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Introduction: Across multiple studies, the most common serious adverse event
groups that Small Cell Lung Cancer (SCLC) patients experience, whilst undergoing
chemotherapy treatment, are: Blood and Lymphatic Disorders, Infections and
Infestations together with Metabolism and Nutrition Disorders. Themajority of the
research that investigates the relationship between adverse events and SCLC
patients, focuses on specific adverse events such as neutropenia and
thrombocytopenia.

Aim: This study aims to utilise machine learning in order to identify those patients
who are at risk of developing common serious adverse event groups, as well as
their specific adverse event classification grade.

Methods: Data from five clinical trial studies were analysed and 12 analysis groups
were formed based on the serious adverse event group and grade.

Results: The best test runs for each of the models were able to produce an area
under the curve (AUC) score of at least 0.714. The best model was the Blood and
Lymphatic Disorder group, SAE grade 0 vs. grade 3 (best AUC = 1, sensitivity rate =
0.84, specificity rate = 0.96).

Conclusion: The top features that contributed to this prediction were total
bilirubin, alkaline phosphatase, and age. Future work should investigate the
relationship between these features and common SAE groups.
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1 Introduction

Lung cancer is one of the most common cancers worldwide. Approximately 7.5% of
people are at risk of developing lung cancer (Cancer Research UK, 2023; World Cancer
Research Fund International, 2023). Small Cell Lung Cancer (SCLC) accounts for 15% of
lung cancer cases (Kahnert et al., 2016). While the majority of lung cancer diagnoses are
Non-Small Cell Lung Cancer cases, SCLC patients in general have a higher metastasise rate
(Krohn et al., 2014). Treatment options for SCLC aim to simply manage the disease (Deneka
et al., 2019). Chemotherapy is one of the main treatment options for SCLC with the goal of
reducing the spread of the tumour through the disruption of the tumour DNA replication
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and cell division process (Kitao et al., 2017). Common examples of
such chemotherapy include carboplatin and cisplatin (Oun et al.,
2018; Azab et al., 2019).

As with all medications, patients may experience adverse events
whilst undergoing chemotherapy treatment. Adverse events are
unintended effects in response to a treatment therapy. Adverse
events can be classified into different grades according to the
common terminology criteria for adverse events (CTCAE) (Trotti
et al., 2003; Cancer Therapy Evaluation Program, 2023). Adverse
events that are grades 1 or 2 tend to be relatively mild to moderate
and often do not require serious medical intervention. In the context of
this paper, serious adverse events (SAEs) are adverse events that are
classed as grade 3 or higher. For grade 3 events, patients may require
hospitalisation and their quality of life may begin to be severely affected.
In grade 4, the SAE is considered to be life threatening and the patient is
in need of urgent medical care. SAE grade 5 is death caused by an
adverse event (Cancer Therapy Evaluation Program, 2023). SAEs
remain a critical challenge as many patients who experience SAEs,
may be suspended from their medical treatment. This unfortunately
increases the likelihood that their tumour may begin to thrive,
proliferate and has the potential to metastasise. There are also
potential ongoing costs for other medications that need to be used.
Some SAEs also have no defined mechanism which is a challenge in
terms of being able to predict which patients are at risk (Duncan et al.,
2015). There is a need to identify which patients are likely to develop
SAEs as this can aid in specialised monitoring of at-risk patients while
they commence and maintain their prescribed treatment.

One of the most commonly experienced SAEs in patients who
develop SCLC is neutropenia. This SAE belongs to the Blood and
Lymphatic system Disorders adverse event group (Kishida et al., 2009;
Cancer Therapy Evaluation Program, 2023). Neutropenia is a term used
to describe low neutrophil levels. Patients with neutropenia are
generally more susceptible to infections and sepsis (Nesher and
Rolston, 2013; Kochanek et al., 2019). There are many studies which
have identified risk factors for neutropenia through the use of machine
learning (Cho et al., 2020; Venäläinen et al., 2021; Wiberg et al., 2021).
Machine learning uses algorithms in order to uncover possible
relationships between variables in a dataset. Supervised classification
machine learning can be used to assess the relationship between
different input features in order to predict a particular response,
such as whether or not a patient may experience neutropenia
(Nasteski, 2017). Example risk factors for neutropenia include age
and low blood cell count (Lyman et al., 2014).

While the vast majority of SAEs experienced by SCLC patients
who are treated with chemotherapy agents is neutropenia, there are
other SAEs from different adverse event groups that patients may
also be at risk of developing (Ludwig et al., 2014; McQuade et al.,
2020). Moreover, many of the machine learning studies that are
published for adverse events in general focus more on the
comparison between patients who do not experience an adverse
event (the control group) and those patients who do indeed develop
the adverse event. Many machine learning classification algorithms
are primarily used to determine two possible outcomes. However,
SAEs can potentially have 4 different classifications, no SAE or grade
0, SAE grade 3, SAE grade 4 and SAE grade 5. Note, that there is no
SAE grade 1 or 2 in order to avoid confusion with adverse events
grade 1 and 2 which are not SAEs. The identification of not only
which SAE group a patient is likely to be a member of, but also the

grade, before a patient has commenced their chemotherapy
treatment, would offer many benefits. For example, the patients
who are identified as being at risk of developing a particular SAE
group may receive closer monitoring and they could potentially be
prescribed other medications to help combat the potential onset of a
particular SAE group. For patients who are identified as at risk of
developing a SAE grade 5, these patients may be given an alternative
cancer treatment or have their dosages reduced, in order to mitigate
the risk of more serious consequences, including death, due to
the SAE.

The aims of this investigation are to identify those patients who
are at risk of developing SAEs from commonly occurring SAE groups,
as well as their classifications. Moreover, this study aims to highlight
any predictive features that may make a patient susceptible to
developing a particular SAE group.

2 Materials and methods

2.1 Clinical data collection

Access to SCLC clinical trial data was obtained through
Project Data Sphere (Project Data Sphere, 2023). Data from
the following five clinical trial studies were used: NCT02499770,
NCT00143455, NCT01439568, NCT00119613 and NCT00363415
(ClinicalTrials.gov:NCT02499770, 2020; ClinicalTrials.gov:
NCT00143455, 2010; ClinicalTrials.gov:NCT01439568, 2019;
ClinicalTrials.gov:NCT00119613, 2008; ClinicalTrials.gov:
NCT00363415, 2009). These studies were selected based on
the accessibility of the data and the inclusion of laboratory data.
All of these studies had patients who were assigned to start a
chemotherapy treatment. The data from these studies were
merged together in order to analyse the occurrence of SAEs
in SCLC patients. A total of 1,043 patients were eligible for the
analysis. Table 1 provides a summary of the baseline
characteristics that were included in the analysis.

Only baseline features were included for the analysis in order to
assess whether the model is able identify patients who are at risk of
developing a particular SAE group and grade before they commence
their treatment. Typically, age is often displayed as a continuous
feature. However, for some of the clinical trials only an estimated age
range was provided, thus in order to preserve as much data as
possible all ages were based on ranges. For the concomitant
medications, the groups were based on the main indication for
each of the medications that were supplied. Many of the
concomitant entries for the patients had missing entries for the
intended indication of the concomitant medication. Where
medications had multiple indications, they were placed in a
separate group. An example of this is the nitrates group which
refers to medications such as glyceryl trinitrate which can be
used for cardiac therapy as well as blood pressure (Hashimoto
and Kobayashi, 2003). Vaso acting medications such as
pentoxifylline refers to treatments that also can be used to
treat both blood pressure and cardiac therapy, however, they
may have a different mechanism when compared to the nitrates
class (Hashimoto and Kobayashi, 2003; Prasad and Lee, 2007).
Features that had more than 80% of entries missing were
excluded from the analysis. The correlation values for each of
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TABLE 1 Summary baseline features that were included in the analysis.

Features Total N: 1,043 No SAE N: 289 Yes SAE N: 754

Demographic

Age: below 45 Yrs (count (%)) 26 (2.5) 6 (2.1) 20 (2.7)

Age: 45 to 49 Yrs (count (%)) 59 (5.7) 28 (9.7) 31 (4.1)

Age: 50 to 54 Yrs (count (%)) 147 (14.1) 49 (17) 98 (13)

Age: 55 to 59 Yrs (count (%)) 193 (18.5) 58 (20.1) 135 (17.9)

Age: 60 to 64 Yrs (count (%)) 217 (20.8) 55 (19) 162 (21.5)

Age: 65 to 69 Yrs (count (%)) 205 (19.7) 54 (18.7) 151 (20)

Age: 70 to 74 Yrs (count (%)) 122 (11.7) 26 (9) 96 (12.7)

Age: 75 to 79 Yrs (count (%)) 56 (5.4) 9 (3.1) 47 (6.2)

Age: 80 or above Yrs (count (%)) 18 (1.7) 4 (1.4) 14 (1.9)

Sex: Female (count (%)) 308 (29.5) 88 (30.4) 220 (29.2)

Sex: Male (count (%)) 735 (70.5) 201 (69.6) 534 (70.8)

Race: White (count (%)) 716 (68.6) 232 (80.3) 484 (64.2)

Race: Black (count (%)) 11 (1.1) 1 (0.3) 10 (1.3)

Race: Asian (count (%)) 62 (5.9) 9 (3.1) 53 (7)

Race: Other (count (%)) 10 (1) 4 (1.4) 6 (0.8)

Time since first diagnosis (Days) (mean, 95%CI) 16.8 (15.9–17.8) 16.6 (14.9–18.4) 16.9 (15.8–18.1)

Laboratory Findings

Haemoglobin (G/L) (mean, 95%CI) 99.5 (96.1–102.9) 110.1 (104.5–115.7) 95.4 (91.2–99.5)

Neutrophils (109/L) (mean, 95%CI) 6.4 (6.1–6.6) 6.5 (6.1–6.9) 6.3 (6–6.6)

Platelets (109/L) (mean, 95%CI) 318.5 (310.5–326.5) 329.8 (314.4–345.2) 314.1 (304.7–323.5)

Leukocytes (109/L) (mean, 95%CI) 9.3 (9–9.5) 9.5 (9.2–9.9) 9.2 (8.9–9.5)

Creatinine (µMol/L) (mean, 95%CI) 77.5 (76.1–78.9) 76.6 (74–79.1) 77.9 (76.3–79.6)

Lactate Dehydrogenase (U/L) (mean, 95%CI) 598.1 (537.1–659.1) 630.7 (507.2–754.2) 585.1 (515.1–655.1)

Sodium (mMol/L) (mean, 95%CI) 137.9 (137.4–138.3) 137.7 (136.9–138.6) 137.9 (137.4–138.4)

Total Bilirubin (µMol/L) (mean, 95%CI) 8.8 (8.4–9.2) 8.6 (7.8–9.3) 8.9 (8.5–9.4)

Albumin (G/L) (mean, 95%CI) 37.5 (37–38) 38 (37.1–39) 37.3 (36.7–37.9)

Alkaline Phosphatase (U/L) (mean, 95%CI) 148.9 (138.9–158.8) 147.7 (133.2–162.2) 149.3 (136.7–162)

Aspartate Aminotransferase (U/L) (mean, 95%CI) 35.3 (32.9–37.8) 34.5 (30–39) 35.7 (32.7–38.7)

Alanine Aminotransferase (U/L) (mean, 95%CI) 34.9 (32.7–37.2) 34.7 (30.4–39) 35 (32.3–37.7)

Concomitant Medications

Analgesic (count (%)) 353 (33.8) 78 (27) 275 (36.5)

Blood Agents (count (%)) 98 (9.4) 14 (4.8) 84 (11.1)

Anti-Inflammatory (count (%)) 322 (30.9) 73 (25.3) 249 (33)

GI Tract (count (%)) 332 (31.8) 76 (26.3) 256 (34)

Hypertension (count (%)) 215 (20.6) 42 (14.5) 173 (22.9)

Respiratory (count (%)) 240 (23) 51 (17.6) 189 (25.1)

Nitrate (count (%)) 23 (2.2) 2 (0.7) 21 (2.8)

(Continued on following page)
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the features when compared to the onset of any SAE can be
found in Supplementary Table S1 of the Supplementary
Materials.

2.2 SAE occurrence and common SAE
groups

As mentioned in the introduction, SAE refers to an adverse
event that is grade 3 or higher. Out of 1,043 patients, 754 patients
experienced a SAE (Table 1), the most common SAE was
neutropenia, which accounted for 37% of all the SAE occurrences
during the prescribed chemotherapy treatment. The three most
common SAE groups were Blood and Lymphatic Disorders
(59.4% of entries), Infections and Infestations (7.3% of entries)
and Metabolism and Nutrition Disorders (5.6% of entries).

2.3 Development of machine learning
models

2.3.1 Preparation of data for machine learning
Different analysis groups were formed based on the three

common SAE groups. All of the analysis groups contained SAE
information as well as the features (variables) that are presented
in Table 1. In order to handle the multiclassification of different
SAE grades and groups, a 1 vs. 1 approach was used. An example
of the 1 vs. 1 approach would be patients who experienced a
Blood and Lymphatic Disorder SAE grade 3 vs. patients who
experienced a Blood and Lymphatic Disorder SAE grade 4. The
model would then predict whether patients experienced grade
3 or grade 4. From the three common SAE groups a total of
12 analysis groups were formed. Analysis groups which resulted
in less than 100 patients in total were excluded as it was deemed
that there would be insufficient information available for the
machine learning to make robust predictions. An example of one

of the analysis groups that was excluded was Blood and
Lymphatic Disorder SAE grade 5 vs. Infections and
Infestations SAE grade 5.

While the Blood and Lymphatic SAE group accounted for 54.7%
of SAE entries, other SAE groups (as well as higher grades) are likely
to have fewer individuals who experienced that particular SAE group
and grade. This would result in an imbalanced training set which
could decrease the model’s ability and performance. Many models
that train on an imbalanced dataset will most likely predict the
majority class as there are more instances present in the data set than
for the minority class. There are several methods for handling
imbalanced datasets, such as the inclusion of weights, costs, and
sampling techniques (Blagus and Lusa, 2013; Dubey et al., 2014; Tao
et al., 2019). The synthetic minority oversampling technique
(SMOTE) was applied to the training set in order to balance the
number of cases for both the majority and minority class. SMOTE
creates new instances of the minority class, as well as reducing the
number of entries in the majority class (Blagus and Lusa, 2013). The
term “class” simply refers to the target variable which for all the
analysis groups will be the SAE groups and grades that are compared
to each other using the 1 vs. 1 approach. Other techniques were
attempted such as using weights, costs, up-sampling, and down-
sampling. Models that were trained with SMOTE, in this analysis
always achieved higher performance scores when compared to the
other techniques.

Table 2 shows the different subdivisions of the data that were
used in order to develop the machine learning models.

The analysis groups were then split into an 80:20 split for the
training and testing datasets. This decision was made so that the
model was able to learn as much as possible from the training set.
After splitting the data and transforming the training data
through SMOTE, the K nearest neighbours (KNN) algorithm
was then applied in order to predict values for any missing data
entries. In short the KNN algorithm predicted the missing value
entry based on the values of its corresponding neighbours
(Malarvizhi and Thanamani, 2012). The features were then

TABLE 1 (Continued) Summary baseline features that were included in the analysis.

Features Total N: 1,043 No SAE N: 289 Yes SAE N: 754

Diabetes (count (%)) 50 (4.8) 12 (4.2) 38 (5)

Vaso acting (count (%)) 14 (1.3) 4 (1.4) 10 (1.3)

Osteoporosis (count (%)) 27 (2.6) 7 (2.4) 20 (2.7)

Brain and Mind (count (%)) 234 (22.4) 50 (17.3) 184 (24.4)

Statin (count (%)) 63 (6) 12 (4.2) 51 (6.8)

Gout (count (%)) 32 (3.1) 11 (3.8) 21 (2.8)

Infections (count (%)) 100 (9.6) 26 (9) 74 (9.8)

Cardiac (count (%)) 25 (2.4) 3 (1) 22 (2.9)

Thyroid (count (%)) 29 (2.8) 2 (0.7) 27 (3.6)

Cancer (count (%)) 21 (2) 3 (1) 18 (2.4)

Muscle relaxant (count (%)) 11 (1.1) 2 (0.7) 9 (1.2)

95%CI, refers to the 95% confidence intervals. For continuous features the values inside the brackets are the 95%CIs. For the categorical features, the values inside the brackets are the number of

patients who fall into a specific group, expressed as a percentage.

Frontiers in Drug Safety and Regulation frontiersin.org04

Wanika et al. 10.3389/fdsfr.2023.1267623

https://www.frontiersin.org/journals/drug-safety-and-regulation
https://www.frontiersin.org
https://doi.org/10.3389/fdsfr.2023.1267623


centred and normalised in order to minimise the likelihood that
the model will favour particular features because they seem larger
in absolute value when compared other features. Once these
implementations were completed, a machine learning algorithm
can be applied to the training data, in order to learn any intricate
patterns between the features and the target variable.

2.3.2 AI implementation: extreme gradient
boosting

In this analysis, the algorithm of choice used for the machine
learning was the extreme gradient boosting (XGBOOST) algorithm.
Other algorithms were tested such as random forest, decision trees
and neural networks. However, XGBOOST yielded the best results
in terms of resulting values for the area under the curve (AUC) and
sensitivity rates. XGBOOST is a sequential gradient boosting
algorithm developed by Tianqi Chen. This algorithm can be used
for both classification and regression problems (Chen and Guestrin,
2016). In classification problems, the target variable is often
presented as a 0 or a 1. A simplified example of how XGBOOST
predicts the target variable is presented in the following.

In the example training data, the target variable is Blood and
Lymphatic Disorders SAE grade 0 vs. grade 3. A “0” in the target
variable would indicate patient did not develop any SAE whereas “1”
would indicate a patient did develop a Blood and Lymphatic Disorder
SAE grade 3. There are five patients in this example, three of them did
develop Blood and Lymphatic Disorders SAE grade 3 and two of the
patients did not. Therefore, three of the patients have “1” as their target
label and the other patients have “0” as their target label.

The base XGBOOST model for binary classification will predict
0.5 for all patients. Based on this, residuals can be calculated in order
to take into account the difference between the base predictions and

the true target label. As an example, the residuals for the patients
who did not develop SAE grade 3 would be −0.5 (0–0.5). Once the
residuals were calculated then the similarity score can be obtained.
This equation is given by:

Similarity Score � ∑residuals( )2

∑ previous probabilityi × 1 − previous probabilityi( )[ ]+
Regularisation parameter λ( )

(1)

where, in this case, the previous probability refers to the base
probability. The regularisation parameter λ can be used to
determine whether more branches (splits) should be developed
for this model (tree pruning). Assuming that λ is set to 1, the
similarity score in this example is 0.111.

This similarity score is then compared to a new similarity score
which has been formed based on the addition of a feature. For this
example, the feature that was implemented was age. Patients who
were younger than 50 years old fell into one group whereas those
who were aged 50 or older were placed into a different group. The
similarity scores for both of these groups were calculated. For
simplicity, the similarity score for patients who are younger than
50 years old was 0.8 and the similarity score for the other group was
1. These two similarity scores were then compared to the previous
score in order to calculate the gain.

Gain � Sumof the Similarity Score after split( )
− Sumof the Similarity Score before split( ) (2)

The gains here are 0.689 and 0.889 respectively. As these values
are positive this split is feasible. If the maximum number of splits
has not been achieved then the model can continue to branch out
and incorporate different features. However, in this example the

TABLE 2 Summary of the different analysis groups used to build the machine learning models.

Analysis
group

Original training
set (80%)

SMOTE
training set

Testing
set (20%)

Positive class % in SMOTE
training set

Positive class % in
testing set

Blood 0 vs. 3 461 1,596 115 57 47

Blood 0 vs. 4 443 1,442 110 43 53

Blood 3 vs. 4 441 1,463 110 43 50

Infec 0 vs. 3 295 455 73 43 19

Infec 0 vs. 4 254 140 63 43 13

Infec 0 vs. 5 244 77 60 43 7

Infec 3 vs. 4 86 154 21 43 29

Metab 0 vs. 3 272 322 68 43 7

Metab 0 vs. 4 245 77 61 43 10

Blood vs. Infec 244 238 61 43 7

Blood vs. Metab 240 119 60 43 3

Infect vs. Metab 90 245 22 43 32

Blood: Blood and Lymphatic Disorder group, Infec: Infections and Infestations SAE, group. Metab: Metabolism and Nutrition Disorder group. The numbers in the analysis group refer to the

SAE, grade. Note that for SAE, 0, this refers to individuals who developed no SAE during the trial. For the last three analysis group, e.g., blood vs. infec, the SAE, grade was 3, for instance Blood

group grade 3 vs. Infec group grade 3. SMOTE: synthetic minority oversampling technique. Positive class refers to the group that is on the right side of the vs., for instance in the first group the

positive group is Blood group with SAE, grade 3.
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maximum split has been achieved and thus the new predictions
can now be formed. First the output value is calculated which is
given by:

OutputValue � ∑Residual Errors
∑ Previous Probabilityi × 1 − previous probabilityi( )[ ]+

Regularisation parameter λ( )
(3)

Note that the output values are now based on the age groups as
well as the initial target variable. The equations for the new
predictions and prediction probabilities are given below:

NewPredictions � initial predictions + learning rate × Output values( )
(4)

Newpredictions Probability � eNewPredictions

1 + eNewPredictions
(5)

where the learning rate (which impacts on the step size of each
iteration) is often given by 0.3. With the new predictions any
new iterations that are made will build upon the probabilities
from the previous iterations with the aim of reducing the
residuals to 0.

In this analysis, the negative log likelihood of each of the
iterations is used to measure the performance of each iteration.
The negative log likelihood takes into account the new
prediction probabilities and the actual true labels (0 and 1).
Therefore, by reducing the negative log likelihood the residuals
of the model are also reduced and the accuracy of the model is
improved.

2.3.3 Optimal parameter values for the XGBOOST
algorithm

Optimal values for the XGBOOST algorithm’s parameters
can be obtained through hyper parameter tuning and cross
validation. Such parameters include: the maximum number of
splits (tree depth) and the number of features that can be used in
a single iteration (known as colsample by tree in R). In hyper
parameter tuning, optimal values can be found through different
search methods. In this analysis, the method for finding optimal
values was based on a random search, thus random combination
values were used and those that yielded the best sensitivity and
specificity rates were used for the training of the model. In cross
validation, the maximum number of iterations was also
established. This was based on splitting the data into 5 subsets
and testing within the training data, as to whether the model
would be able to predict accurate responses or not. The iteration
which had the lowest negative log likelihood value based upon the
analysis of the test data in the cross validation, was selected as the
optimal iteration number. With all the parameter values selected,
the model could efficiently be built and was applied to the
testing data.

2.3.4 Preparation of the testing data
The testing data does not undergo any imbalance

transformation. However, the testing data do undergo missing
value imputation and normalisation using the same processes as
its training data counterpart. The model trained on the training data
set was then used on the test data to predict the target variables for
the patients.

2.4 Feature importance using shapley
additive explanation values

Although XGBOOST trees can be displayed to highlight which
features influenced the model’s decision to predict a particular
output, the reality is that for complex models, there may be
many trees which have multiple branches with different
threshold values. This can make the overall output diagram
challenging to interpret. An alternative approach is to compute
the Shapley additive explanatory (SHAP) values, in order to assess
which features contributed the most to the model predictions (Hart,
1989; Li et al., 2020). SHAP values are based on Game Theory, where
each feature value has a contribution score to the overall model’s
response. This contribution score is based on the impact a specific
feature value has on the model predictions and, the impact the
feature value has in combination with other feature values, on the
model predictions. The contribution score as well as the initial
model’s bias (0.5) are summed to yield final predicted score for each
patient. Using the Blood and Lymphatic Disorders group SAE grade
0 vs. grade 3 as an example, the SHAP values that are lower than
0 would denote a decreased risk of developing SAEs. SHAP values
that are greater than 0 denote an increased risk of developing SAE
grade 3.

All of the analysis was performed using the software tool R using
the following packages for the model implementation: xgboost
(XGBOOST algorithm, training the data, cross validation), caret
(splitting the data, missing data implementation and normalisation),
mlr (hyper-parameter tuning), RANN (necessary for knn
implementation), Dmwr (SMOTE implementation), and Proc
(ROC curve analysis) (R Core Team, 2023; Chen, 2023; Kuhn,
2023; Bischl, 2016; Arya et al., 2019; Torgo, 2010; Robin, 2011).
The relevant codes used for this analysis can be found at: https://
github.com/LindaWanika/SCLC-common-SAE-groups.

3 Results

3.1 Optimal iteration number for each of the
models

Figure 1 visualises the cross-validation process for each of the
models.

The Blood and Lymphatic Disorders group, SAE grade 0 vs.
grade 3 model (Blood grade 0 vs. grade 3), appears to be the only
model in the cross-validation process where the log loss value is able
to reach to 0 for both the training and testing evaluation (see
Figure 1A). The Infections and Infestation group, SAE grade
0 vs. grade 5 (Infec grade 0 vs. grade 5) has the highest negative
loglikelihood (log loss) value of 0.7 even after the ideal iteration
number has been given (Figure 1F). In most of the model
evaluations, it is apparent that the training evaluation performs
better than the testing evaluation, moreover, most of the training
evaluations are able to achieve a log loss of approximately 0.
A summary of all the parameter values that were chosen for each
of the models based on the random search during the hyper tuning
process can be found in Supplementary Table S2 in the
Supplementary Materials. Table 3 summarises the optimal
iteration number for each of the models.
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The Infec grade 0 vs. grade 5 model has the least number of
iterations needed whereas the Infections and Infestations group SAE
grade 3 vs. grade 4 (Infec grade 3 vs. grade 4), has the highest
iteration number (Table 3).

3.2 Comparisons of the average test runs

Figure 2 displays the average receiver operating haracteristic
(ROC) curves for each of the models.

Figure 2 shows the average AUC, sensitivity and specificity
scores for the testing data based on 100 model runs. Table 4
summarises all the scores.

In both Figure 2A and in Table 4, the Blood grade 0 vs. grade
3 model, has the highest AUC and on average the highest sensitivity
and specificity rates. The Blood group grade 3 vs. grade 4 has, on

average have the lowest AUC, and sensitivity rate (Figure 2A).
However, the Blood grade 0 vs. grade 4, on average has the
lowest specificity rate at 0.406 (Table 3). The other models in
comparison, appear to have similar AUC scores on average, at
approximately 0.7 (Figures 2B–D).

3.3 Comparisons of the best test runs

Figure 3 displays the best ROC curves for each of the models.
Figure 3 shows that the sensitivity and specificity rates often

fluctuate. Table 5 summarises all the scores for the best test runs for
each of the models.

Similar to the values generated for the average run, the Blood
group grade 0 vs. grade 3 also had the best AUC sensitivity and
specificity rates (Figure 3A; Table 5). In the Infections and

TABLE 3 Summary of the best iterations for each of the models based on the cross-validation test evaluation.

Models number* 1 2 3 4 5 6 7 8 9 10 11 12

Best iteration 21 49 38 34 24 6 61 27 41 42 26 29

The model number refers to the order that they appear in Figure 1. For example, model 1 is Blood grade 0 vs. 3, model 2 is Blood grade 0 vs. grade 4, etc.

FIGURE 1
Performance of each of the models during the cross-validation process. (A) Blood Grade 0 vs Grade 3 model. (B) Blood Grade 0 vs Grade 4 model.
(C) Blood Grade 3 vs Grade 4model. (D) Infec Grade 0 vs Grade 3model. (E) Infec Grade 0 vs Grade 4model. (F) Infec Grade 0 vs Grade 5model. (G) Infec
Grade 3 vs Grade 4model. (H)Metab Grade 0 vs Grade 3model. (I)Metab Grade 0 vs Grade 4model. (J) Blood vs Infec model. (K) Blood vs Metab model.
(L) Infec vs Metab model. A black line refers to the training log loss and a red line refers to the test log loss evaluation. Note that the term “test” does
not refer to the testing data set but rather the cross-validation test data. Blood: Blood and Lymphatic Disorder group, Infec: Infections and Infestations
SAE group. Metab: Metabolism and Nutrition Disorder group. Log loss refers to the negative log likelihood.
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Infestations group analysis (Figure 3B), the average AUC score
for all the models is 0.8 with the grade 3 vs. grade 4 group having
the highest AUC at 0.933. For the Metabolism and Nutrition

Disorders group analysis (Figure 3C), the average AUC is also
0.8 and both of the models yield a higher sensitivity rate than
specificity (Table 5). In the combinations group analysis

TABLE 4 Average results from all 100 testing runs for each model.

Models AUC Sensitivity Specificity

Blood Group SAE 0 vs. 3 1.000 0.774 0.896

Blood Group SAE 0 vs. 4 0.700 0.594 0.406

Blood Group SAE 3 vs. 4 0.651 0.575 0.575

Infec Group SAE 0 vs. 3 0.701 0.660 0.538

Infec Group SAE 0 vs. 4 0.700 0.671 0.527

Infec Group SAE 0 vs. 5 0.707 0.696 0.489

Infec Group SAE 3 vs. 4 0.716 0.648 0.559

Metab Group SAE 0 vs. 3 0.700 0.682 0.514

Metab Group SAE 0 vs. 4 0.707 0.683 0.521

Blood vs. Infec Group (SAE 3) 0.700 0.684 0.513

Blood vs. Metab Group (SAE 3) 0.709 0.699 0.507

Infec vs. Metab Group (SAE 3) 0.707 0.635 0.563

AUC: area under the curve. Blood: Blood and Lymphatic Disorder group, infec: Infections and Infestations SAE, group. Metab: Metabolism and Nutrition Disorder group.

FIGURE 2
ROC curves for each of the models based on the average model run. (A) Blood SAE groupmodels. (B) Infec SAE groupmodels. (C)Metab SAE group
models. (D)Grade 3 SAE groupmodels. Blood: Blood and Lymphatic Disorder group, Infec: Infections and Infestations SAE group. Metab: Metabolism and
Nutrition Disorder group.
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FIGURE 3
ROC curves for each of the models based on the best test run. (A) Blood SAE group models. (B) Infec SAE group models. (C) Metab SAE group
models. (D)Grade 3 SAE groupmodels. Blood: Blood and Lymphatic Disorder group, Infec: Infections and Infestations SAE group. Metab: Metabolism and
Nutrition Disorder group.

TABLE 5 Best test runs for each model.

Models AUC Sensitivity Specificity

Blood Group SAE 0 vs. 3 1.000 0.840 0.964

Blood Group SAE 0 vs. 4 0.759 0.621 0.635

Blood Group SAE 3 vs. 4 0.714 0.606 0.606

Infec Group SAE 0 vs. 3 0.851 0.780 0.566

Infec Group SAE 0 vs. 4 0.816 0.771 0.582

Infec Group SAE 0 vs. 5 0.799 0.828 0.621

Infec Group SAE 3 vs. 4 0.933 0.795 0.618

Metab Group SAE 0 vs. 3 0.794 0.768 0.521

Metab Group SAE 0 vs. 4 0.845 0.806 0.533

Blood vs. Infec Group (SAE 3) 0.794 0.770 0.519

Blood vs. Metab Group (SAE 3) 0.931 0.910 0.514

Infec vs. Metab Group (SAE 3) 0.819 0.708 0.597

AUC: area under the curve. Blood: Blood and Lymphatic Disorder group, infec: Infections and Infestations SAE, group. Metab: Metabolism and Nutrition Disorder group.
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(Figure 3D), the Blood vs. Metabolism analysis yields the highest
AUC and sensitivity rates out of all the models in general with a
score of 0.910.

The confusion matrices for both the average test runs and the
best testing runs can be found in Supplementary Tables S3, S4 in the
Supplementary Materials.

3.4 Feature analysis for all of the models

Figure 4 provides the SHAP plots for the Blood and Lymphatic
Disorders group SAE models.

For the grade 0 vs. grade 3 model, patients who were over
80 years old, had high total bilirubin, lactate dehydrogenase and
alkaline phosphatase levels, obtained SHAP values that were below 0
(Figure 4A). In Figure 4B, female patients, low platelet, and
haemoglobin levels as well as high creatinine levels yielded SHAP
values that were above 0 for grade 0 vs. grade 4. In Figure 4C,
patients who were female and had a higher total bilirubin level
obtained higher SHAP values, whereas patients who had higher
creatinine levels obtained SHAP values less than 0.

Figure 5 provides the SHAP plots for the Infections and
Infestations group SAE models.

For the grade 0 vs. grade 3 model, low haemoglobin levels,
patients who were under 45 years old and low sodium levels were

associated with SHAP values that are above 0 (Figure 5A). Low
haemoglobin levels are also associated with SHAP values that are less
than 0 for the grade 0 vs. grade 4, grade 0 vs. grade 5 and grade 3 vs.
4 models (Figure 5). High alkaline phosphate levels are associated
with grade 5 and only three features were used in total for the
prediction (Figure 5C). Respiratory medications and high total
bilirubin and leukocytes levels are associated with higher SHAP
values (Figure 5B).

Figure 6 provides the SHAP plots for the Metabolism and
Nutrition Disorders group SAE models.

Low albumin levels are associated with higher SHAP values
(Figure 6). High leukocyte levels in grade 0 vs. grade 3 are associated
with low SHAP values (Figure 6A). For both models, lower bilirubin
levels are associated with SHAP values below 0.

Figure 7 provides the SHAP plots for the comparison SAE
groups.

For the Blood and Lymphatic Disorders group vs. Infections and
Infestations group, high haemoglobin and sodium levels are
associated with SHAP values below 0, whereas high neutrophils
are associated with higher SHAP values (Figure 7A). For the Blood
and Lymphatic Disorders group vs. Metabolism and Nutrition
Disorders group, patients who had respiratory medications, high
platelet levels and patients who were aged between 65 and 69 years
were associated with high SHAP values, low neutrophils were
associated lower SHAP values. In Figure 7C, high alkaline

FIGURE 4
SHAP plots displaying the top five features for the Blood group SAEmodels. (A)Grade 0 vs Grade 3model. (B)Grade 0 vs Grade 4model. (C)Grade 3
vs Grade 4 model. Grey dots refer to feature values that are below the lower quartile range (LQR), blue dots refer to the feature values that fall between
LQR and the mean. Orange dots refer to the feature values that fall between the mean and upper quartile range (UQR). Red dots refer to values that are
above the UQR.
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phosphatase and haemoglobin were associated with high SHAP
values whereas high leukocytes and total bilirubin and patients who
are female were associated with low SHAP values.

4 Discussion

Based on the average model analysis, most of the models were
able to correctly identify a higher number of patients who fell into
the more severe group of the 1 vs. 1 analysis group compared to the
number of patients who fell into the less severe group. This is
evidenced in Table 4, with most of the average models having a
higher sensitivity rate than specificity rate. Sensitivity rates measures
the “true positive rates”, i.e., classes which fall to the right side of the
vs. group, whereas specificity rates measure the “true negative rate”,
which are classes which fall on the left side of the vs. group. In a real-
world setting, this outcome is more beneficial as misclassifying a
patient as at risk of developing SAE grade 4 when in reality they are
not at risk of developing any SAE, is a better outcome than
misclassifying a patient as not at risk of developing any SAE,
when in fact the patient is at risk of developing SAE grade 4.
However, for the comparison models between different groups,
both sides in the analysis group have the same level of severity.
A possible reason as to whymore patients were predicted as at risk in
the “positive” group could be that the model was trained on a

training set where 43% of cases were positive, however the actual test
set had less than 50% of “positive” cases for the Infections and
Infestations group, the Metabolism and Nutrition Disorder group
and the comparison models between different groups (Table 2). It is
possible that the model predicted more positive cases simply because
it assumes that more positive cases should exist.

In Table 5, the best test runs for each of the models were able to
correctly classify at least 60% of patients who fell into the positive
group and at least 50% of patients who fell into the negative
group. By far the best model was the Blood and Lymphatic
Disorder group SAE grade 0 vs. grade 3 which achieved, on
average, a sensitivity rate of 0.774 and a specificity rate of 0.896
(Table 4). The best run for this model, in particular, achieved a
sensitivity score of 0.840 and a specificity rate of 0.964 (Table 5). It is
important to note that the sensitivity and specificity scores presented
are the mean and not the maximum rates. Other models that
achieved high predictive scores (based on the best test runs) were
the Infections and Infestations group SAE grade 0 vs. grade 5 and the
Blood and Lymphatic Disorder group vs. the Metabolism and
Nutrition Disorder group (Figures 2, 3; Table 5). While the
Infections and Infestations group SAE grade 3 vs. grade 4 model
achieved a higher AUC score (Tables 4, 5), the grade 0 vs. 5 achieved
higher sensitivity and specificity rates. Moreover, this model, in
particular, had fewer iterations and thus was also simpler than the
grade 3 vs. grade 4 (Table 3). For the Infections and Infestation

FIGURE 5
SHAP plots displaying the top five features for the Infec group SAEmodels. (A)Grade 0 vs Grade 3model. (B)Grade 0 vs Grade 4model. (C): Grade 0
vs Grade 5 model. (D) Grade 3 vs Grade 4 model. Grey dots refer to feature values that are below the lower quartile range (LQR), blue dots refer to the
feature values that fall between LQR and the mean. Orange dots refer to the feature values that fall between mean the and upper quartile range (UQR).
Red dots refer to values that are above the UQR. For Grade 0 vs Grade 5, only three features were used to perform the predictions.
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FIGURE 6
SHAP plots displaying the top five features for the Metab group SAE models. (A) Grade 0 vs Grade 3 model. (B)Grade 0 vs Grade 4model. Grey dots
refer to feature values that are below the lower quartile range (LQR), blue dots refer to the feature values that fall between LQR and themean. Orange dots
refer to the feature values that fall between the mean and upper quartile range (UQR). Red dots refer to values that are above the UQR.

FIGURE 7
SHAP plots displaying the top five features for the grade 3 SAE groupmodels. (A) Blood vs Infec model. (B) Blood vs Metab model. (C) Infec vs Metab
model. Grey dots refer to feature values that are below the lower quartile range (LQR), blue dots refer to the feature values that fall between LQR and the
mean. Orange dots refer to the feature values that fall between themean and upper quartile range (UQR). Red dots refer to values that are above the UQR.
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group SAE grade 0 vs. grade 5, the model was able to correctly
identify 82% of patients who were at risk of developing SAE grade
5 and identified 62% of patients who are not at risk of developing
SAEs (Table 5). The Blood and Lymphatic Disorder group vs. the
Metabolism and Nutrition Disorder group model was able to
identify 91% of patients who were at risk of developing a
Metabolism and Nutrition Disorder group SAE grade 3 and
identified 51% of patients who were at risk of developing a Blood
and Lymphatic Disorder group SAE grade 3.

The SHAP plots for each of the models provides a simple and
clear overview of the top features that contributed the most for each
model prediction. The SHAP plots that are presented here are based
on the best test runs for each model. Values that are above 0 indicate
that patients are more at risk of being in the positive class, whereas
values that are less than 0 indicate that patients are either not at risk
of developing SAE (for models that compare grade 0 to another
grade), or the negative class. Note that the classification of the
feature values (lower quartile, mean, upper quartile) does not
necessarily denote that the values are abnormal readings (see
Supplementary Table S17–S28 for the summary statistics of each
of the features for the respective models in the Supplementary
Materials).

For the Blood and Lymphatic Disorders group analysis, patients
with low haemoglobin levels were associated with being at risk of
developing Blood group SAE grade 4, whereas low total bilirubin
levels were associated with patients not being at risk of developing
SAE (Figure 4). Low haemoglobin can also be associated with
anaemia and other Blood Lymphatic Disorders (Mercadante
et al., 2000; Rusciano et al., 2008). High bilirubin levels can also
be associated with the breakdown of haemoglobin which may result
in decreased levels of haemoglobin (Figure 4C) (Kao et al., 2012). For
the first model (grade 0 vs. grade 3), patients who were aged 80 or
above were deemed as less likely to develop Blood SAE. In Table 1,
the majority of patients are not in this age group range and have a
higher incidence of SAEs, in general. This could potentially explain
as to why the model highlighted this as an important feature. For the
second model (grade 0 vs. grade 4) low platelet levels were also
associated with a higher risk of grade 4 which is more in keeping
with what is known, as thrombocytopenia is a common SAE and is
often associated with chemotherapy treatment (Weycker et al.,
2019).

Similar to the Blood and Lymphatic Disorders group, in the
Infections and Infestations group (Figure 5) low haemoglobin was
associated with grade 3 severity, and in some instances grade 4
(Figure 5B), and low bilirubin is associated with patients less at risk
of developing an SAE. Lymphatic disorders can make patients more
suspectable to infections as the levels of lymphocytes decrease
(Francis et al., 2013). For grade 0 vs. grade 4, patients who were
taking respiratory medications and had high leukocyte levels were
also more at risk of developing grade 4. A possible reason for the
respiratory link to infections could be that, prior to the treatment,
these patients may have been prescribed cough supplements or other
respiratory medications for the treatment of respiratory conditions
caused by infections (Rosen, 2006). High leukocytes also tend to be
present during inflammation which may have been caused by an
infection (Chmielewski and Strzelec, 2018). Higher alkaline
phosphatase levels are associated with patients who are at risk of
developing grade 5 (Figure 5C). High alkaline phosphatase levels can

be associated with liver disorders which can also include infections
(Blayney et al., 2008). For the Blood and Lymphatic Disorders group,
patients who were female seem to have a higher susceptibility based
on the SHAP values, to developing SAEs, even though the majority
of patients who developed SAEs, in general were male (Table1).
Some studies have found that females are more suspectable to
infections and anaemia, as well as other blood conditions, which
may be a possible reason for this difference (Nazir et al., 2011).
Although Figure 5D shows females as also being a contributing
factor for the Infections and Infestations group, it should be noted
that this feature does not appear in any of the other Figure 5 plots.

The Metabolism and Nutrition Disorder SAE group has a
smaller test set compared to the previous analysis groups
(Table 2). Low albumin levels were associated with patients being
at risk of grades 3 and 4 (Figure 6). Low albumin levels have been
linked with hepatic disorders, which can potentially impact the
metabolism process (Matthewson et al., 1986; Carvalho and
Machado, 2018). This may also explain the relationship between
bilirubin and the occurrence of Metabolism and Nutrition Disorder
SAEs (Matthewson et al., 1986; Hamoud et al., 2018). Decreased or
increased levels of minerals in the body are often associated with
Metabolism and Nutrition Disorders (Cancer Therapy Evaluation
Program, 2023).

In Figure 7, low haemoglobins are more associated with the
Infections and Infestations group SAE grade 3 when compared to
the other SAE groups. Low platelet and neutrophils levels are more
indicative of Blood and Lymphatic Disorders SAE grade 3 when
compared to the other groups. High alkaline phosphatase seem are
associated with patients at risk of developing Metabolism and
Nutrition Disorders group SAE grade 3 when compared to the
Infections and Infestations group SAE grade 3 groups, as well as
higher platelet levels when compared to the Blood and Lymphatic
Disorders group.

The application of machine learning to this dataset has enabled
the identification of trends between common SAE groups and features
whichmay have been overlooked through the application of statistical
methods alone. During the training process, XGBOOST is able to
analyse multiple features and split these features accordingly in order
to determine adequate feature thresholds which would impact on the
predictability of common SAE group’s onset, within a short time
frame (minutes). A significant amount of time would be required in
order to achieve the same outcome using traditional statistical
methods. Moreover, many of the traditional statistical methods
rely on significant correlations between features and the predictive
target. In Supplementary Table S1 (SupplementaryMaterials), only six
features have a p-value of less than 0.05when associatedwith the onset
of SAE. Total bilirubin and alkaline phosphatase are two features
which were identified as common risk factors for the onset of
common SAE groups however, both of them have correlation
values of less than 0.1 and p-values greater than 0.5.

While machine learning does have advantages in supporting
model predictions, it is important to note that in order to achieve
optimal results, good quality data are needed, i.e., large in quantity
and a balanced dataset with minimal missing values. For adverse
event onset the data are usually imbalanced given that these
occurrences are generally minimal and sometimes rare. In
clinical trials, and to a greater extent with real world data,
missing entries are common. As mentioned in the methods
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section, features that had up to 80% missing entries were included
in the analysis. The features that were excluded may have been
significant for the onset of common SAE groups, however, it is
most likely that XGBOOST would have dismissed these features. In
addition to this, while KNN was used to impute the missing values,
the values selected may not have been adequate. In other words, it
is possible that a clinician may see the value of one feature and be
able to deduce that, for another feature, values should fall within a
specific range. A possible solution, when applying this technique to
real world data, would be to initially assess the quality of the data
and consult with clinicians to determine which features should be
included and if it is possible to infer missing values from other
features. From such collaboration, the techniques explained in this
paper could equally be applied to study the onset of other adverse
events, including rare adverse events and also the onset of other
diseases.

Many of the features that are presented in the SHAP plots seem
to display varied results suggesting that there is not enough evidence
to suggest whether extremities of the features could be used to
identify whether patients are more at risk or less at risk of developing
an SAE which falls into one of these groups. An important limitation
of this analysis is that the SHAP plots are only based on the best
models which are based on the data provided, the data split used,
and the algorithm applied. Despite using the same data split and the
same parameter values there was variability within the 100 testing
runs (see Supplementary Tables S16–27 in the Supplementary
Materials for all 100 runs for each model). It is possible that with
more runs the AUCmay change and that other sets of test runs may
have yielded different top five features to be explored in the SHAP
plots. SHAP values are also based on an unrealistic assumption that
the features are independent from each other. This assumption can
lead to features being identified as providing a significantly high
contribution score to the prediction when in reality it could be that
certain features are always dependent on other features and this is
contributing to the final contribution score (Aas et al., 2021). It is
important to take into account that the results presented here are
based on many factors and that the training data which the models
are based on also include synthetic data (for the missing data
imputation). It is therefore crucial to investigate any possible
correlations between the features and predictions and perform
further evaluation using statistical methods under correct
assumptions in order to determine whether these features indeed
have possible causative relationships with the onset of common SAE
groups.

To conclude, from this study the best models for each analysis
group were able to achieve sensitivity rates of at least 0.6 and
AUC scores of at least 0.7. The Blood and Lymphatic Disorder
group SAE grade 0 vs. grade 3 model achieved the highest AUC of
1. Other high performing models include the Infections and
Infestations group SAE grade 0 vs. grade 5 and the Blood and
Lymphatic Disorders group SAE grade 3 vs. the Metabolism and
Nutrition Disorders group SAE grade 3. For the Blood and
Lymphatic Disorder group SAE grade 0 vs. grade 3 model,
patients younger than 80 years old are associated with the
occurrence of grade 3. Further work should be undertaken to
further investigate whether these features can be robustly used to
predict the onset of these SAEs as well as identifying risk factors
for other SAE groups.
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