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External comparator (EC) studies are increasingly being used to generate
evidence that supports the evaluation of emerging pharmacological
treatments for regulatory and health technology assessment (HTA) purposes.
However, the reliability of evidence generated from EC studies can vary. In this
paper, we outline how an existing framework for causal inference, the target trial
emulation (TTE) framework, can be appropriately applied to improve the design
and analysis of EC studies. Applying the TTE framework involves specifying the
protocol of an ideal target trial which would answer the causal question of
interest, then emulating its key elements under real-world (RW) settings. We
describe each component of the original TTE framework and explain how it can
be applied to EC studies, supplementedwith practical recommendations.We also
highlight special considerations and limitations in applying the TTE framework to
EC studies. We describe how the TTE framework can be applied to improve the
clarity, transparency, and reliability of evidence generated from EC studies.
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1 Introduction

Randomised controlled trials (RCTs) are considered the gold standard for answering
causal questions about the comparative efficacy or safety of health-related interventions
(European Medicines Agency). However, there are many causal questions for which RCTs
may not be ethical, feasible, or timely. In such cases, observational real-world data (RWD)
such as disease registries, hospital or pharmacy claims, or electronic health records (EHRs)
can be used to answer causal questions if key sources of biases can be adequately addressed
(Hernan and Robins, 2020).

RWD are increasingly being used in submissions to regulatory bodies such as the UK
Medicines and Healthcare products Regulatory Agency (MHRA), the European Medicines
Agency (EMA), and the US Food and Drug Administration (FDA) (European Medicines
Agency, 2023; U.S. Food and Drug Administration, 2018; Cave et al., 2019). RWD are also
used to generate evidence for health technology assessment (HTA) bodies such as the UK
National Institute for Health and Care Excellence (NICE), German Gemeinsamer
Bundesausschuss (GBA), and French Haute Autorité de Santé (HAS), for evaluating the
economic impact and value of medicinal products (National Institute for Health and Care
Excellence, 2022; Curtis et al., 2023).

With the increasing availability and quality of RWD in recent times, RWD are also
being used to create a comparator arm to a ‘referent’ single-arm trial (SAT) or the active arm
of a two-arm parallel RCT. Studies that make use of these designs are typically labelled
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external comparator (or control) (EC) studies, and they have been
used to generate evidence that supports the evaluation of emerging
pharmacological treatments for regulatory and HTA purposes (Seo,
2023). Although the concept of external controls was described in
published literature as early as 1976, EC studies have received
renewed attention within the drug development community over
the last several years (Pocock, 1976). A recent systematic review
identified 64 regulatory and 70 HTA submissions between January
2015 and August 2021 which included primary evidence from a SAT
supplemented by an EC derived from RWD, for which the most
common therapeutic areas were oncology, haematology, neurology
(Sola-Morales et al., 2023).

A key benefit of the EC design is that it allows for broader
contextualisation of pivotal trial results with reference to alternative
treatments in RW settings (Carrigan et al., 2020; Sola-Morales et al.,
2023). However, the strength of evidence generated from EC studies
is often variable, and regulatory and HTA review committees have
highlighted several biases as important limitations to the evidence
generated from these studies (Jaksa et al., 2022; Sola-Morales et al.,
2023). In light of this, regulatory and HTA bodies have released
general guidance documents aimed at improving the quality of EC
studies (National Institute for Health and Care Excellence, 2022;
U.S. Food and Drug Administration, 2023). However, these
documents do not cover how existing frameworks for causal
inference, such as the target trial emulation (TTE) framework,
can be appropriately applied to EC studies (Hernán and Robins,
2016). In this paper, we outline how the TTE framework can be
applied to improve the robustness of EC studies.

2 Application of the target trial
emulation framework to external
comparator studies

The idea of emulating randomised experiments using
observational data has been documented since the 1950s (Cox,
1958; Rubin, 1974). In 2016, Hernan and Robins formalised this
idea as the TTE framework by outlining a template for emulating
hypothetical target trials with observational data (Hernán and
Robins, 2016). Since then, the TTE framework has been
extensively used to design numerous comparative effectiveness
and safety studies for generating real-world evidence (García-
Albéniz et al., 2017; Caniglia et al., 2018; Caniglia et al., 2020;
Emilsson et al., 2023).

Applying the TTE framework first involves specifying the
protocol of an ideal, hypothetical ‘target’ trial which would
answer the causal question of interest. Key elements of the target
trial—including the eligibility criteria, treatment strategies,
treatment assignment procedures, assignment of time zero,
follow-up period, outcomes, causal contrasts and estimands, and
analysis plan—are then emulated using RWD. Several published
studies have demonstrated how applying the TTE framework can
successfully reduce the impact of important biases and promote
transparency in observational analyses (Hernán et al., 2016; García-
Albéniz et al., 2017; Bakker et al., 2021).

It may appear that the TTE framework can be directly applied to
the EC setting by conceptualising EC studies as typical observational
causal analyses. However, there are methodological nuances in the

application of the TTE framework to EC studies due to the
combination of data from two distinct settings (i.e., experimental
and observational) that do not share a common data-
generating mechanism.

In the following sections, we describe each component of the
original TTE framework and explain how it can be applied to EC
studies, supplemented with practical recommendations. We also
highlight special considerations and limitations in applying the TTE
framework to EC studies. Throughout, we assume that appropriate
data source(s) have been selected using existing tools such as the
revised Structured Process to Identify Fit-for-Purpose Data
(SPIFD2) framework, and that the data are relevant to target
stakeholders in terms of clinical relevance and geographical
coverage (Gatto et al., 2023). Note that SPIFD2 framework
explicitly highlights the utility of considering the required
elements of a hypothetical target trial when assessing data
source(s), thereby allowing for an iterative approach to study
design and data source selection for EC studies (Gatto et al., 2023).

2.1 Eligibility criteria

The TTE framework emphasises that an important aspect of
emulating a target trial involves defining a target population. The
target population can be viewed as the population the investigator
and stakeholder wish to make inferences about. This target
population is often defined using a set of eligibility criteria that
are broad enough to enrol a sufficient number of patients, but
specific enough to identify a population that could potentially
benefit from the drug being investigated (European Medicines
Agency, 2020; Hornberger and Rangu, 2020).

In the EC setting, the eligibility criteria are specified in the
referent trial protocol. Therefore, in principle, identical criteria
would be used to identify a group of RW patients who would be
deemed eligible for the referent trial. In practice, not all eligibility
criteria from the referent trial can be applied due to RWD
limitations. In such cases, proxy measures may be used to
emulate certain criteria, and some may need to be
omitted—which can lead to imperfect specification of the target
population. The impact of omitting any criteria in an EC study must
be carefully assessed on a case-by-case basis. For instance, eligibility
criteria which aim to cover the ethical or practical requirements of
subjecting patients to experimental conditions may seem irrelevant
to RWD, but their exclusionmay introduce bias.While the exclusion
of non-English speakers in a trial recruiting from an English-
speaking country may seem irrelevant, including such patients in
the EC may introduce cultural and ethnic diversity which could
compromise their exchangeability with patients from the referent
trial. Decisions about which criteria to emulate may also be informed
by practical considerations around sample size, since the application
of each individual criterion is likely to increase exchangeability at the
cost of reducing the sample size available for analysis. Sensitivity
analyses may be performed to assess the impact of applying or
omitting certain eligibility criteria on study results.

In some cases, omitting an eligibility criterion (e.g., due to RWD
limitations) may lead to violations of the positivity assumption,
which is required for causal inference (Zhu et al., 2021). For
example, if the active drug being investigated in the referent trial
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is contraindicated in patients with photosensitivity, ignoring this
criterion for the EC (e.g., to preserve sample size or because
photosensitivity is not well recorded) would lead to a situation in
which photosensitive patients who should not receive the
intervention would be included in the EC. Ultimately, after all
selected (and perhaps adapted) eligibility criteria from the
referent trial are applied, all eligible patients in the EC should
have a non-zero probability of receiving the active treatment to
meet the positivity assumption.

2.2 Treatment strategies

A target trial should specify at least two treatment strategies, one
involving the active agent under investigation (i.e., the treatment of
interest) and another distinct treatment strategy (i.e., the
comparator). Common comparators include no treatment,
routine treatment (or treatment as usual), standard-of-care (SoC)
or ‘best practice’, or a particular active agent (Freedland et al., 2019;
Nair, 2019). The choice of comparator depends on the purpose of
the study—that is, whether the purpose is to evaluate if the treatment
of interest works at all or to determine how well it works relative to
current practice or another drug (Freedland et al., 2019).

In the EC setting, treatment strategies must be well-defined and
relevant to clinical and policy decision making (Rippin, 2024). The
description of a treatment strategy for the comparator should be
made as unambiguous as possible to avoid violating the causal
consistency assumption, which requires that all versions of a
treatment strategy with respect to a specific dose, frequency,
duration, and route of administration would have the same effect
(Cole and Frangakis, 2009). The treatment strategy should also
specify discontinuation rules and concomitant medications that can
or cannot be taken. This can be relatively straightforward when a
treatment strategy involves point intervention for a single treatment;
however, for sustained treatment strategies or a heterogeneous mix
of SoC treatments, specification of the treatment strategy can be
more complex. Moreover, in situations where SoC treatments have
improved over time, the use of historical RWDmay result in a biased
comparison between treatment arms. As with the application of
eligibility criteria, the definition of a comparator treatment strategy
therefore requires balancing sample size considerations with
internal validity. Although a broad definition of SoC is likely to
increase the number of patients, it is also likely to increase the
chances of confounding. Moreover, the results may have less
external validity if SoC differs across jurisdictions or
changes over time.

2.3 Treatment assignment procedures

In an ideal target trial, patients would be randomly assigned to
different treatment strategies to ensure that the groups of patients
allocated to each of the treatment strategies have a similar
distribution of baseline characteristics and are therefore
‘exchangeable’. In other words, randomisation ensures that the
expected future outcomes of each treatment group would be
equivalent, on average, in the absence of treatment (Hernán and
Robins, 2006). Emulation of random assignment in a typical TTE

analysis would involve identifying and adjusting for a set of variables
which are likely to confound the relationship between the treatment
and outcome. The goal of this approach is to achieve conditional
exchangeability between the treatment groups at the time of
treatment initiation and throughout follow-up (if time-varying
confounders are used for adjustment) (Hernán and Robins, 2016).

In the EC setting, conditional exchangeability can be achieved by
identifying and adjusting for all treatment effect modifiers and
confounders (Dong et al., 2020). Potential confounding factors
should be identified using directed acyclic graphs (DAGs), which
distil expert clinical knowledge and theory into easily interpretable
diagrams and produce a minimum but sufficient set of covariates for
adjustment (Rodrigues et al., 2022). However, if the referent trial
and/or the chosen source(s) of RWD do not contain sufficient
information on likely confounders, successful emulation of
random assignment will not be possible and residual
confounding will remain (Hernán and Robins, 2016). In these
situations, it is also valid to question whether the RWD source is
still fit-for-purpose if important covariates are not available. If so,
simulation-based analyses may be performed to assess the sensitivity
of results to known or suspected confounders, or indirect
approaches (e.g., negative controls or instrumental variables) may
be used to assess sensitivity to unmeasured confounding (Lin et al.,
1998; Martens et al., 2006; Lipsitch et al., 2010; Kutcher et al., 2021).

2.4 Time zero

‘Time zero’ refers to the point at which patient follow-up begins;
it is also commonly referred to as ‘baseline’ or ‘index (date)’. In an
RCT, time zero is naturally defined as the timepoint at which
patients are randomised, initiate treatment, and begin to be
observed for any outcome event(s) of interest. The alignment of
these timepoints ensures that selection and immortal time biases are
prevented (Hernán et al., 2016).

In the EC setting, time zero should be aligned across all
treatment arms. For an EC with an active comparator treatment,
the assignment of time zero is generally straightforward: time zero
begins at treatment initiation for all patients in the referent trial and
the comparator arm. However, when patients in the comparator arm
can meet eligibility criteria at multiple time points (e.g., because the
comparator treatment strategy is ‘no treatment’ or is an active
treatment that can be delivered in multiple treatment lines), there
are a variety of approaches to defining time zero (Hernán and
Robins, 2016; Kutcher et al., 2021; Hatswell et al., 2022). For specific
situations, randomly assigning an eligible timepoint to patients in
the EC arm, matching pre-treatment person-time between the EC
and referent trial arms, and defining multiple time zeros across the
study period by creating a series of nested trials have shown to be
valid approaches to assigning index dates to patients in the EC arm.
For a comprehensive evaluation of various approaches to selecting
time zero in EC studies, refer to Hatswell et al. (Hatswell et al., 2022).

2.5 Follow-up period

In an RCT, the follow-up period refers to the time during which
patients are observed. Follow-up begins at time zero and ends at a
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specific timepoint as defined by the protocol. For time-to-event
analyses, patients may experience the event of interest or be
censored when they are lost to follow-up or the study period
ends (i.e., administrative censoring). Patients experiencing
competing events (e.g., death) may also be censored for some
analyses, and handling such events often require the application
of complex methods as determined by the targeted estimand (Young
et al., 2020).

Under the TTE framework, a fixed follow-up period and pre-
specified conditions for censoring patients should be defined
(Hernán and Robins, 2016). In the EC setting, both definitions
should be harmonised across the referent trial and EC, which
typically involves applying the specified follow-up period and
definitions of censoring events from the referent trial to the EC.
However, data limitations may require modifications to be made to
the referent trial instead. For instance, the maximum follow-up time
may need to be limited by the minimum duration of follow-up
available in the referent trial and the EC.

Biases arising from informative censoring are likely to be
exacerbated in EC studies. Although RCTs typically attempt to
minimise losses to follow-up through strict monitoring, such
attempts are not typically made in RWD. Thus, differential
censoring mechanisms can be expected in EC studies, for
example, if patients in an EC arm have more comorbidities and
experience competing events earlier than patients in the referent
trial. This kind of informative censoring can lead to post-baseline
selection bias, since patients who remain in the study may not be
representative of those who are censored (Kutcher et al., 2021).
Where appropriate, statistical approaches such as inverse probability
of censoring weighting should be applied to correct for informative
censoring (Robins et al., 2000; Fewell et al., 2004; Seaman andWhite,
2013; Willems et al., 2018).

2.6 Outcomes

RCTs are required to pre-specify a set of outcomes or endpoints
that will be evaluated during the follow-up period, including how
such outcomes will be measured. The choice of outcomes will
depend on the study objectives and the target audience. For
example, trials intended for regulatory submission often include
efficacy outcomes (e.g., overall survival) and safety event outcomes
(e.g., number of serious adverse events), whereas trials intended for
HTA bodies may include other outcomes such as duration of
response and time to next treatment (Delgado and Guddati,
2021). In some trials, patient-reported outcomes (PROs) such as
quality of life will also be used, often as secondary outcomes
evaluated at fixed time points. To mitigate potential
ascertainment or detection biases in outcome evaluation,
outcomes may be adjudicated by independent trial administrators
who are blinded to patients’ treatment allocation (Mansournia
et al., 2017).

In the EC setting, the referent trial protocol can be leveraged to
define a set of pre-specified outcomes. In principle, the same
outcomes (or a subset thereof) will be evaluated in the EC
according to the same conditions, such that the timing, duration,
and method of measurement are consistent across the referent trial
and EC. However, in practice, there are likely to be several challenges

to this approach. For instance, it is unlikely that all pre-specified
outcomes from the referent trial can be ascertained from RWD. For
example, oncology outcomes that rely on tumour response criteria
are challenging to apply and are rarely available in RWD. For such
outcomes, it may be necessary to use proxy measures or alternative
methods of ascertainment. Moreover, outcomes that are collected in
the RWmay have beenmeasured under different conditions to those
in the trial setting, and there may be a greater degree of
underreporting of certain RW outcomes (e.g., depending on
severity or setting of care). It is also not possible to emulate
blinded outcome assessment in an EC study, since physicians in
a RW setting will be aware of the treatment a patient is receiving.
Thus, one should assess how well the outcomes from the referent
trial can be emulated in the EC and prioritise those which are least
likely to induce misclassification or detection bias but are still
relevant to the study objectives. Where possible, validated code
lists should be used to ascertain the outcomes of interest. Re-
adjudication of RW outcomes by an independent blinded
reviewer or panel may also be possible in some situations, but
this approach can be resource intensive (U.S. Food and Drug
Administration, 2023). When outcome misclassification is
suspected, sensitivity analyses such as quantitative bias analysis
may also be used (Fox et al., 2023).

2.7 Causal contrasts and estimands

In an RCT, there are two common causal estimands of interest:
intention-to-treat (ITT) and per-protocol (PP) (Murray et al., 2021).
The ITT captures the average causal effect of treatment allocation,
regardless of whether patients initiate or adhere to their assigned
treatment strategy. When patients in an RCT do not fully adhere to
their assigned treatment strategies or are differentially lost to follow-
up due to treatment, the ITT is unlikely to reflect the true effect of
the specified treatment strategy. In such cases, the PP effect may also
be estimated, as it represents the average causal effect of treatment
had all patients fully adhered to their assigned treatment strategy as
specified by the trial protocol. If all patients perfectly adhere to their
assigned treatment strategy and are not differentially lost to follow-
up, the ITT and PP estimands will be equivalent. Historically, the
ITT has been preferred over the PP because it preserves
exchangeability of the treatment groups at baseline due to
randomisation. In contrast, the PP is subject to post-baseline
confounding since deviations from an assigned treatment strategy
during follow-up are unlikely to be random; consequently, methods
which account for post-baseline events are required (Seaman and
White, 2013; Murray et al., 2021).

In EC studies, both the ITT and PP estimands can be estimated
with adaptations. The standard ITT definition is difficult to apply in
the EC setting because we typically observe the initiation of a
treatment strategy rather than assignment (i.e., randomisation) in
the EC arm. Hence, the ITT in EC settings could be more
appropriately considered the effect of treatment initiation rather
than treatment allocation. The PP effect in an EC study is analogous
to the PP effect in an RCT and accordingly requires a detailed
description of the comparator treatment strategy (see section 2.2)
and the use of the appropriate methods for baseline and post-
baseline confounding adjustment (Toh et al., 2010; Hernán and
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Hernández-Díaz, 2012; Maringe et al., 2020). For more detail on
estimands in EC studies, refer to Rippin (Rippin, 2024).

Another consideration is that the EC study sample represents a
case-mix of at least two populations with different selection
mechanisms (i.e., referent trial and RW). Therefore, the average
treatment effect may differ across the following target populations:
treated population (i.e., represented by the referent trial cohort),
untreated population (i.e., represented by comparator treatment
cohort), overall population (i.e., represented by combined treated
and comparator cohorts), and overlap population (i.e., represented
by the overlapping population between the treated and comparator
cohorts) (Greifer and Stuart, 2021). The nomenclature of estimands
that refers to these target populations are often termed the average
treatment effect in the treated (ATT), average treatment effect in the
control (ATC) or untreated (ATU), the average treatment effect
(ATE), and the average treatment effect in the overlap population
(ATO), respectively. In an EC setting, the ATE represents a
population that comprises a combined subset of patients that are
represented by the trial and RW EC, and thus may not translate to a
realistic target population that is of relevant interest to regulators or
HTA bodies. In most cases, the ATT and/or ATC would be
considered the primary estimand of interest for EC studies.

2.8 Statistical analysis

RCTs seek to minimise sources of bias and the potential for
spurious findings primarily through randomization and study
design and secondarily through careful application of statistical
methods (European Medicines Agency, 2020; International
Council for Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use, 2022). To
minimise the potential for data-driven findings, all primary,
secondary, and/or exploratory analyses are pre-specified. Other
procedures which require pre-specification include defining how
missing data will be handled, which statistical model(s) will be used,
what data transformations will be applied, what factors will be
adjusted for and how, and what adjustments to the level of
significance will be made when multiple primary analyses or
treatment comparisons are planned (European Medicines
Agency, 2020). In order to improve the precision of the
estimated effect(s), analyses are typically adjusted for a number
of baseline covariates, including any factors used in the stratified
randomisation procedure and other clinically relevant factors
known a priori to be strongly associated with the outcome
(Committee for Medicinal Products for Human Use, 2015).
Exploratory analyses may also be performed to evaluate
variations in the causal effect across different subgroups
(European Medicines Agency, 2020). Where the PP effect
estimand is of interest, the treatment strategy must be clearly
defined and adjustment methods for post-baseline events are
required (e.g., through inverse probability of censoring weights)
(Toh et al., 2010; Hernán and Hernández-Díaz, 2012; Seaman and
White, 2013; Murray et al., 2021). The validity of modelling
assumptions should be explored through model diagnostics and
sensitivity analyses.

Many of the above analytical considerations are required for an
EC study; however, there are a few key differences. For instance, the

absence of random treatment assignment in the EC setting means
that exchangeability of treatment groups is not granted by design.
Covariate adjustment for potential treatment effect modifiers and
confounding factors is therefore needed to reduce bias and achieve
conditional exchangeability (Dong et al., 2020). Minimising baseline
differences between the referent trial and EC treatment arms is
typically achieved through propensity score (PS) methods (e.g.,
weighting or matching) (Ross et al., 2015). In general, weighting
is preferred to matching as it does not discard patients from the
analysis, although caution is needed when extreme PSs are observed.
PS diagnostics are always recommended to evaluate if covariate
balance between treatment groups has been achieved following the
weighting or matching procedure. The target population for the
analysis should also inform the method used, as explained in detail
by Greifer and Stuart (Greifer and Stuart, 2021). Depending on the
target audience of the EC study, additional sensitivity analyses may
also be required to evaluate the robustness of study results to data
curation, study design, residual confounding, and analytical
decisions (National Institute for Health and Care Excellence, 2022).

Another key consideration for EC studies is the occurrence of
missing baseline information, which is crucial for successfully
conducting bias adjustments of the treatment effect (e.g., by PS
methods) and for defining the target population according to the
eligibility criteria. As such, the handling of missing data should be a
major focus of the protocol and the statistical analysis plan. Various
methods for handling missing data may be used, including multiple
imputation, mixed models, and generalised estimating equations
(Committee for Medicinal Products for Human Use, 2010).
Sensitivity analysis may be performed to test the robustness of
the approaches used.

2.9 Sample size

Sample sizes for SATs are usually based on powering the study to
detect differences from a hypothesised efficacy value in the absence
of a comparator arm, while in RCTs they are based on detecting a
certain pre-specified effect of treatment versus the control (European
Medicines Agency, 2020). Likewise, the EC study should be powered
to detect a certain effect size between the referent trial and the
comparator arm if a confirmatory analysis is planned. In EC studies,
the total sample size will be limited by the available trial data such
that only the number of EC patients can be varied, and this imposes
limits on the achievable statistical power to detect a given effect size.
Only marginal benefits may be gained by increasing the size of the
external cohort beyond a certain number of patients. Certain design
adaptations can increase the number of patients in the EC (e.g.,
relaxing eligibility criteria or combining comparator treatment
strategies), but these approaches can introduce heterogeneity and
compromise exchangeability with patients in the referent trial.

Conservativeness should be built into sample size determination
for an EC study in order to account for different factors that may
reduce the actual sample size available for analysis. For instance, a
range of plausible effect sizes should be considered, and an
additional percentage added to any calculated sample sizes to
account for expected attrition due to the matching or weighting
procedures used (e.g., exclusion of unmatched patients) (Rippin
et al., 2022). Stricter levels of significance might also be considered in
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the sample size calculation to account for added variability from
combining RW data with SATs or RCTs (e.g., by considering a type I
error of 1% instead of 5%). It should be noted that smaller samples
may constrain the number of confounders that can be reliably
accounted for in the analysis, thereby limiting the exchangeability
of the referent trial and ECs and increasing the risk of residual
confounding. Very small sample size may also affect the validity of
statistical procedures which are only asymptotically valid.

3 Conclusion

EC studies are increasingly being used to generate supporting
evidence for regulatory and HTA decision making. The application
of the well-established TTE framework to the EC setting can improve
clarity, transparency, and robustness in the design and analysis of EC
studies. This paper has provided commentary on the nuances of
applying the TTE framework to EC settings. Further methodological
work is needed to provide evidence-based methodological
recommendations in applying the TTE framework to EC studies.
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