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Pharmacovigilance plays a crucial role in ensuring the safety of pharmaceutical
products. It involves the systematic monitoring of adverse events and the detection
of potential safety concerns related to drugs. Manual literature screening for
pharmacovigilance related articles is a labor-intensive and time-consuming task,
requiring streamlined solutions to copewith the continuous growth of literature. The
primary objective of this study is to assess the performance of Large Language
Models (LLMs) in automating literature screening for pharmacovigilance, aiming to
enhance the process by identifying relevant articles more effectively. This study
represents a novel application of LLMs including OpenAI’s GPT-3.5, GPT-4, and
Anthropic’s Claude2, in the field of pharmacovigilance, evaluating their ability to
categorizemedical publications as relevant or irrelevant for safety signal reviews. Our
analysis encompassed N-shot learning, chain-of-thought reasoning, and evaluating
metrics, with a focus on factors impacting accuracy. The findings highlight the
promising potential of LLMs in literature screening, achieving a reproducibility of 93%,
sensitivity of 97%, and specificity of 67% showcasing notable strengths in terms of
reproducibility and sensitivity, although with moderate specificity. Notably,
performance improved when models were provided examples consisting of
abstracts, labels, and corresponding reasoning explanations. Moreover, our
exploration identified several potential contributing factors influencing prediction
outcomes. These factors encompassed the choice of key words and prompts, the
balance of the examples, and variations in reasoning explanations. By configuring
advanced LLMs for efficient screening of extensive literature databases, this study
underscores the transformative potential of these models in drug safety monitoring.
Furthermore, these insights gained from this study can inform the development of
automated systems for pharmacovigilance, contributing to the ongoing efforts to
ensure the safety and efficacy of pharmacovigilance products.
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1 Introduction

Pharmacovigilance, the science of monitoring and ensuring the
safety of pharmaceutical products post market, stands as a vital
cornerstone in the realm of public health and medicine (Beninger,
2018; Maqbool et al., 2019). It encompasses the diligent surveillance of
adverse events, the detection of potential safety signals, and the
evaluation of data from a wide array of sources, including scientific
literature, regulatory reports, and patient feedback (Böhm et al., 2016;
Hoffman et al., 2016). Yet, as the volume of medical literature continues
to burgeon, manual screening of this extensive corpus remains an
onerous and time-consuming task. The need for efficient and accurate
tools to assist pharmacovigilance efforts remains substantial. Traditional
computational methods like pattern matching, topic modeling, text
mining and classification, etc., have been employed to review and filter
the literature (Cohen et al., 2006; Burgard and Bittermann, 2023).
However, these methods face several challenges, such as their inability
to generalize across multiple tasks and adapt to new, unseen conditions,
which prevents them from fully meeting the demands of
pharmacovigilance.

In addition to the conventional computational methods,
recently a set of research have used small-scale deep learning
model, especially Bidirectional Encoder Representations from
Transformers (BERTs), to facilitate literature screening. For
example, Hassain et al., used BERT to detect adverse drug
reactions in PubMed abstracts (Hussain et al., 2021); Wu et al.,
developed NLP-DILI model, a predictive model based on BERT to
find drug-induced liver injury relevant documents from FDA drug
labeling (Wu et al., 2021) In a previous study, we have also developed
BERT models to predict relevant literature for chlorine efficacy,
safety (Wu et al., 2023), and Neurotoxicity relevance with COVID-
19 (Wu et al., 2022). In general, models based on BERT outperform
conventional computational methods (Aum and Choe, 2021; Sun
et al., 2021), however, the key limitation has not been resolved; the
models are still highly task-specific and can rarely be applied to a
new task of literature screening. For example, a model developed for
DILI relevance prediction will not perform well to find
cardiotoxicity relevant documents, unless further fine-tuned or
training with a large size of new collected data relevant to the
new task. Recent strides in the field of Artificial Intelligence (AI),
particularly in the domain of Large LanguageModels (LLMs), offer a
promising solution to this challenge (Zhao, 2023). Models such as
GPT-3.5 (OpenAI, 2023a), GPT-4 (OpenAI, 2023b), and
Anthropic’s Claude2 (Anthropic, 2023) have demonstrated
remarkable capabilities in natural language processing (NLP) and
understanding. They have excelled in diverse NLP tasks, including
text classification, summarization, translation, and more (Sun, 2023;
Zhao, 2023).

Despite the advances in AI and NLP, the application of these
technologies in pharmacovigilance remains fraught with challenges.
The sheer volume and complexity of medical literature necessitate
models that can not only process large datasets but also accurately
identify relevant information amidst a plethora of unrelated data.
Moreover, the dynamic nature of safety signals and the need for
timely detection further compound the difficulty of automating
literature screening. Ensuring the reproducibility and reliability of
these models is also crucial, as any inaccuracies can have significant
implications for public health and safety.

Given these challenges, this study aims to explore the
transformative potential of LLMs in automating the screening of
medical literature for pharmacovigilance purposes. Our primary
objective is to assess the performance of these models in accurately
categorizing medical publications and identifying drug safety signals
amidst the extensive and ever-growing body of medical literature. To
this end, we employ a task-specific, pre-labeled chlorine safety
abstract dataset to assess the performance of LLMs for relevant
abstracts prediction and filtering. Our investigation encompasses
various facets of performance, such as prompt, N-shot learning,
chain-of-thought reasoning, sensitivity, specificity, and factors
influencing accuracy.

With a thoughtfully designed prompt and some examples
comprising abstracts, labels, and corresponding reasoning
explanations, we achieved high sensitivity (97%) alongside
moderate specificity (67%) within a group of 40 positive and
160 negative samples. A comparison with scenarios where no
reasoning was provided revealed a slight performance increase
with a higher number of reasoning explanations. Notably, the
models exhibited consistent performance across diverse sets of
reasoning explanations, resulting in a high level of reproducibility
(93%). These results affirm the reliability of LLMs for literature
screening, suggesting their trustworthiness in the context of our
study and their potential for assisting humans in related tasks.
Furthermore, this framework has the potential to be extended to
other pharmacovigilance tasks, given that appropriate examples or
contexts are provided to the models.

In this study, our exploration of LLMs for literature screening in
pharmacovigilance underscores their significant potential. The
observed performance highlights their efficacy in automating the
screening process.While we emphasize the immediate application of
LLMs for literature analysis, it’s essential to recognize the broader
implications. The synergy of LLMs and advanced AI in
pharmacovigilance could lead to transformative advancements,
ultimately enhancing patient safety and reshaping healthcare
practices. However, these promising prospects necessitate further
validation in real-world applications to fully unleash the
revolutionary impact of AI in pharmacovigilance.

2 Methods

2.1 The preparation of example set and
testing sets

In our previous study (Wu et al., 2023), we curated a dataset
consisting of research abstracts, systematically categorizing them as
either relevant or irrelevant to the topic of chlorine safety. These
labels were established through expert evaluation and consensus.
From this dataset, we randomly selected a subset of 30 abstracts,
15 relevant and 15 irrelevant, with 200–300 words as the example
set. This set served as valuable background information for LLMs to
refer. Based on these example abstracts and their labels, we prepared
multiple sets of reasoning explanations, employing both human
experts and LLMs including GPT-3.5, GPT-4, Claude2, to facilitate
comparative analyses. We presented the models with the abstracts
one by one and asked: “This abstract is considered as relevant/
irrelevant to my chlorine safety study—you must take this as true
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label. Please provide me the reasoning process in around 100 words”.
The models also need to consider the provided labels as true. This
approach allowed us to evaluate and contrast the interpretability of
the reasoning provided by the models against human-generated
explanations.

Two testing sets were prepared by randomly collecting 40
(20 relevant and 20 irrelevant) and 200 (40 relevant and
160 irrelevant) abstracts, ensuring no overlap with each other or the
example set. We excluded abstracts that were either too short or too
long from the selection, ensuring that the final abstracts were within the
range of 200–300 words. We asked the models to review the testing
abstracts and predict their categories with certain numbers of relevant
and irrelevant examples provided to the model to facilitate a N-shot
learning scenario (Wang et al., 2020). Each example consisted of the
original abstract, the pre-defined label, and reasoning. The prediction
process for the testing set was repeated 10 times to measure
reproducibility and other metrics comprehensively. The primary
results in this study were based on an optimized prompt for our
dataset; more details will be discussed later in this paper.

2.2 The calculation of all the metrics

Reproducibility was calculated between two runs (different
combinations of examples provided to models) as the number of
identical predictions divided by the total abstracts were predicted,
either 40 or 200 in our study. Then, all the paired reproducibility
were put together and plotted.

Reproducibility � ∑
N
i�1 Prediction RunAi � Prediction RunBi( )

N

Where N is the total number of abstracts for prediction. Prediction
RunAi and Prediction RunBi are the prediction results of the ith
abstract in RunA and RunB, respectively.

Sensitivity and specificity were calculated as:

Sensitivity � Number of correctly predicted relevant abstracts
Total prelabeled relevant abstracts

Specificity � Number of correctly predicted irrelevant abstracts
Total prelabeled irrelevant abstracts

In this study, we had 20 and 40 pre-labelled relevant abstracts,
and 20 and 160 irrelevant abstracts in the two testing sets.

Precision was calculated as:

Precision � Number of correctly predicted relevant abstracts
Total number of abstracts predicted as relevant

And F1-score as:

F1score � 2p
PrecisionpSensitivity

Precision + Sensitivity

3 Results

In this study, our primary objective was to evaluate the
performance of LLMs and enhance their effectiveness by
optimizing the prompts and providing reasoning examples, with

a specific focus on GPT-3.5 model equipped with an efficient
Application Programming Interface (API) efficiently available.
Our aim was to classify research abstracts as either relevant or
irrelevant to chlorine safety study (Wu et al., 2023). To this end, we
conducted a detailed study with several key elements illustrated in
Figure 1. We crafted and refined multiple user prompts to
communicate effectively with the LLMs to obtain optimal
outcomes. We employed various metrics, including
reproducibility, sensitivity, specificity, precision, and F1-score.
These were calculated based on the predicted results and
thoroughly evaluated with two distinct sets of testing abstracts
(Methods). Throughout the optimization processes, experienced
human experts actively engaged in evaluating and engineering
the prompt, reasoning, and other settings to achieve enhanced
performance.

3.1 Overall performance assessment

For each testing abstract, a human expert provided reasoning
explanations that detailed why the abstracts were categorized as
relevant or irrelevant. With this, high reproducibility with a median
of 95% and sensitivity with a median of 90% were achieved.
However, specificity and precision were lower, achieving median
values of 67.5% and 73.5% respectively (Figure 2A). The high
reproducibility indicated that the model consistently produced
similar responses across different examples provided. Figure 2B
showed a detailed breakdown of predicted categories for each testing
abstract in each run. Notably, certain abstracts consistently received
incorrect predictions across all 10 rounds. We speculated that this
could be due to variations in the model’s interpretation or potential
complexities inherent in the original abstracts (Discussion).

Next, our investigation extended to comparing the performance
of GPT-3.5 across various few-shot scenarios: 0-shot, 1-shot, 3-shot,
5-shot, and 10-shot (Wang et al., 2020). In the 0-shot scenario, the
model was given no prior examples. For the other scenarios, a
varying number of positive and negative examples were provided,
each accompanied by abstracts, labels, and corresponding reasoning.
In this study, we collected a dataset of 30 abstracts as examples.
Specifically, in scenarios like 10-shot learning, the same example
abstracts were sometimes used across different runs.

We conducted a comprehensive evaluation of reproducibility,
sensitivity, specificity, and precision across these different shot
settings. Generally, we observed a trend where increasing the
number of shots led to a gradual improvement in all metrics,
though the improvements were not significant. The metrics
showed a narrower range with more shots, reflecting a stable
performance by the model. The overall observation suggests that
the results became more stable with an increase in the number of
shots, emphasizing the potential benefits of providing additional
examples to models (Figure 2C).

3.2 Reasoning explanations exert a subtle
influence on performance

In our exploration of the impact of reasoning explanations
within a 5-shot learning scenario, where five examples were
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FIGURE 1
Study design.

FIGURE 2
(A), overview of the abstract prediction result with 10-shot learning and human expert generated reasoning provided to the model. (B), prediction
results of individual abstracts in each run (10 runs in total). (C), performance differences across varying numbers of shots on reproducibility, sensitivity,
specificity, and precision. There was no reasoning explanation provided in 0-shot learning, the input was identical for 10 runs, resulting in an identical
prediction outcome.
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provided to the model, we compared the performance differences
across reasoning explanations generated by four human experts and
various models, including Claude2, GPT-3.5, and GPT-4. These
human experts have different backgrounds and reviewed the
example abstracts independently. They were required to accept
the predefined labels and generate reasoning explanations based
on them. The ten runs of predictions were based on fixed
combinations of examples so that the results were comparable for
different reasoning sets. Surprisingly, we found that incorporating
reasoning explanations resulted in only a marginal increase in the
measured metrics. We observed no significant improvement when
compared to scenarios with no reasoning provided (only abstracts
and labels). (Figure 3). Additionally, we conducted comparative
analyses between human-generated and model-generated reasoning
explanations, contributing to a nuanced understanding of the
model’s interpretability and alignment with domain-specific
knowledge. Unexpectedly, the introduction of human-generated
reasoning did not yield a discernible enhancement; instead, we
observed a broader range in metrics, indicating a potential
decrease in performance compared to AI-generated reasoning.
These intriguing findings underscore the nuanced dynamics in
the impact of reasoning explanations on model performance in
the context of our 5-shot learning experiments (Discussion).

3.3 Reasoning quality evaluation: GPT-4’s
perspective

In a meticulous examination of reasoning quality, we engaged
GPT-4 in a discerning evaluation task. Presenting each of the

30 examples individually, we provided matched labels and
reasoning explanations by one of the human experts, GPT-3.5,
GPT-4, and Claude2 to GPT-4. The objective was to assess
which reasoning aligned best with a given abstract from GPT-4’s
perspective. The results revealed a noteworthy observation, as GPT-
4 consistently identified reasoning explanations by Claude2 as the
most fitting for 24 out of the 30 abstracts. Remarkably, for the other
six abstracts, the human, GPT-3.5, and GPT-4 performed equally,
with each generating two of the best reasoning explanations. In
addition, we asked GPT-4 to generate the judgement statements for
the best reasoning of each example abstract. These statements offer
valuable insights into the optimal design of prompts and reasoning
strategies for LLM for improving performance. Moreover, high-
quality reasoning explanations provided by LLMs hold the potential
to enhance the decision-making efficiency and accuracy of human
reviewers in their review tasks (Discussion).

3.4 Performance difference per
distinct prompts

Recognizing the critical role prompts play in influencing model
behavior (Wang, 2023; White, 2023), the prompt used in our
primary analysis underwent careful design and optimization,
achieving our goal with high sensitivity and reasonable specificity
(Discussion). In this section, we showcase five of the prompts tested
(Figure 4) to highlight their diverse impacts on LLM performance.
The detailed results of these supplementary prompt analyses are
presented in Table 1, offering insights into the dynamic interplay
between prompts and LLM performance.

FIGURE 3
Performance comparison based on reasoning explanations from various sources: generated by human experts and AI models. The evaluation
involved four metrics: reproducibility, sensitivity, specificity, and precision.
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We initially provided a brief introduction to the background
information, informing the model about our research focus on
chlorine safety. This was followed by the presentation of
examples. Subsequently, we employed distinct prompts to
conduct the prediction process with the models. See the
Supplementary Material for the full prompt used in this study.
We calculated and compared metrics associated with the five
distinct prompts. Prompt1 underwent the initial testing for
performance assessment. In prompt2, we tasked the model
with directly identifying abstracts relevant to our chlorine
safety study. For prompt3 and prompt4, our aim was to utilize
the contextual understanding power of LLMs. We formulated
generic questions that inquired whether the abstracts were related
to chlorine safety or not. We conducted prompt5 by slightly
modifying prompt4, changing the keyword “toxicity” to
“safety” and removing “gas” from the sentence, to monitor the
potential impacts of these different expressions. With these
prompts, both GPT-3.5 and GPT-4 APIs were used to perform
the predictions under a 5-shot learning scenario, using
Claude2 reasoning (Table 1). Remarkably, prompt3 achieved
the best performance when GPT-3.5 was used for prediction in
this study and used for the primary analysis (Table 1).

Using the same prompts and reasoning for predictions, GPT-4
showed different patterns of metrics (Table 1; Supplementary Figure
S1). For example, prompt3 did not reveal the best performance for
GPT-4, particularly in sensitivity, which is a crucial metric for our
study. Interestingly, when prompted with prompt4, we observed a
significant drop in sensitivity but as high as 85% in specificity.
Nevertheless, the results highlighted the potential for distinct
performances among different models, even with the same
prompt. It underscores the importance of being attentive to
variations in outcomes when working with different LLMs.

3.5 Extended analysis to additional dataset

Building upon the optimal reasoning set generated by Claude2,
we extended our inquiry to an additional testing set of 200 abstracts
(40 relevant and 160 irrelevant abstracts) from the same collection of
chlorine safety study abstract, without any overlap with the previous
set of 40 abstracts. Still utilizing GPT-3.5 model and 5-shot learning
scenario for categorization, the results demonstrated remarkable
consistency with our initial observations, but with a lower precision
(Figure 5). The precision, which gauges the accuracy of positive

FIGURE 4
Five showcase prompts used in this study, among many that we tested. Background information and examples (abstract, label, reasoning) were
provided to the models before presenting these prompts.

TABLE 1 The prediction performances of GPT-3.5 and GPT-4 based on distinct prompts.

Prompt Predicting Model Sensitivity (%) Specificity (%) Precision (%) F1-score (%) Accuracy (%)

#1 GPT-3.5 95 45 63.3 76 70

#2 GPT-3.5 95 50 66.1 78.8 72.5

#3 GPT-3.5 97.5 65 72.5 83 80

#4 GPT-3.5 87.5 65 72 80 77.5

#5 GPT-3.5 97.5 55 67.9 79.2 75

#1 GPT-4 95 62.5 71.7 82.6 80

#2 GPT-4 90 65 73.1 81.7 78.8

#3 GPT-4 90 65 72 80 77.5

#4 GPT-4 60 85 80.6 69.4 72.5

#5 GPT-4 80 70 72.7 76.7 75
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predictions among all predicted positives, is sensitive to imbalances
in the dataset. In our extended dataset with more negatives, the
number of false positives could increase, impacting precision and
consequently leading to a lower precision. In summary, these
findings bolster confidence in the reliability of LLMs, such as
GPT-3.5, for efficiently conducting literature reviews. Accurate
identification of relevant abstracts and effective filtering of a
significant portion of irrelevant content demonstrate the efficacy
of these models, ultimately reducing the burden on
human reviewers.

4 Conclusion

This study delves into the realm of AI-driven
pharmacovigilance, specifically employing LLMs for automated
literature screening. Evaluating the performance of prominent
models like GPT-3.5 and GPT-4, our findings underscore the
potential of LLMs to enhance efficiency and accuracy in
pharmacovigilance text analytics. With properly designed
prompts, achieving high sensitivity is a positive indicator for
literature review tasks, ensuring the identification of targeted
contexts crucial to our focus. Simultaneously, the high
reproducibility observed, based on different examples provided to
the models, indicates the stable behavior of LLMs for reviewing and
categorizing literature. While we achieve only a moderate specificity
of around 70%, this is acceptable considering the low positive rate
typically encountered in literature review tasks. LLMs can still
effectively filter out a significant number of negative articles,
saving time and efforts for reviewers.

Various elements may impact the performance of LLM-based
literature screening. A properly designed pipeline, including
prompts, chain-of-thought contexts, and N-shot learning
scenarios can significantly benefit the accurate categorization and
further assist in human review and decision-making processes. As
LLMs continue to undergo rapid development, a deep

understanding of the data we are working on, and the evolving
landscape of AI techniques, will play a crucial role in further refining
and optimizing this task.

This study contributes valuable insights to the evolving
landscape of AI applications in pharmacovigilance, emphasizing
the need for nuanced model evaluation, careful prompt design, and
consideration of example set balance. As the intersection of AI and
healthcare progresses, these findings pave the way for informed
advancements in drug safety monitoring and signal detection,
ultimately contributing to enhanced patient safety and the
continual improvement of pharmacovigilance practices.

5 Discussion

5.1 Consistent incorrect predictions and
model bias

The model prediction based on Claude2 reasoning results in
good sensitivity, indicating that the model could reliably help filter
out most of the irrelevant abstract. Yet, the consistent misprediction
of certain abstracts, even in the face of varied testing scenarios, poses
intriguing questions about potential model bias, the accuracy of
original labels, or the inherent difficulty in categorizing these specific
abstracts. Based on the four examples which were constantly
wrongly predicted as relevant, the inherent complexity of certain
abstracts appears to be the main reason contributing to this
consistent discrepancy. The first discussed that the formation of
a carcinogenic byproduct after chlorine disinfection, when below
critical values set by the regulations, is no longer a risk to human
health. The second examined the effectiveness of small doses of
chlorine as a treatment of dysentery. The third suggested that the
concentrations of extractable organic chlorine in sediment may be
used an indicator for environmental contamination. This prompts a
critical reflection on the limitations and challenges in achieving
absolute precision in complex tasks. The last one discussed the
chlorination byproducts of a chemical and the mutagenicity
evaluation of the byproducts. These examples provided a critical
reflection on the limitations and challenges in achieving absolute
precision of the model in the complex tasks.

5.2 Effectiveness of human expert vs.
model-generated reasoning

The unexpected finding that model-generated reasoning
outperforms human expert-generated explanations in terms of
prediction results raises intriguing questions. One possible
explanation could be that models have the adaptability to
underlying structures and patterns in example data, while human
experts introduce nuances beyond the model’s scope. Also, human
experts, despite domain expertise, might approach classification
with biases or preconceptions, diverging from the model’s
inherent understanding. The interpretability could be another
challenge for models. The interpretability and alignment of
human-generated reasoning with the model’s decision-making
processes pose challenges due to subjective nature, introducing
variability. This is still an open question, and future studies

FIGURE 5
Evaluation of performance on an extended testing dataset
comprising 200 abstracts (40 relevant and 160 irrelevant).
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should refine human-AI collaboration to leverage both strengths,
enhancing interpretability and effectiveness in pharmacovigilance
literature screening.

5.3 Insights from GPT-4’s
reasoning judgments

The valuable insights gleaned from GPT-4’s consistent
preference for Claude2-generated reasoning provide a foundation
for future directions. Besides providing an accurate predictive
response, leveraging AI models to generate high-quality
reasoning is an exciting avenue. The potential to distill the
essence of “good reasoning” through the lens of AI models opens
new possibilities for refining prompt structures and advancing the
field, as the AI could learn the intelligence underlying the prompt
which was provided by human (Sejnowski, 2023) or another AI. By
applying the Chain-of-Thought (CoT) strategy, we can enforce the
model to provide explanation on specific aspects, which can
dramatically improve the reasoning abilities of LLMs. More
importantly, this prompt engineering process can be both
manually and automatically to maximize its capability to capture
important reasoning aspects, as well as the specific needs from
the reviewers.

The judgments of the reasoning by GPT-4 would be helpful for
us to understand what good reasoning is, to further contribute to a
deeper understanding of the criteria that define effective reasoning
in the context of pharmacovigilance. Next, we plan to use AI models
to summarize and optimize the prompt to generate good reasoning
and how to identify if an abstract is relevant or not more correctly.

5.4 Identified factors influencing
prediction results

Through extensive testing, we identified several influential
factors shaping prediction outcomes. Notably, the choice of
prompt, a recognized driver of AI responses, proved crucial in
our study. The models are sensitive to specific keywords, such as
“directly”. In our prompt4, most of the relevant abstracts were
predicted as irrelevant by GPT-3.5 when “directly related” was
added. The finding highlighted the nuanced interplay between
prompts and model responses. GPT-4 appeared to be more
sensitive to terms with specific definitions, such as “safety” and
“toxicity,” which in turn influenced the model’s sensitivity and
specificity. Notably, “safety” is a broader concept than “toxicity,”
which may explain some of the variation in the model’s
performance.

Other than the five prompts we showcased in the main results,
we tested various prompts that led to worse, sometimes significantly
biased results. For instance, with the prompt “Read the abstract,
decide whether it reports the safety of chlorine or chlorine base
compounds.” for GPT-3.5, we obtained a median specificity of 0.95.
However, the sensitivity was dropped to as low as 0.2, resulting in an
F1 score of 0.31. Clearly, the model tended to predict every sample
as negative.

Another unexpected discovery that emerged during our analysis
was some formatting in the prompt. Introducing specific language

cues, such as “please provide me the label as [relevant] or
[irrelevant],” unintentionally influenced the prediction outcomes.
This alteration significantly increased the number of categories
predicted as [relevant], demonstrating the model’s sensitivity but
resulting in low specificity.

Additionally, we identified the balance within example sets (the
example abstracts, labels, and reasoning we provided to the models)
as a critical factor shaping prediction outcomes. The introduction of
unbalanced sets—comprising either all positives or all
negatives—led to a notable shift in sensitivity and specificity. In
our study, this imbalanced example set consistently resulted in
increased specificity and decreased sensitivity, indicating that the
models encountered difficulty in correctly identifying
relevant abstracts.

Although we observed promising results of LLMs for literature
screening in this study, these results are limited by the specific
dataset used, which may not represent other domains. It is valuable
to extend this study across multiple datasets from diverse domains to
more robustly demonstrate their generability in the future.
Meanwhile, the effectiveness of LLMs heavily depends on the
quality of the prompts provided. Poorly constructed prompts can
lead to bad performance, highlighting the need for end users to
develop skills in precise and effective prompting. Therefore, LLMs
should be used as tools to augment human capabilities, with a clear
awareness of their limitations and proper prompting techniques.
These factors introduce complexity to the prediction process,
highlighting the importance of meticulous prompt design and
example set structuring for optimal and reliable model
performance. Further exploration of these factors is vital for
enhancing the robustness of AI systems across diverse contexts.

A notable limitation of using LLMs for health-related literature
reviews, or any specific domains, is their training on domain-neutral
texts rather than specialized medical literature, which can impact the
accuracy and comprehensiveness of the reviews. Models may not
always perform well without further optimization. To mitigate this,
one effective approach is providing detailed contexts in the prompts
as background information or examples, which has shown to
improve the model’s understanding and processing of specialized
content. Additionally, fine-tuning LLMs on medical-specific
datasets, although not tested in this study due to high costs,
holds potential for significantly enhancing their performance in
health-related use cases. These strategies highlight the importance of
adapting LLMs to better meet the demands of specialized domains
like healthcare.

5.5 High sensitivity is critical to the task

The heightened sensitivity (95%) provides a strategic advantage,
enabling the models to accurately identify literature relevant to our
interests. This ensures that important contextual information is not
overlooked. On the other hand, we can somehow tolerate moderate
(70%) specificity since the positive rates in most of the literature
screening tasks are low, which means most of the articles collected
are irrelevant and need to be filtered out. In a scenario where
10,000 abstracts are collected in a project with a positive rate of
15%, 8,500 irrelevant abstracts would need to be reviewed by
reviewers, consuming considerable time and effort. With the
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assist of LLMs, 5,950 irrelevant abstracts (70% of 8,500) could be
filtered out. This streamlined workload allows human experts to
focus on a more refined selection of articles, enhancing the overall
efficiency of drug safety monitoring.

5.6 Consideration of open-source models

In our study, we focused on evaluating the performance of
specific LLMs, including GPT-3.5, GPT-4, Claude2, based on their
prominence and availability at the time of our research. We
recognize that there are other efficient models, such as Llama
and Mixtral, which are open-source and could be potential
alternatives. While these models are open-source, deploying them
on local machines poses challenges. Significant computing resources
and technical expertise such as programming skills for setup and
maintenance are required. As a result, these models were not
included in our current study. Future research could explore the
performance and cost-effectiveness of a broader range of models,
including open-source options, to provide a more comprehensive
understanding of the potential of LLMs in pharmacovigilance
literature screening.
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