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Another instance of detection bias occurs when patients are
subjected to targeted investigations or screening based on the known
AEs associated with a particular drug. For example, in the case of
Mirapex used for Parkinson’s disease and Restless Legs Syndrome,
which has been linked to peripheral edema (Tan and Ondo, 2000),
patients may receive more thorough monitoring for signs of
congestive heart failure (CHF). This targeted surveillance can
result in an inflated association between Mirapex and CHF.
Similarly, drugs like entacapone (used for Parkinson’s) and
rifampin (used to treat tuberculosis) have been associated with
urine discoloration (Snider and Farer, 1977), leading to an
increased likelihood of detecting prostate cancer due to enhanced
screening efforts in the treatment group. Likewise, post-menopausal
estrogen use may cause increased abnormal bleeding (De Medeiros
et al., 2013), potentially inflating the observed association between
estrogen therapy and endometrial cancer due to the additional
investigation being done in the treatment group. Furthermore,
the occurrence of many common AEs in the drug group might
potentially lead to increased interactions between patients and
healthcare practitioners. This heightened interaction may
facilitate the detection and reporting of other AEs differentially
in the drug group that may not have been captured otherwise,
potentially leading to spurious associations.

Protopathic bias is another source of distortion of the drug-AE
association (Hammad et al., 2008; Faillie, 2015). It represents a
unique type of bias related to the temporal relationship between
exposure and outcome. This bias can occur when the early
symptoms of a disease prompt individuals to seek medical
attention and subsequently receive exposure of interest, leading
to spuriously assuming that the exposure caused the disease. For
example, if a patient suffered from chest pain and was prescribed an
NSAID, then the situation progressed to a myocardial infarction
(MI), the NSAID might be inaccurately flagged as the cause of the
MI. However, the chest pain was simply experienced during the
prodromal stage of the MI.

Being aware of these sources of error in the evidence will help the
PV professional investigate the potential scenario based on knowing
the nuances of the indication and the drug being investigated, which
will enable making informed decision when assessing safety signals.

2.4 Role of placebo groups in drug safety

The term “Placebo” was coined in the 18th century to describe
the phenomenon of symptom improvement in patients who were
administered inert substances with no anticipated therapeutic effect.
The word “Placebo” originates from Latin and translates to “I shall
please,” reflecting the concept of providing comfort to patients. In
earlier times, placebos were administered when actual drugs were
unavailable or when patients believed themselves to be sick, despite
being healthy in reality (Miller et al., 2009). The placebo group serves
as a comparison in controlled trials for assessing the safety profile of
many drugs to determine drugs’ specific contribution to safety
concerns. There was some ethical debate on the appropriateness
of exposing patients to placebo in studies. Ellenberg and Temple
(2000), of the FDA, concluded that placebo controls are ethical when
delaying or omitting available treatment has no permanent adverse
consequences for the patient and as long as patients are fully

informed about their alternatives. The Declaration of Helsinki7

supports this notion in its Ethical Principles for Medical
Research Involving Human Subjects.

One of the challenges facing trials with placebo groups is the
“placebo response.” This refers to the phenomenon where patients
experience improvements in their symptoms or outcomes after
receiving a placebo, which is an inactive treatment with no
anticipated therapeutic effect. The placebo response is an
important consideration in clinical trials as it can impact the
interpretation of treatment outcomes and the assessment of the
true effects of the investigational drug. Understanding and
accounting for the placebo response is essential for accurate
evaluation of treatment effects and ensuring the validity of study
results. Several factors contribute to the placebo response observed
in medical interventions. Psychological and social characteristics of
the individual patient also play a role, as patient beliefs, expectations,
and personality traits can impact their response to treatment. Other
factors might include misclassification or error in measurement,
previous experiences with success or failure, the beneficial or
harmful effects of associated standard medical care, informed
consent processes, the nocebo effect (negative expectations
leading to adverse effects), and regression to the mean (reversion
of extreme values toward the average). Considering these
multifaceted factors is relevant when assessing and interpreting
the placebo response in clinical trials. Interestingly, studies have
reported that certain placebos can elicit clinically relevant responses,
which can have a notable impact on the perceived relative
effectiveness of active treatments. This finding holds significance
in the design and interpretation of clinical trials (Bannuru et al.,
2015). Surprisingly, there are websites that sell placebos, further
highlighting the unique nature of the publicity behind this concept.8

When there is a need to estimate background rates of AEs in a
patient population, there may be a temptation to utilize data
collected from placebo groups in individual RCTs or through
meta-analysis of multiple trials, especially when epidemiological
background data is not available. However, several caveats should be
considered when using AE rates from placebo groups. Firstly, it is
important to remember the factors that influence the placebo
response, as this can impact the observed rates of AEs.
Additionally, patients participating in clinical trials may not be
representative of the general patient population or even those
involved in other trials due to volunteer bias. Variations in the
level of sickness of patients based on the phase of drug development,
as well as differences in inclusion and exclusion criteria between
trials, can further influence the estimation of background rates.
Nuanced differences in trials design and conduct, such as the
sampling domains used (especially cross many countries) or the
presence of a “close monitoring” effect, can also impact observed AE
rates. Differential reporting practices among trials, where some trials
actively collect AEs in specific forms, may lead to higher rates in
certain trials. The “standard of care” effect, which can vary between
trials, and should also be considered. Additionally, placebo groups
might not capture rare events adequately, particularly when the

7 https://www.wma.net/wp-content/uploads/2016/11/DoH-Oct2008.pdf

8 https://placebo.com.au/
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sample size is relatively small or the follow-up time is short. These
caveats highlight the complexities and limitations associated with
using AE rates from placebo groups to estimate background rates of
AEs in a given patient population.

A relevant concept here is the “nocebo effect.” The name of this
effect is derived from the Latin word meaning “to harm” and is the
opposite of the placebo effect. It refers to a phenomenon where a
negative outcome occurs due to the patient’s belief that the
intervention will cause harm.9 In the context of drug safety, the
nocebo effect is an important yet sometimes overlooked factor. AEs
associated with the nocebo effect are often physically experienced by
the patient and can be clinically diagnosable. Certain patient
populations, such as those with anxiety, depression, or a
pessimistic outlook, may be at a higher risk of experiencing
nocebo effects.10

To mitigate the risk of the nocebo effect, the study staff should
strike a balance in providing information about both the positive
and negative effects of the treatment. Ensuring that the patient
understands the rationale behind the treatment can also help reduce
the likelihood of the nocebo effect. Careful consideration should be
given to the framing of information during the informed consent
process. Using a positive framing approach, such as highlighting that
the majority of patients experience no difference between two drugs,
while acknowledging that a small number may notice a difference,
can be beneficial (Planès et al., 2016). In addition to patient
education, it is essential to provide education to study principal
investigators (PIs) as well. Enhancing their awareness and
understanding of the nocebo effect can aid in effectively
managing and minimizing its impact. By addressing the nocebo
effect through a comprehensive approach that includes patient
education, informed consent strategies, and education for study
PIs, it is possible to mitigate the potential negative consequences
associated with this phenomenon.

2.5 Uncertainty in evidence

Drug safety investigations often encounter uncertainties arising
from factors such as sample size limitations, missing data,
ambiguous AE definitions, and outcome measurement variability.
These uncertainties can be categorized into four main groups:
clinical, statistical, methodological, and operational (Forum on
Drug Discovery, 2015). To mitigate some of these uncertainties
and obtain more reliable estimates of drug safety, analytical methods
like sensitivity analyses or imputation techniques might be
employed in some situations, as applicable. Statistical uncertainty
can sometimes be quantitatively assessed through hypotheses testing
or confidence intervals in some scenarios aiming to quantify the
magnitude of uncertainty based on a set of underlying assumptions
that can be evaluated. The goal of addressing uncertainty is not to
replace clinical judgment with an automatic process but to enhance

and improve decision-making abilities. Identifying and addressing
knowledge gaps effectively in the development program is a critical
aspect of managing uncertainty. However, it is equally critical to
understand and operate within the scientific boundaries of the
available research tools and methods, ensuring that the
information obtained is dependable and valid.

By definition, a safety signal represents an uncertain finding; it is the
analysis of the signal that informs regulatory recommendations, not
merely the presence of the signal. FDA regulators acknowledge that
enhanced transparency in the early communication of safety signals
inherently brings unavoidable uncertainty (Dal Pan and Temple, 2011).
The primary challenge lies in promptly identifying these signals and
evaluating them as efficiently as possible to minimize the period of
uncertainty between the identification of a signal and its resolution (Dal
Pan and Temple, 2011). Inmanaging uncertainty, regulators commonly
adhere to the “Precautionary Principle,” which dictates that actions
should be taken to prevent or reduce morally unacceptable harm that is
scientifically plausible yet uncertain (Eichler et al., 2013). However, the
authors caution against excessive risk aversion or excessive demands for
more data, as these may lead to diminished net health gains from drug
research and development. To minimize this risk and provide a fair
assessment of the interpretation of safety data, it is important to
transparently acknowledge and address the sources of uncertainty
during the evidence preparation and regulatory submission process.

Uncertainty also plays a role in benefit-risk (BR) assessment, where
it is essential to consider several key factors. The BR decision-making
process is complex encompassing both quantitative and qualitative
dimensions. It is important to acknowledge that not all drugs are created
equal, and the context in which they are used plays a vital role. Also, the
dynamic nature of benefit-risk assessment underscores the importance
of recognizing the clear disparity in the sources, timing, and nature of
information regarding both benefit and risk. In the post-market phase,
while information on risk continues to accumulate, data on benefits
remains static, primarily driven by findings from trials conducted
during development. Moreover, in addition to regulators and
healthcare professional perspectives, a more appropriate way is
needed to truly capture and incorporate the perspectives of patients
in BR assessments. Understanding patient experiences, preferences, and
priorities can provide valuable insights into the overall assessment
process and help align it more closely with individual patient needs. The
introduction of structured BR11 assessments (Hammad and Pinto,
2016) has necessitated explicit statements of uncertainties during the
regulatory submission process. Regulatory guidance documents now
provide comprehensive lists of considerations that can impact the level
of uncertainty in product development12.

3 Analytical insights in deciphering drug
safety evidence (part 2: data
analysis concepts)

The assessment of the evidence in safety data relies on the
appreciation of the scientific underpinnings of some of the

9 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/

nocebo-effect

10 https://medsafe.govt.nz/profs/PUArticles/March2019/The%20nocebo%

20effect.htm

11 https://www.fda.gov/media/115672/download

12 https://www.fda.gov/media/152544/download
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evidence-based medicine (EBM) analytic tools as it relates to various
sources of data. This encompasses various methodological and
analytic concepts as well as some statistical techniques, which
facilitates the correct interpretation of evidence and better
understanding of drugs safety profiles. These concepts include
measures of AEs frequency and related calculations,
interpretation complexities of study results (e.g., study power,
95% confidence intervals and p-values, and role of meta-
analysis), and performance metrics (e.g., sensitivity and specificity
and positive and negative predictive values), which will be discussed
in this Part 2 of the paper.

3.1 Measures of AEs frequency and related
calculations

Assessing the frequency of adverse events (AEs) is essential in
drug safety. This involves calculating AE rates, specifically
incidence. Incidence measures the number of new cases of an
AE that develop in a patient population during a specified time
period, while prevalence represents the proportion of the
population who have a specific AE during a specified time
period, regardless of when it first developed. Because prevalence
is determined by not only the number of patients affected but also
their survival, it is a less useful measure in studying etiology
compared to incidence (Ward, 2013).When investigating safety
signals, it is important to focus on the incidence of AEs in the
patient population at large rather than prevalence,13 as it reflects
more accurately the anticipated background rate. The incidence
can also be utilized to calculate the probability of encountering the
observed number of AEs by chance among exposed patients,
considering the background incidence and drug exposure. More
specifics about this approach can be found in Hammad et al., 2023.
Online resources14 15 are available to facilitate such calculations
efficiently.

An example of the utility of incidence during drug development
is demonstrated by one of the requirements in the most recent FDA
Safety Reporting Requirements for Investigational New Drugs
(INDs)16. To ensure effective safety surveillance in the premarket
phase, regulators encourage sponsors to focus reporting efforts on
cases of serious and unexpected suspected adverse reactions
(SUSARs) facilitating prompt risk mitigation in clinical trials
during drug development. This FDA guidance document
underscores the importance of considering the background rate
of anticipated AEs in the reportability of certain types of SUSARs.
The guidance particularly recommends aggregate analyses based on

incidence for anticipated AEs when it is challenging to assess
causality based on individual cases. This is especially important if
the AEs are expected in the study population regardless of drug
exposure, possibly due to the underlying condition under study or
common background regimens. Additionally, such analyses are
advised for AEs with higher incidences than stated in the
protocol or investigator’s brochure. These analyses compare event
rates in the study to historical incidence in the study population to
identify potential imbalances. The guidance document
acknowledges that eventually both expert clinical and statistical
judgments are essential for interpreting these aggregate data and
determining reasonable possibilities of causality based on available
information.

The reporting rate (RepR) in the post-market phase is another
measure of AE frequency. It is usually calculated by dividing the
number of reported AEs associated with a specific drug by the
estimated extent of exposure to the drug among the patient
population within a specified time period. The numerator
represents the count of reported AEs, often obtained from
spontaneous reporting databases, while the denominator
estimates the population exposure, often using sales data or
prescription records. A general trend of increase in reporting of
AE frequency during the first 2 years after introducing a new drug,
followed by a subsequent decline, was observed and reported by
Weber (1984). Analytically, the “Weber effect” might be considered
when evaluating drug safety data in some situations to differentiate
between true drug-related AEs and those influenced by reporting
bias or increased surveillance. However, an FDA study did not detect
the Weber effect despite observing shifts in the reporting rate over
time (McAdams et al., 2008b). The authors investigated temporal
trends in reporting for the total number of AE reports submitted to
the FDA by consumers or healthcare providers. The study observed
varying temporal patterns in reporting among the four drugs within
the studied drug class. The number of reports was highest to varying
degrees in the first year and subsequently declined. Another study
examined the publicly available FAERS data for sixty-two drugs
approved by the FDA between 2006 and 2010 and found no evidence
of the Weber effect in the majority of the drugs (Hoffman
et al., 2014).

Comparing RepR of AEs to background incidence rate (BIR)
from independent data sources has limitations. Factors like
healthcare provider awareness, patient reporting behaviors, and
regulatory requirements, among others, can influence the
reporting of AEs impacting the calculation of the RepR (García-
Abeijon et al., 2023). Underreporting of AEs (McAdams et al.,
2008a; García-Abeijon et al., 2023) and estimation of population
exposure based on sales data can further impact the accuracy of the
numerator and denominator, respectively. Therefore, the RepR
might only serve as a rough proxy and should be interpreted
cautiously. Hammad et al. (2023) proposed the calculation of
observed-to-expected AE ratios during safety signal
investigations, optimally comparing the observed AE RepR in a
specific patient population to the BIR in the same population (e.g., if
the AE was reported in patients taking a drug for diabetes then the
incidence rate for comparison should be estimated in the diabetic
population). This approach might be useful in identifying
potentially drug related AEs when a higher RepR compared to
the anticipated BIRmay suggest a drug-AE association. Nonetheless,

13 https://www.nimh.nih.gov/health/statistics/what-is-prevalence#:

~:text=Incidence%20is%20a%20measure%20of,they%20first%

20developed%20the%20characteristic

14 https://stattrek.com/online-calculator/binomial.aspx

15 https://stattrek.com/online-calculator/poisson.aspx

16 https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/safety-reporting-requirements-inds-investigational-new-

drug-applications-and-babe
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factors like media attention or litigation-driven reporting can
stimulate reporting and lead to misleading results. Thus, it is
important that any imbalance between the RepR and BIR should
be thoroughly investigated taking into account these publicity
factors (Hammad et al., 2023).

3.2 Interpretation complexities of study
results in drug safety

The analysis and interpretation of study findings, whether
derived from clinical trials or observational studies, play a key
role in drug safety decision making. Methodological concepts
from evidence-based medicine (EBM) such as study power,
confidence intervals, and p-values serve to quantify the
strength of evidence and evaluate the significance of observed
associations between drugs and AEs. However, Ubbink et al.
(2013) conducted a review of 31 surveys assessing the level of
knowledge among healthcare professionals regarding these
fundamental analytic concepts in EBM. Their findings
revealed that a significant majority of physicians and nurses
perceived their understanding of common analytic terms in
EBM medicine to be inadequate. This highlights to unmet
needs for these professionals.

Away from the mathematical intricacies underlying these
concepts, it is important for PV professionals to be aware of key
pointers on how to utilize EBM concepts in the context of drug
safety assessment. For a deeper understanding and insights into the
potential misinterpretation and misuse of some of these concepts, a
reader-friendly publication by Greenland et al. (2016) provides
comprehensive details and explanations.

3.2.1 Study power
Study power reflects the ability of a study to detect an association

if it truly exists.17 It is important to note that low power increases the
risk of missing a safety signal, potentially overlooking important
findings. However, it is worth noting that when studying thousands
of exposed patients, statistically significant results may not always be
clinically meaningful (Greenland et al., 2016). This is why medical
judgment should always be utilized in interpreting any
study findings.

Several factors influence the statistical power of a study. One
such factor is the magnitude of the safety signal being investigated. A
larger effect size or stronger association between the drug and the AE
generally leads to increased study power for a fixed sample size.
Another critical factor is the sample size. Larger sample sizes tend to
enhance study power by providing more data points and reducing
the impact of random variability. Additionally, the background rate
of AE in the patient population can affect study power. If the
background rate of AE is higher, it can potentially increase the
power of the study to detect any additional AEs associated with the
drug exposure.

It is worth noting that most studies designed for efficacy are
not powered for safety endpoints unless such a study has safety

as the primary objective. Therefore, it is important not to dismiss
the presence of a safety concern solely based on the absence of
observed AEs in a particular study. There can be various reasons
for the apparent absence, which need to be carefully considered.
Factors such as the study population’s characteristics, including
the specific inclusion and exclusion criteria, can influence the
detection of AEs. Additionally, the length of follow-up might not
be sufficient to capture all potential events, and the study’s
power could be limited due to factors such as a rare event,
low background event rate, small sample size, or small
magnitude of risk. Some investigators are tempted to
calculate post hoc power for studies. These estimates are
sometimes requested in an attempt to promote more rigorous
designs. However, they should not be done because it was
reported that they have been shown to be logically invalid
and misleading (Dziak et al., 2020). Considering and
understanding these factors is imperative when designing
studies to ensure optimal power and accurate interpretation
of safety findings.

3.2.2 95% confidence interval and p-value
95% confidence intervals (CI) play an essential role in the

interpretation of the clinical research data in drug development
as they provide a range of plausible values within which the true
population parameter lies, such as the risk of a particular AE.18

This is based on the understanding that we are sampling a
patient population with inherent variability to estimate the
“truth” about the drug-AE association under investigation.
The width of the CI reflects the level of uncertainty, with
wider intervals indicating greater uncertainty for a fixed
error. The uncertainty arises from the variability among the
sample members within the patient population. The width of the
CI is influenced, in addition to the sample size, by other factors
such as the magnitude of risk and the data noise, encompassing
all sources of variation.

It is important to note that the CI is not a probability in itself, but
in repeated studies with identical sampling, 95% of the CIs will
include the true population parameter. In simpler terms, if
100 identical samples of patients were taken and, say, their mean
blood pressure was measured, approximately 95 of those CIs would
contain the true mean blood pressure of the sampled population.
The 95% CI reflects both the effect size of the parameter being
measured (represented by the point estimate) and the precision
(represented by the width of the interval), which tends to be wider
for smaller sample sizes with higher variance. The p-value, on the
other hand, is confounded as it reflects both the effect size and
precision combined. In general, CIs are considered more
informative than hypothesis tests and p-values as they shift the
focus from the null hypothesis to the full range of effect sizes
compatible with the data (Greenland et al., 2016). A p-value is
the measure of probability that the null hypothesis was rejected
when in fact the null hypothesis is true.19 The smaller the p-value, the
lower the statistical compatibility with the null (Wasserstein and

17 https://www.scribbr.com/statistics/statistical-power/

18 https://www.nlm.nih.gov/oet/ed/stats/02-950.html

19 https://www.nlm.nih.gov/oet/ed/stats/02-940.html
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Lazar, 2016). However, caution should be exercised in relying on the
p-value. The widespread use of “statistical significance” (generally
interpreted as “p ≤ 0.05”) as a license for making a claim of a
scientific finding (or implied truth) leads to considerable distortion
of the scientific process (Wasserstein and Lazar, 2016).

When assessing the results of two studies or groups, if the
95% CI of one study contains the point estimate from the other
group or study, the p-value for the difference between the results
of the two studies will not reach significance (Greenland et al.,
2016). For instance, a study reported a sixfold elevation in the risk
of persistent pulmonary hypertension in newborns (PPHN)
among mothers exposed to antidepressant drugs during
pregnancy compared to unexposed mothers (Chambers et al.,
2006). However, a subsequent study reported about two and half
fold elevation in the risk (Källén and Olausson, 2008). These
differences in risk estimates (6.1; 95% CI, 2.2–16.8 vs. 2.4, 95% CI
1.2–4.3, respectively) might raise doubts among some scientists
regarding the safety signal altogether. However, understanding
that the risk estimate of the second study falls within the 95% CI
of the first study demonstrates that, although some differences in
risk estimates can be attributed to study design factors, the overall
results of the two studies might be considered “consistent” and
reflect the increased risk of PPHN.

A relevant concept here is multiplicity, which is important for
PV professionals to know when it comes to safety as we calculate
many potential associations between drug exposure and adverse
events in a particular study. Therefore, the findings are
susceptible to type I error inflation (in simpler terms, it means
that there is a higher chance of wrongly saying something is true
when it is actually not) and making incorrect conclusions about
study findings. Although in practice, no adjustments are made for
multiplicity for most trials due to the inherent exploratory nature
of the safety findings in these trials as well as the application of
the “Precautionary Principal” following by many regulators
(Eichler et al., 2013), it is important to understand the
concept of multiplicity. This concept highlights the risk of
inflating the likelihood of incorrect conclusions, underscoring
the importance of considering the totality of evidence rather than
focusing solely on statistical significance.

3.2.3 Rule of 3
This rule is an important concept for PV professionals to be

familiar with, particularly in scenarios where a specific AE of
interest is not observed during drug development trials. As
discussed in the study power section, the absence of a
particular AE does not imply that the drug is entirely free of
AEs. To establish an upper limit on the risk of this AE, the rule of
3 is employed, per regulatory requirements. The rule suggests
that if no events are found, the upper limit of the 95% confidence
interval (CI) for the risk of the AE can be estimated at 3 divided
by the sample size (3/n) of the patient population that were
studied. Although the origin of this rule remains unknown, it was
first discussed in medical literature in 1975 (Rumke, 1975; Hanley
and Lippman-Hand, 1983). It is applicable to subgroups as well,
e.g., to calculate the upper limit of the rates of AEs in age and
gender subgroups.

The rule of 3 also serves a purpose in assigning frequencies to
certain AEs that are only reported in post-marketing surveillance.

While some PV professionals may consider using exposure data to
calculate the frequency, regulatory guidance emphasizes the use of
the rule of 3.20 The guidance explicitly advises against using
reporting rates from a spontaneous reporting system to assign
frequency categories. However, a potential challenge arises as this
approach may lead to paradoxical results, suggesting higher
frequencies for some unobserved AEs than they actually are
(Crowe et al., 2013).

It is important to recognize a limitation of the rule when the
background rate of the AE is significantly lower than the upper
limit of risk that can be ruled out. For example, say liver failure is
suspected in drug with a development program involving
6,000 patients followed for 6 months (equivalent to
3,000 person-years). Applying the rule of 3 would yield an
upper 95% CI for liver failure of 1/1,000 person-years.
However, if the background rate of liver failure is 1/
100,000 person-years, the data can only rule out a rate that is
100 times higher than the background rate. This underscores the
limitations of the rule in certain scenarios. It should be noted that
using Bayesian probabilities is becoming increasingly popular
where the probability of observing a number of events based on
the historical data is calculated, although it has its own set of
limitations (Van de Schoot et al., 2014).

3.2.4 Meta-analysis
Meta-analysis is another analytic concept that PV

professionals should be familiar with. It involves
systematically reviewing and synthesizing data from multiple
RCTs to assess treatment effects comprehensively. In
pharmacovigilance, pooling data from RCTs might be valuable
as many AEs are rare and there is a need to characterize the effect
of drugs from a broader and larger population – often times done
on a class of drugs (Hammad et al., 2006). Meta-analyses that
investigate safety concerns have gained increasing attention and
influence in clinical and regulatory decision-making. Examples
include meta-analyses examining cardiovascular AEs associated
with rosiglitazone (Nissen and Wolski, 2007) and tiotropium
(Singh et al., 2008), mortality rates associated with cefepime
(Yahav et al., 2007), and suicidality associated with
antidepressants (Hammad et al., 2006A; Hammad et al.,
2006B, Stone et al., 2009; Pamer et al., 2010).

An important aspect in the assessment process of a meta-
analysis is to confirm the complete capture of all trials
investigating the safety signal of interest. Systematic reviews serve
as a cornerstone in evidence-based medicine, providing a
comprehensive synthesis of existing evidence on a particular
topic. By systematically searching, selecting, and appraising
relevant studies, systematic reviews aim to minimize bias,
increase transparency in evidence synthesis, and improving the
validity and generalizability of the meta-analytic findings. In this
regard, one of the challenges to put in mind is that some published
trials might be “silent” on reporting the safety profile of the studied

20 https://health.ec.europa.eu/system/files/2016-11/smpc_guideline_

rev2_en_0.pdf
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drug, but it does not mean that no AE were observed during the trial
(Ioannidis and Lau, 2001).

Conceptually, meta-analysis is most dependable when trials
share similar designs and patient populations, with uncertainty in
effect size often arising from inadequate statistical power. PV
professionals must meticulously assess differences in trial design,
patient demographics, and the presence of heterogeneity to draw
meaningful conclusions frommeta-analyses regarding drug safety. It
is crucial to scrutinize the quality and the nuances of individual
trials’ conduct to identify potential threats to validity. This is because
some trials included in meta-analyses evaluating safety issues may be
susceptible to biases inherent in retrospective observational studies,
as discussed in the “confounding” section of this paper (Hammad
et al., 2011). Pertinent medical knowledge and judgment of the PV
professionals are paramount for success in this assessment. The
CIOMS X guidance offers detailed recommendations on evidence
synthesis and meta-analysis in the context of drug safety.21

Additionally, guidance to the assessment can be found in
Hammad et al., 2011, where the authors outline considerations
relevant to the evaluation of drug safety findings derived frommeta-
analyses of RCTs. In short, the first set of considerations focuses on
the design and conduct of individual RCTs, highlighting issues such
as the frailty of randomization and blinding, challenges in
ascertaining AEs due to varying definitions and documentation
practices, and difficulties in accurately assessing drug exposure.
The second set of considerations pertains to the design and
conduct of meta-analyses, addressing issues like publication bias,
trial selection biases, challenges in integrating trials with differing
designs or protocols, and statistical concerns such as type-I error
inflation and subgroup analyses. These methodological nuances can
impact the reliability and interpretation of drug safety findings,
potentially leading to over- or underestimation of drug risks.

Hammad et al., 2013, examined a selection of published meta-
analyses, particularly those concerning drug safety, which were
published in prestigious scientific journals. A preliminary
reporting framework was devised, integrating the Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines with additional elements essential for
evaluating drug safety meta-analyses. Most of the published
meta-analyses reviewed (60%) failed to cover the majority (80%)
of additional reporting elements necessary for assessing the validity
of drug safety findings. Some of these elements were not addressed in
any of the meta-analyses included in the review (Hammad et al.,
2013). Although the PRISMA statement (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) offers guidelines for
meta-analysis authors to ensure comprehensive and transparent
reporting, its emphasis primarily lies on efficacy rather than safety.
Consequently, to address this gap, a PRISMA harms checklist has
been developed. Its purpose is to enhance the reporting of harms in
meta-analyses, thereby fostering a more comprehensive and
equitable assessment of the benefits and risks associated with
health interventions (Zorzela et al., 2016).22

Additionally, developing a solid understanding of the basic
concepts of meta-analysis analytics is an essential skill for PV
professionals to effectively evaluate the evidence and interpret
the results. Meta-analytic techniques to analyze the pooled data
across trials have implication on the interpretation. For example,
it is important to appreciate that we are asking different questions
when using the fixed effect model versus the random effects
model in meta-analysis. The fixed effect model aims to
determine the best estimate of the treatment safety effect,
while the random effects model focuses on identifying the
average treatment effect. The weight of trials is an integral
consideration when comparing fixed effect and random effects
approaches in meta-analysis. In the fixed effect approach, the
assumption is that the true safety effect being estimated remains
constant across trials. The observed variation between trials is
attributed to sampling error, implying that if all trials were
sufficiently large, they would yield the same treatment effect.
To minimize the variance around the true effect within each trial,
weights are assigned. Larger trials are given higher influence in
the analysis, as they are presumed to provide more
precise estimates due to their larger sample sizes (Dettori
et al., 2022).

In contrast, the random effects approach assumes that the
true safety effect may vary around an average within a
distribution and that there is heterogeneity among trials.
Unlike the fixed effect approach, the random effects model
takes into account two sources of variation or “uncertainty”:
within trials and between trials. Consequently, the weights
assigned in the random effects model are more balanced
between trials, regardless of their size. In other words, larger
trials do not exert as much influence as in the fixed effect model.
This approach is particularly suitable when heterogeneity is
present or suspected. Due to the incorporation of two sources
of variation, the 95% confidence interval is wider, i.e., with a
lower likelihood of statistical significance. The risk
estimate obtained in the random effects model can be either
larger or smaller than that in the fixed effect model, depending
on the extent and direction of the heterogeneity (Dettori
et al., 2022).

To provide comprehensive results, the PV professional should
recommend getting the findings from both models for comparison
to assess if they differ significantly. As for determining which model
to believe, it depends on the specific research context, clinical
judgement, and the underlying assumptions of each model, and
hence the significance of the explanation provided here about the
underlying premise of each approach.

Another aspect to consider is how the meta-analysis study
reports the risk estimate of a particular AE. Caution must be
exercised when interpreting results of meta-analyses of drug
safety, especially when considering various metrics of association
such as risk differences (RD), hazard ratios (HRs), odds ratios (ORs),
relative risks (RRs), and others. Each of these metrics offers different
insights into the relationship between drug exposure and AEs, and
their interpretation requires careful consideration of the study
design, population characteristics, potential biases, and
methodological limitations. For example, while RDs offers a
straightforward measure of absolute risk reduction or increase,
HRs, RRs and ORs are relative measures that may be influenced

21 https://cioms.ch/working_groups/working-group-x/

22 https://www.equator-network.org/reporting-guidelines/prisma-harms/
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by the timing of events and the duration of follow-up and like other
metrics, they may be susceptible to confounding factors if not
properly adjusted for covariates. Therefore, when synthesizing
evidence from multiple studies in a meta-analysis, it is important
to assess the consistency of results across different metrics of
association and consider the strengths and limitations of each
approach in order to derive meaningful conclusions about the
studied AEs.

It should be noted that caution is warranted when assessing
attempts to conduct meta-analyses of observational studies in
pharmacovigilance. In the field of pharmacoepidemiology,
numerous observational studies may link certain drugs to AEs.
Generally, when multiple studies examine the same drug-adverse
reaction combination, there may be a temptation to conduct a
meta-analysis to obtain a more “conclusive” answer. However,
the belief that disparate study results can be combined to reveal
the true or a more precise effect size through meta-analysis holds
true only under specific conditions. As mentioned earlier, meta-
analysis is most valid when studies share similar designs and
patient populations. Yet, this assumption often does not hold true
for observational studies. Statistical power is rarely the issue, and
study results are typically heterogeneous due to numerous factors
(other than genuine differences between subpopulations of
patients), including differences in methods and adjustment for
confounding. Applying meta-analysis to observational studies
does not necessarily yield a more accurate estimate of effect size
but rather might provide an “average” of residual confounding
among studies. Additionally, given the vast array of indications
for the studied drugs’ classes, it is difficult to decipher the effect of
confounding by indication on a particular AE as reported in an
observational study. Moreover, publication bias and
confirmation bias can skew results, with negative outcomes
frequently underreported. Tests for publication bias may not
always detect it, and correcting for it, if present, could
significantly alter results, suggesting a smaller effect size than
the one reported.

3.3 Performance metrics (sensitivity and
specificity, positive and negative
predictive values)

Performance metrics such as sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) play
a significant role in drug safety. They are relevant to the validation
effort underlying different aspects in working up a safety signal:
confirming alignment of an AE with a clinical case definition and
assessing evidence for a causal association with the drug (Hammad
et al., 2023).

First, let us review some of the definition and the trade-offs
between these metrics. In the context of AEs, sensitivity measures
the ability of a case definition or diagnostic test to accurately identify
true positive cases, while specificity measures the ability to
accurately identify true negative non-cases. Positive and negative
predictive values estimate the probability that a positive or negative
finding accurately predicts the presence or absence of the clinical
condition of interest, respectively. Sensitivity and specificity are
theoretical concepts that rely on knowing the true disease status,

while PPV and NPV have direct clinical relevance23 as they are
associated with encountering false positive and false negative cases
(Monaghan et al., 2021). Understanding the trade-offs among these
metrics is essential. Higher specificity is linked to higher PPV,
indicating lower false positives, while higher sensitivity is
associated with higher NPV, suggesting lower false negatives. The
prevalence of a disease in the target population impacts PPV and
NPV, with higher prevalence increasing PPV and decreasing NPV.
Additionally, PPV is more influenced by specificity, and lower
specificity has a greater impact on misclassification when clinical
outcomes are uncommon. These facts are relevant to drug safety
since the rates of most AEs are low. Therefore, using more specific
definitions and tools is necessary for detecting true safety findings.

Examples of clinical conditions with validated diagnostic
criteria, which aids in identifying true cases, include RegiSCAR
scoring for DRESS with PPV of 87% (Kardaun et al., 2007; Kardaun
et al., 2013; Kardaun et al., 2014), ADAMTS13 activity assay for
Thrombotic Thrombocytopenic Purpura (TTP) with PPV of 91%
(Barrows and Teruya, 2014), and Yamaguchi criteria for Adult-
Onset Still’s Disease (AOSD) with PPV of 87.7 (Yamaguchi et al.,
1992; Fautrel et al., 2002). An example of a validated causality
assessment tool is the RUCAM (Roussel Uclaf Causality Assessment
Method), which was validated to assess causality of cases of Drug
Induced Liver Injury in clinical trials, where more information about
liver enzymes is expected to be available. It had PPV of 93% and
NPV of 78% (Bénichou et al., 1993; Danan and Bénichou, 1993). On
the other hand, PV-RUCAM, which was validated for assessing post
marketing DILI cases, had PPV = 25% and NPV = 100% (Scalfaro
et al., 2017). So, the PV professional should always review the
original papers that developed and validated the criteria to
understand the clinical context for its development, how to apply
it, and the implications on safety data interpretation. For example,
knowing the PV-RUCAM performance metrics means that when
assessing the DILI causality in a particular patient population, the
false positive rate is going to be high, 75% (low PPV). Conversely,
cases that do not fulfill the criteria are all true negative (high NPV).
Therefore, while the PV-RUCAM is particularly good at ruling out
the DILI causality (as indicated by the high NPV), it is less
dependable at confirming its presence (as indicated by the low PPV).

These metrics are also pertinent to MedDRA search criteria.
Using broadMedDRA codes (e.g., broad SMQs) increases sensitivity
but reduces specificity, making it suitable for casting a wider net to
capture more potential cases during initial assessment. However,
misclassification becomes a challenge in comparative assessments as
it might lead to attenuating safety signals when analyzing clinical
trial data, using external databases for quantitative signal of
disproportionate reporting, or comparing rates across different
PBRER (Periodic Benefit-Risk Evaluation Report) intervals.
Conversely, using focused Preferred Terms (PTs), as a second
step in the search, increases specificity, reducing false positives
and making it suitable for identifying and defining the AE of
interest in a safety signal. Striking a balance between sensitivity
and specificity depends on the objective of the search in the
safety database.

23 https://www.acm.org/publications/policies/artifact-review-badging
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Another utility of performance metrics is assessing the feasibility
of a screening requirement in a study, such as to exclude vulnerable
patients to certain AEs. Screening test performance should align
with the purpose of using it, considering key metrics such as
sensitivity, specificity, and PPV (Dobrow et al., 2018). The
metrics provide a way to assess feasibility of identifying
vulnerable patients based on the prevalence of the screened
condition and the PPV of the screening tool itself. If the
background rate of, say, suicidal ideation/behavior, in the patient
population is very low, even a screening test with very high
sensitivity and specificity will have a low positive predictive value
if applied to all patients, while having the potential to significantly
add to patient burden. An alternative is to target symptomatic
patients to increase the PPV of vulnerable patients identification,
which improves screening efficiency.

In conclusion, performance metrics are essential for evaluating
the effectiveness of clinical definitions in drug safety as well as
causality assessment. Sensitivity, specificity, PPV, and NPV play key
roles in validating diagnostic tools, evaluating safety signals, setting
MedDRA search criteria, and assessing the feasibility of screening
requirements. Understanding these metrics and their trade-offs
enhances the accuracy and reliability of drug safety assessments,
ultimately leading to improved patient care and outcomes.

4 Commentary

In this paper, we delve into the scientific underpinnings of critical
analytical considerations for interpreting drug safety evidence gleaned
from clinical trials, observational data, and spontaneously reported
individual case reports. Our aim is to shed light on their appropriate
application and inherent limitations, empowering drug safety and
healthcare professionals with practical insights to effectively interpret
evidence around AE. This endeavor is poised to enhance the accuracy
and reliability of drug safety assessments, thereby fostering evidence-
based decision-making in healthcare.

Understanding analytical considerations in the interpretation of
scientific evidence in drug safety might be tied to the concepts of
repeatability, replicability, and reproducibility. Repeatability in drug
safety refers to the ability to consistently reach the same conclusions
when the same team conducts evidence assessments using the same
approach and type of data repeatedly. This underscores the importance
of methodological consistency within assessment teams to minimize
variability and enhance the reliability of safety findings. Replicability,
conversely, pertains to reaching similar conclusions when different
teams of safety professionals assess the same evidence, emphasizing the
necessity of appreciating the scientific boundaries of methodology
interpretation across teams. Reproducibility extends this concept
further by assessing whether different teams, across diverse scientific
settings, can reach similar conclusions, highlighting the need for
comprehensive methodological understanding to ensure the
generalizability and validity of evidence interpretation.

Artificial Intelligence (AI) offers promising advancements in
drug safety, such as standardizing signal detection and automating
routine tasks (Hammad et al., 2023). However, AI also introduces
challenges. AI internal algorithms can be viewed as a “black box”

making it difficult to understand how decisions of the AI models are
made, which can lead to misguided conclusions if the models are not
properly validated. Moreover, biases in training data can result in
biased outputs. Therefore, while AI has the potential to enhance
drug safety procedures, it must be applied cautiously at this stage,
with a clear understanding of its limitations and continuous
validation against robust, well established methodologies.

Collaboration of PV professionals with pertinent experts, such
as epidemiologists and statisticians, is crucial in interpreting safety
data, given its integral role in benefit-risk assessment. As novel data
sources andmethodologies emerge, it is essential to stay updated and
adapt analytic approaches accordingly. Future research should
explore emerging novel approaches, such as artificial intelligence,
and incorporate advances in statistical techniques and data science.
Interdisciplinary research efforts that bring together experts from
various fields can significantly contribute to the evolution of analytic
approaches in drug safety research.
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