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The paper is intended to deal with the regulatory status of the family of substance-
based medical devices (SB-MD) which contain mucoadhesive polymers.
Mucoadhesive formulations are mainly intended for oral/buccal, gastro-
esophageal, nasal, or vaginal administration routes. They contain one or more
substances/polymers of either natural, synthetic or semi-synthetic origin
endowed with mucoadhesive properties. These are complex substances whose
chemical-physical properties are in general well characterized. Hydration and
water retaining properties, gel formation, lubricating properties are example of
functional characteristics that may be involved in mucosal interaction. However,
there are still uncertainties as to the underlaying mechanisms. The idea is to
provide support, to the understanding of the prevailing mechanisms of action of
the family of SB-MD that exploit mucoadhesion phenomenon to exert the
intended therapeutic action. A case study on Hyaluronic acid as a typical
representative of mucoadhesive polymers, is presented. The correct
understanding of the mechanism of action of the substances/polymers
involved in SB-MD is pivotal to a smooth and successful submission to the
involved regulatory bodies to a positive assessment and to the final approval.
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1 Introduction

The more general term bioadhesion commonly defines the adhesion of a substance
(i.e., polymeric-based products, such as dosage forms or medical devices) to a biological
tissue: the substance-biologic tissue adhesive interaction allows an intimate contact between
the two materials for an extended period of time. The higher the strength of the adhesive
interaction, the higher the residence time of the substance on the biologic tissue. When the
biologic tissue is represented by the mucus layer that covers a mucosal tissue, the
phenomenon is referred to as mucoadhesion (Edsman and Hägerström, 2005; Smart,
2005; Cook and Khutoryanskiy, 2015).

To provide a detailed understanding of the mucoadhesion phenomenon, a brief
description of the structure of mucosal tissues, in particular mucus composition, is
mandatory. The mucus layer consists of a highly hydrated viscoelastic gel network; it is
composed by water (up to 95% by weight), glycoproteins (generally no more than 5% by
weigh), inorganic salts, carbohydrates and lipids. Mucins are a family of soluble
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glycoproteins, which are responsible for the mucus gel-like structure
due to their high molecular weight (MW) and ability to form
complexes as a result of intermolecular disulfide bridges and
hydrophobic interactions. Each mucin subunit consists of
protein-based backbones (12%–17% of the total mucin weight),
including 70% of serine, threonine and proline by weight, and
oligosaccharide-based grafted chains, made of
N-acetylgalactosamine, N-acetylglucosamine, galactose, fucose
and N-acetylneuramic acid. More than 63% of the protein
backbone is covered with oligosaccharide chains, with the
remainder structure being non-glycosylated. Most mucins are
characterized by a net negative charge due to the presence of
carboxylate groups (sialic acid) and ester sulfates at the terminus
of some sugar units; the pKa value of these acidic groups is
approximately 1.0–2.6, resulting in their complete ionization
under physiological conditions (Figure 1) (Smart, 2005; Cook
and Khutoryanskiy, 2015).

Since the mid-eighties formulators have tried to exploit
mucoadhesion phenomenon to ameliorate the performance of
the dosage forms intended for mucosal application, basically
through the oral/buccal, gastro-esophageal, nasal and vaginal
administration routes (Kumar et al., 2020; Karavasili et al., 2021).
Even though ocular and vesical epithelia are not classified as
mucosal tissues, also the formulations intended to treat ocular or

vesical diseases often claim muco/bioadhesion properties, due to
the presence of mucin-like coverage. Mucoadhesive systems may
belong to the category of medicinal products, but, most
frequently, they are medical devices or even cosmetics; several
of them have been well received and are currently available on the
marketplace. The substances that play the major role in such
systems are the so-called mucoadhesive polymers. A list of the
most used polymers is reported in Table 1.

The present paper is not intended to be the hundredth review on
mucoadhesive polymers, however, for the benefit of the reader, a list
of references to published comprehensive review papers is provided
hereafter (Roy et al., 2009; Cook and Khutoryanskiy, 2015; Yermak
et al., 2022; da Silva et al., 2022; Rossi et al., 2014; Sandri et al., 2015;
Caramella et al., 2015; Rossi eta l., 2018). In these reviews the various
chemical categories of mucoadhesive polymers together with the
relevant physical-chemical (MW, hydrophilicity, cross-links) and
mechanical (cohesiveness) properties are discussed as well as their
possible applications in the biomedical field. Furthermore, chemical
functionalization of native polymers, such as thiolation (Duggan
et al., 2017; Leichner et al., 2019; Federer et al., 2021; Knoll et al.,
2021; Summonte et al., 2021), conjugation with boronate groups
(Surendranath et al., 2022) and methacrylation (Agibayeva et al.,
2020) has also been proposed to improve the mucoadhesive
properties.

FIGURE 1
Schematic structure of mucin glycoproteins (Cook and Khutoryanskiy, 2015).
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Even though the chemical-physical and mechanical properties
are well characterized, mucoadhesive polymers are complex
substances and there are still uncertainties as to their mechanism
of action. The important question that needs to be answered in view
of their possible employment in substance-based medical devices
(SB-MD) is: are they simply functional excipients or do they play
any unforeseen biological effect? Why is it not so simple to answer
this question? It is necessary to go back to the mucoadhesion
phenomenon and its complexity.

2 Mucoadhesion process and proposed
theories

As anticipated, the mucoadhesion process occurs at the
interface between the adhesive substance and the superior
layer of the mucosa. The first step of this process is the
formation of an intimate contact (wetting step) between the
substance and the mucus. In the pharmaceutical field, the
nature of the dosage form/medical device may impact this
process step. In the case of semisolids or liquids, the intimate
contact with the mucosal tissue results from dosage form/medical
device wetting and/or spreading, which are responsible for an
increase in the contact area. Instead, as far as dry, and not fully
hydrated dosage forms/medical devices, their wetting, hydration
and swelling promote a more intimate contact with the mucosa.
In a second step (consolidation step) of the mucoadhesion
process, an interpenetration of the hydrated/swollen polymeric

matrix (dosage form/medical device) and the mucus gel network
occurs (Figure 2) (Edsman and Hägerström, 2005; Zahir-
Jouzdani et al., 2018).

Indeed, both wetting and interpenetration are the results of
more complex interaction between the formulation and the
underlying tissular/cellular environment. Decades of research on
this topic have allowed to develop six theories that explain the
mechanism/s underlying the adhesion of a substance (i.e., polymer-
based product) to mucosal surfaces. Here below brief description of
each theory is provided (Reinhart and Peppas, 1984; Smart, 2005;
Roy et al., 2009; Carvalho et al., 2010; Khutoryanskiy, 2011; Shaikh
et al., 2011; Shinkar et al., 2012; Sosnik et al., 2014; Cook and
Khutoryanskiy, 2015; de Lima et al., 2022).

2.1 Wetting theory

The wetting theory mainly applies to liquids or substances with
low viscosity (hereby referred to as “adhesive candidate”), endowed
with a high affinity to the mucus layer and, thus, a good capability to
spontaneously spread onto the mucosa surface. The adhesive
candidate-mucosa affinity can be evaluated through the contact
angle method: the lower the contact angle, the higher the affinity
between the substance and the mucosa. The contact angle indicates
the degree of wetting when a liquid (i.e., the adhesive candidate) and
a solid (i.e., the mucosa) interact: a contact angle equal or close to
zero indicates an adequate spreadability of the adhesive candidate
onto the mucosal tissue, that is a prerequisite for the mucoadhesion

TABLE 1 Classification of mucoadhesive polymers based on generation, charge, solubility and molecular interactions (Bandi et al., 2021; Karavasili et al., 2021).

Examples References

Generation I (traditional polymers) Cationic and anionic polymers Sosnik et al. (2014)

II (functionalized polymers) Thiolated polymers Duggan et al. (2017), Leichner et al. (2019), Federer et al.
(2021), Knoll et al. (2021), Summonte et al. (2021)

Acrylated polymers Agibayeva et al. (2020)

Boronated polymers Surendranath et al. (2022)

Charge Cationic polymers Chitosan Sandri et al. (2014), Kumar et al. (2016), Ways et al. (2018),
Collado-González et al. (2019), Freitas et al. (2020), Mura

et al. (2022)

Anionic polymers PAA and its cross-linked polymers (carbomers), sodium
alginate, carrageenan, gelatin, gums, sodium

carboxymethylcellulose (NaCMC)

Dolci et al. (2020), Agibayeva et al. (2020), Göbel et al. (2021),
da Silva et al. (2022), Yermak et al. (2022)

Non-ionic polymers Hydroxypropylmethylcellulose (HPMC),
hydroxyethylcellulose (HEC) and methylcellulose (MC)

da Silva et al. (2022)

Solubility Water-soluble polymers Hydroxypropylcellulose (HPC), NaCMC da Silva et al. (2022)

Water-insoluble polymers Ethylcellulose (EC), polycarbophil da Silva et al. (2022)

Interaction Electrostatic Chitosan Sandri et al. (2014), Kumar et al. (2016), Ways et al. (2018),
Collado-González et al. (2019), Freitas et al. (2020), Mura

et al. (2022)

Covalent Cyanoacrylate Agibayeva et al. (2020)

Hydrogen bond Hyaluronic acid, poly(vinyl alcohol) (PVA), PAA and
poly(hydroxyalkyl methacrylate)

Tamburic and Craig (1995), Pritchar et al. (1996), Leitner
et al. (2003), Patel et al. (2003), Sandri et al. (2004), Fallacara
et al. (2018), Estrellas et al. (2019), Vigani et al. (2019),

Dovedytis et al. (2020), Dalei and Das (2022)
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(Peppas and Sahlin, 1996; Mathiowitz et al., 1999; McBain and
Hopkins, 2002; Shaikh et al., 2011).

2.2 Electronic theory

The electronic theory postulates that the adhesive candidate and
the mucosal tissue are characterized by different electronic
structures. Thus, after contact of adhering surfaces, an electron
transfer occurs leading to the formation of a double electronic layer
at the adhesive candidate-mucus interface; the result is an
electrostatic attraction between the two surfaces that is
responsible for mucoadhesion (Mathiowitz et al., 1999; Asati
et al., 2019).

2.3 Adsorption theory

The adsorption theory predicts that mucoadhesion is achieved
via specific interactions (primary and secondary bonds) between the
adhesion candidate and the mucosal tissue. After contact of
adhering surfaces, they mainly interact by hydrogen bonds and
Van der Walls forces; hydrophobic interactions may play an
important role especially when the adhesive substance (i.e., a
polymer) has an amphiphilic nature. According to this theory,
such interactions, although they are individually weak, are the
main contributors to the mucoadhesion; a great number of
interactions at the adhesive candidate-mucus interface can result
in an intense adhesive phenomenon (Ahuja et al., 1997; Mathiowitz
et al., 1999; Huang et al., 2000; Lee et al., 2000; Hägerström et al.,
2003; Salamat-Miller et al., 2005).

2.4 Diffusion theory

The diffusion theory postulates that the polymeric chains of the
adhesive candidate and the mucus glycoproteins (i.e., mucins)
interpenetrate to a sufficient depth to create semi-permanent
adhesive bonds. The interdiffusion phenomenon mainly depends

on the diffusion coefficient and the time of contact between the
adhesive candidate and the mucus layer; it is generally enhanced
when polymeric chains and mucins have similar chemical structures
and are mutually soluble. The existence of concentration gradients is
the driven force that promotes the diffusion of the polymeric chains
within mucus network and, in turn, the mucin chains into the
adhesive polymeric matrix until an equilibrium interpenetration
depth is achieved. According to the literature, the interpenetration
degree of the polymeric chains is also affected by certain properties
of the polymer, such as MW, flexibility, hydrophilicity and cross-
linking density (Peppas and Buri, 1985; Duchene et al., 1988;
Jimenez-Castellanos et al., 1993).

2.5 Mechanical theory

The mechanical theory describes the effect of the surface
roughness of the mucosal tissue on the adhesion of liquids due
to their interlocking with the mucosa itself; more in detail, such
systems fill the irregularities of the rough surface, which are
responsible for an increase in the interfacial area available for
adhesive interactions (Lee et al., 2000).

2.6 Fracture theory

The fracture theory relates the strength of the adhesive bonds
to the forces required to detach the two adhering surfaces after
contact. This theory is different to the others: the mucoadhesion
phenomenon is described by the fracture (or detachment)
strength at the interface and is not related to the factors
(i.e., polymer chemical structure, molecular weight,
hydrophilicity, chain flexibility) that could affect the
formation of adhesive bonds between the adhesive candidate
(i.e., solid system) and the mucus layer. Since such a theory is
based on mechanical considerations, it is also necessary to
consider the other theories to better understand the
mucoadhesion phenomenon in its entirety (Gu et al., 1988;
Asati et al., 2019).

FIGURE 2
The two steps of mucoadhesion process.
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A pictural representation of the different theories is provided in
Figure 3. None of these theories fully explain mucoadhesion, but
several of these theories can be combined to obtain a comprehensive
picture of the phenomenon. Depending on the nature of the system
(i.e., liquid or solid), some theories are more applicable than others,
but the relevance of the various theories is also strictly related to
mucus layer. The high variability in mucus properties, such as
viscoelasticity, thickness (from 50 to 450 μm in the stomach to
less than 1 μm in the oral cavity), pH and sensitivity to various
external stimuli, depends on both the location in the organism
(ocular, nasal, buccal, respiratory, gastric, intestinal, cervico/vaginal
mucus layers) and the physio-pathological conditions (i.e., over-
production of mucus in SARS-CoV-2 infections) and it must be
taken into account throughout the various development phases of
mucoadhesive materials (Bayer, 2022).

3 The regulatory issue

Most importantly, all these theories were postulated between the
late eighties and the first decade of the twenties, wherein the need to
identify the prevailing mucoadhesion mechanism of a given
substance were not so stringent. The need for such a distinction
has become evident with the advent of the new European Regulation
for medical devices 2017/745 (MDR) (hereafter referred as New
Regulation) eventually implemented in May 2021, accordingly
which a distinction between medicinals and SB-MD (so-called
borderline products) became mandatory suggesting that the
discriminant between the two should be the mechanism of action
of the so-called active ingredients. Mucoadhesive systems are an

example of borderline product, presently available on the market as
both medicinals and medical devices, so they represent an
interesting case-study from the regulatory point of view.

The aim of this section is to provide a rationale thinking as well
as bibliographic data to support the prevailing mechanisms of action
(principal mode of action) of SB-MD containing mucoadhesive
polymers independently of the type of substance/s employed and
the intended site of application. It is also implicit that if the
mucoadhesive products contain other substances than the
mucoadhesive polymers (for instance herbal extracts or similar),
these should deserve specific consideration in view of the specific
aim of demonstrating their mechanisms of action.

3.1 Definitions and historical highlights

SB-MD, like mucoadhesive products, belong to the broad family
of medical devices that have been on the market for a long time
under the scope of the previous legislation (European Union, 1993).
They fall under the definition of medical devices as already present
in Directive 93/42/EEC and adopted by the new Regulation, in art. 2,
c. 1: “Medical device means any instrument, apparatus, appliance,
software, implant, reagent, material or other article intended by the
manufacturer to be used, alone or in combination, for human beings
for prevention, treatment or alleviation of disease, or of an injury, and
which does not achieve its principal intended action by
pharmacological, immunological or metabolic means (abbreviated
Ph.I.M), in or on the human body.”

According to the expert opinion expressed by Racchi et al.
(2016), the term pharmacological means underlies all the Ph.I.M.

FIGURE 3
Schematic representation of theories which explain the mechanism/s underlying the mucoadhesion phenomenon. (A): Wetting Theory; (B):
Electronic Theory; (C): Adsorption Theory; (D): Diffusion Theory; (E): Fracture Theory.
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mechanisms of action since immunological and metabolic modes of
action are specific pharmacological actions. Presently the regulatory
document uses the term pharmacological means (Ph. means) to
indicate Ph.I.M means. Since the above definition of MD was
released, it was clear that the definition of SB-MD overlaps in
part with the definition of medicinal products. For this reason,
since then they had been watched by MEDDEV (MEDical DEVices)
Document (MEDDEV 2.1/3 rev. 3), being considered as borderline
with medicinal products. According to MEDDEV guideline, “The
borderline nature stems from the fact that both have the same
presentation (dosage form) and composition (one or more
substances). Medical devices may also be intended to treat and
prevent disease, along with other specific medical purposes.
Therefore, the decisive criterion for the demarcation between the
two categories is the principal mode of action of the product.,”
(MEDDEV 2.1/3 rev.3). In other words, for medical devices, it is
necessary to demonstrate that they do not achieve their purpose by
any pharmacological means.

Therefore, it is interesting to cite again the article by Racchi et al.
since it contains interesting hints that might be useful when
discussing the mechanisms of action of the mucoadhesive
products thus defined. In the present article, the authors want to
emphasize that the ‘mechanism of action’ and the ‘therapeutic effect’
of a product are different concepts. The same therapeutic effect
might be achieved, in some cases through a pharmacological mode
of action in other cases through a not pharmacological one. To quote
an example relevant to the mucoadhesive materials (that is
applicable to buccal, oropharyngeal, nasal, vaginal, etc.), the same
effect (i.e., anti-inflammatory) may be reached by both a
pharmacological means (inhibition of cyclooxygenase (NSAIDS))
and a physical mode of action (formation of a protective barrier to
limit contact between tissue and external or internal irritating
agents) (Racchi et al., 2016).

3.2 Invasiveness and the level of risk

SB-MD are generally considered invasive devices according to
Art. 2, c.1 of the New Regulation: “invasive device means any device
which, in whole or in part, penetrates inside the body, either through a
body orifice or through the surface of the body”, which is the case of
mucoadhesive products. The New Regulation (Art. 51) as well as the
old regulation requires to appropriately classify the medical device
based on the intended purpose of the devices and their inherent risks
in accordance with Annex VIII. Such a classification, in the case of
an invasive medical device should be based on appropriate
consideration on the level site and duration of invasiveness, but
especially on the type of functioning, hereafter implicitly referring
the mechanisms involved in the interactions with the specific part of
the body.

The rule 21 of the new/old Regulations defines the level of risk
associated to SB-MD as follows: “Devices that are composed of
substances or of combinations of substances that are intended to
be introduced into the human body via a body orifice or applied to the
skin and that are absorbed by or locally dispersed in the human body
are classified as: class III if they, or their products of metabolism, are
systemically absorbed by the human body in order to achieve the
intended purpose;—class III if they achieve their intended purpose in

the stomach or lower gastrointestinal tract and they, or their products
of metabolism, are systemically absorbed by the human body;—class
IIa if they are applied to the skin or if they are applied in the nasal or
oral cavity as far as the pharynx, and achieve their intended purpose
on those cavities; and—class IIb in all other cases”. If we should
consider this rule, we could superficially conclude that, since the
mucoadhesive materials are typically high molecular weight
macromolecules and as such they are not systemically absorbed,
the mucoadhesion products, independently on the site of
application, should fall into the risk categories IIa or IIb, without
prejudice to being considered as medical devices to all effects. It is
reminded that what does make the difference between the class IIa
and IIb is the level of clinical evaluation needed in support according
to Chapter VI of the New Regulation.

3.3 Novelty introduced by the new
regulation

In view of the above, it is necessary to consult the New
Regulation (European Regulation for medical devices 2017/745
(MDR)), in particular the premise 59 that reads: “Rules under the
old regime applied to invasive devices do not sufficiently take account
of the level of invasiveness and potential toxicity of certain devices
which are introduced into the human body. To obtain a suitable risk-
based classification of devices that are composed of substances or of
combinations of substances that are absorbed by or locally dispersed
in the human body, it is necessary to introduce specific classification
rules for such devices. The classification rules should consider the place
where the device performs its action in or on the human body, where it
is introduced or applied, and whether a systemic absorption of the
substances of which the device is composed, or of the products of
metabolism in the human body of those substances occurs”.

This statement was alerting but not helpful pending an updated
definition of Pharmacological means. Indeed, independently of
whether a substance or any metabolite are systemically absorbed
or not, it is required to elaborate further on their mechanism of
action, not to risk falling into the category of medicinal products.
The New Regulation in Art. 4 (European Union, 2017) delegates the
definition of Pharmacological means to the new panel of experts of
the Medical Device Coordination Group (MDGD) established
under Art. 103.

Eventually, in April 2022, the new MDCG 2022—5 “Guidance
on borderline between medical devices and medicinal products
under Regulation (EU) 2017/745 on medical devices” was
published. This guideline has further elaborated the concept of
pharmacological, immunological, or metabolic means as follows
“Pharmacological means is understood as an interaction typically at a
molecular level between a substance or its metabolites and a
constituent of the human body which results in initiation,
enhancement, reduction or blockade of physiological functions or
pathological processes.” Examples of constituents of the human body
(cell membranes, intracellular structures, RNA, DNA, proteins,
i.e., membrane proteins, enzymes) as well as components of
extracellular matrix, components of blood and components of
body fluids. Examples of immunological means and metabolic
means are also given in non-exhaustive lists. Based on the above,
it is not yet understood whether the new rules will help experts in
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correctly elaborating the principal mode of action of their intended
devices, and how the implications of such new definitions will be
received by the Notified Bodies. By the way, it seems that the
intended simplification tends to make the definition of the mode
of action more complicated.

4 The case of mucoadhesive
substances/polymers

The mucoadhesion theories, previously described in detail, have
been functional to the characterization of mucoadhesive substances,
either of natural, synthetic or semisynthetic polymers/materials, and
still represent a useful tool in the development of new mucoadhesive
materials and products. Besides that, the above theoretical
classification provides a useful guide to correctly categorize the
mechanisms involved within the frame of the physical means/
mechanisms that are admitted for a substance used in a medical
device.

Among the mucoadhesion theories previously described, the
most accredited mechanisms are those predicated by wetting,
adsorption and diffusion. All the three theories are based on
week interactions between the mucosal surface and the system
(i.e., hydrogen bonds, van der Vaals forces, etc.), but also on
electrostatic forces and hydrophobic bonds; all are reversible in
nature and non-specific. Even when covalent bonds are involved,
like in the case of thiomers, these are created with mucin and not
directed to any cellular constituents. All these bonds contribute to
strengthen the mucoadhesive joint.

At this point it is useful to recall the regulatory definition of
physical means, in opposition to pharmacological means, as
predicated by the MDCG document April 2022. Authors’
comments are bracketed: “According to the above document,
medical device’s principal intended action (that is the effect) is
achieved by physical means (that is the mechanism/mode of
action) including mechanical action, physical barrier such as a
film, lubrication, heat transfer, radiation, ultrasound, replacement
of or support to organs or body function). Furthermore, hydration or
dehydration and pH modification may also be means by which a
medical device achieves its principal intended action.”

In the following section, the examples of hyaluronic acid (HA)
and polyacrylic acid (PAA) are reported to elucidate how the
interactions mentioned above, on which the mucoadhesion
mechanisms are based, can be mechanistically explained, and
how they have been experimentally demonstrated at the
mucoadhesive joint.

5 Case-study 1: the example of
hyaluronic acid

HA is a highly prevalent mucopolysaccharide present in
human fluids and tissues that plays an important role in
mucociliary clearance, tissue hydration and the defense against
the spread of micro-organisms and toxic substances. It is used in
many fields of medicine, for example, ocular surgical procedures
for the relief of dry eyes, intra-articular injection in the treatment
of osteoarthritis and wound care as well as in a number of

mucoadhesive products (mouth washes, nasal sprays, aerosols,
oropharyngeal preparations, antiacid preparations, vaginal
moisturizing gels, but also anti-reflux medications, rectal and
colon washes) (Fallacara et al., 2018).

HA is chosen as a typical representative of mucoadhesive
substances. This choice is emblematic, since, in a certain way,
HA represents the worst case in the scenario of mucoadhesive
polymers. Indeed, HA has been considered a borderline
substance which might also have specific interactions with
cellular components when administered through routes other
than the above-described mucosal sites (Vasvavi et al., 2020).
This peculiar aspect of HA is beyond the scope of the present
paper that aims solely at explaining the mucoadhesive
properties of HA and clarifying whether the relevant claimed
mechanisms can be explained in terms of chemical, physical or
mechanical means. HA’s claimed mode of action is hydration
and related phenomena, such as swelling, lubricant and
plasticizing effects, bio adhesion and bonding to mucosal
components and protective effect. In the following
paragraphs it is explained how hydration helps swelling,
lubrication and ultimately bio adhesion (Vigani et al., 2019;
Dovedytis et al., 2020).

5.1 HA interactions with mucus layer

5.1.1 Hydration
Since its carboxyl groups (COO−) are completely ionized at

physiological pH, HA interacts with water molecules through
hydrogen bonds. The negative charge can be balanced with
mobile cationic ions (i.e., Na+, K+, Ca2+ and Mg2+), which are
present in biological aqueous fluids. Therefore, once in contact
with the mucosa, HA is persistently negatively charged and form
salts with cationic ions (Fallacara et al., 2018). As shown in Figure 4,
the positive charge of water dipole is attracted to the negatively
charged carboxylate group of the glucuronic acid, while the
negatively charged oxygen in water is attracted to the positively
charged acetamido group of the N-acetyl-D-glucosamine. The
unique water-retaining properties of HA explain its moisturizing
effect (Vigani et al., 2019; Dovedytis et al., 2020).

The abundance of hydrophilic functional groups (-COOH),
completely ionized at physiological pH, allows the formation of
hydrogen bonds with the mucous membrane (Pritchard et al., 1996;
Sandri et al., 2004). Therefore, hydration is fundamental to trigger
the proper wetting of the mucosal substrate and the spreading of the
formulation on the mucosa.

5.1.2 Swelling
Besides that, the water-retaining properties of HA allow the

polymer to swell, forming a viscous gel, and spread on the mucosa,
maximizing the interaction between the polymer chains and the
mucous network. In particular, the formation of hydrogen bonds
increases the flexibility of HA chains, which become free to move
within the mucus network, creating physical entanglements with
mucins. Hydrogen bonding as well as the physical interpenetration
between swollen HA chains and mucus network results in a
mucoadhesive effect (Gu et al., 1988; Chatterjee et al., 2017). It is
also important to note that the interaction between HA and mucosa
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is aspecific being mainly related to physico-chemical events such as
polymeric chain interaction with water molecules, swelling and
disentanglement, interpenetration through the mucous network
and formation of new physical entanglements with mucins.
Nobody would question that the one described above is a
physico-chemical mechanism. It has also to be remarked that
excessive hydration and swelling should be avoided since it will
ease the removal of the mucoadhesive layer from the mucosa.
However, this point has to do with the strategies to improve
mucoadhesion by chemico-physical modifications of the polymer,
not being related to the type of mechanism.

5.1.3 Lubrication
Due to its water-retaining properties, HA acts as a

lubricant; once in contact with the mucous layer, HA
interacts with water molecules through hydrogen bonds and
produces viscous gels exhibiting the so-called plasticizing
effect (change of the material state/behavior from rigid to
flexible) (Marcilla and Beltran, 2004), it can be concluded
that, after hydration, HA swells and plasticizes the system,

reducing the intermolecular frictions between the chains of the
other polymeric components, while improving their motility
and flowability. Nobody would question that this is a mere
physical mechanism.

5.2 Combination with other polymers

HA if often combined with other polymers either natural, such
as guar gum, or semi-synthetic ones like hydroxyethyl cellulose or
synthetic ones, like carbomers or poloxamers. This combination
allows for the formation of additional intermolecular interactions
which strengthen the three-dimensional network. Interesting
examples of combinations are given in the literature (Jiménez
et al., 2007; Mayol et al., 2008). Especially polysaccharides that
exhibit a water-binding capacity due to their high content in
hydroxyl groups, should provide a synergistic effect leading to a
moisturized and appropriately wetted mucosa and acting as a
protective barrier for the entry of exogenous noxious agents
(Hamza et al., 2008).

FIGURE 4
Schematic representation of HA-water bonding (modified from Dovedytis et al., 2020).
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5.3 Considerations on HA mucoadhesive
properties

This section will summarize the main conclusions about the
principal mode of action of HA as used in mucoadhesive products.
The cited cascade of effects (hydration, swelling, lubrication, that in
turn trigger phenomena such as wetting of the mucosal surface,
spreading of the formulation, interpenetration of the polymeric and
mucin chains, interlocking due to weak and reversible bonds,
strengthening of the mucosal interface, rheological synergism
between polymers) all together exhaustively describe and explain
the mucoadhesion phenomenon. Nobody would question that these
are mere physical mechanisms. The result of the formation of this
mucoadhesive interface is the prolongation of the residence time of
the formulation on the target mucosa promoting the desired effect,
i.e., optimal hydration of the tissue, protection against the insult of
the acidic environment or any other noxious event. According to
MDCG document (April 2022), the physical barrier such as a film is
one of the mechanisms recognized by the legislator as a
physical mean.

6 Case study 2: the example of
polyacrylic acid and its derivatives

Polyacrylates are known to show adhesive behavior and acrylic-
based polymers are widely used in biomedical and pharmaceutical
applications depending on their molecular weight, functionalization
and cross-linking (Leitner et al., 2003; Lam et al., 2021). The ones
endowed with mucoadhesive properties are polyacrylic acid (PAA)
and its derivatives. PAA was first described by Park and Robinson,
(1987) as a mucoadhesive polymer capable of controlling the
retention of a dosage forms in the stomach and even elsewhere
in the gastro-intestinal tract.

Since the early years, PAA derivatives, such as carbopol (CP)
and polycarbophil (PCP), have been proposed and extensively
studied for the preparation of pharmaceutical and para-
pharmaceutical formulations intended for both mucosal
application and other administration routes (Tamburic and
Craig, 1995; Carvalho et al., 2013). As mucoadhesive polymers
they are basically intended to prolong the residence time of the
dosage form at the application site; the high mucoadhesive potential
of PAA derivatives is mainly exploited in vaginal drug delivery and
to a lesser extent for in buccal, nasal and oral one. Moreover, due the
versatility of their physico-technological properties, PAA derivatives
are successfully used in the formulation of various semisolid and
solid dosage forms, such as gels, pessaries, suppositories, but also
granulates, tablets, micro- and nanoparticles (Wahlgren et al., 2009;
Carvalho et al., 2013; Caramella et al., 2015a; Hanafi et al., 2019;
Gosecka and Gosecki, 2021).

6.1 Hydration and swelling properties

In the case of PAA, hydration and swelling properties are strictly
related. As in the case of HA, PAA and its derivatives are anionic
polymers with hydrogel-forming moieties (carboxylic and hydroxyl
groups), but contrary to HA, their polymeric backbones are more

hydrophobic, meaning that PAA hydration and swelling properties
are pH-dependent.

PAA is poorly soluble in water at low pH, causing structure
shrinkage. It shows swelling properties under certain ionic strengths
and salt concentrations in alkaline solutions. This is due to certain
functional groups (-COOH) which are undissociated at acidic
pH (less than 5) and dissociated at pH higher than 5.

In the early studies by Park and Robinson, (1987), it was
envisaged that the mucoadhesive properties of PAA derivatives
are due to the formation of hydrogen bonding between the
carboxylic groups of PAA in the protonated (undissociated) form
and the many hydrogen bonding sites of mucin macromolecules,
which occurs mainly at acidic pH.

Thereafter, it has been confirmed (Patel et al., 2003) that, at pH <
4.0, the majority of the carboxylic groups are available in protonated
form for the formation of conventional head-to-head H-bond
dimers, whereas, at pH > 4, the majority of the carboxylic groups
of both poly(acrylicacid) and the mucus glycoprotein are ionized.

On the contrary, the entanglement and the interpenetration of
the bioadhesive polymer chains with the glycoprotein network are
necessary for the formation of a mucoadhesive joint. These
mechanisms require a tailored degree of swelling of the formed
gel, which occurs at higher pH levels, thus explaining why polymer
chain mobility and entanglements, and the consequent molecular
interlocking, are favored in neutral/alkaline conditions.

A compromise between the number of available protonated
carboxylic groups and the swelling properties was obtained by
creating a series of cross-linked PAA derivatives. As it is often
the case with polymers, the cross-linking, either chemically or
physically induced, by reducing chain mobility, is functional to
the modulation of the swelling properties.

6.2 PAA derivatives

PAA cross-linked derivatives, such as CP and PCP, are most
commonly used as mucoadhesives. They show a high molecular
mass and a high density of carboxylic acid groups. Therefore, at
acidic pH, these polymers show minor swelling propensity due to a
low percentage of dissociated acidic moieties. On increase in pH,
additional charges result in electrostatic repulsion as well as osmotic
forces within the polymeric backbone and uncoiling/expansion of
the molecules lead to the desired degree of swelling of the polymer
network (Zahir-Jouzdani et al., 2021). At the same time the cross-
links prevent from an excessive swelling which would be detrimental
to mucoadhesion.

Following the initial studies on PAA, the mechanisms of
action of its derivatives have been thoroughly investigated and all
the authors have come to the conclusion that hydrogen bonding
significantly contributes to the mucoadhesion phenomenon,
whereas swelling of the gel formed serves to consolidate the
interlocking between polymeric chains (Shaikh et al., 2011). In an
interesting paper (Patel et al., 2003), the authors have used
various spectroscopic techniques (IR), nuclear magnetic
resonance (NMR), and X-ray photoelectron spectroscopy
(XPS), and differential scanning calorimetry (DSC) to
investigate at the molecular level the interactions between
mucin and Carbopol 934P. The formation of hydrogen bonds
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between mucus and the mucoadhesive agent (CP) has been
shown by the displacement of IR absorption bands and by
NMR resonances. In addition, differences in surface atom
concentrations, between mixtures and separate components,
were consistent with H-bonding between the components.

6.3 Combination/interaction with other
polymers

CPs and PCPs are used in combination with other polymers such as
hyaluronic acid in several medical devices (gels/suppositories) used for
the treatment of vaginal dryness as shown in Table 2.

Besides that, the interaction between PAA derivatives and
Poloxamers has been used to develop in situ gelling formulations,
taking advantages of their pH dependent swelling properties (Zahir-
Jouzdani et al., 2018). Other PAA derivatives, such as pegylated and
thiolate polyacrylates have been proposed for optimizing the
mucoadhesive properties (Leitner et al., 2003; Bayer et al., 2022).

6.4 Considerations on PAA derivative
mucoadhesive properties

To conclude about the principal mode of action of PAA
derivatives, as mentioned above, all authors concur to the
conclusion that hydrogen bonding formation significantly
contributes to mucoadhesion, whereas swelling of the gel formed
serves to consolidate the interlocking between polymeric chains. At
the same time, the peculiar pH dependent solubility of these
polymers makes them suitable to formulate both solid and
semisolid dosage forms. For similar solubility reasons the
lubrication mechanism cannot be claimed for these materials.
Nobody would question that the quoted mechanisms are mere
physical mechanisms according to MDCG document (April 2022).

As a final consideration, both pharmaceutical product/medical
devices are already present on the market whereby PAA derivatives

are used as functional excipients with no prejudice with respect to
their merely physical mechanism of action.

7 Examples of registered products

Examples of mucoadhesive products registered as medical
devices and available on the market are given in the Table 2. A
couple of products are briefly commented here below as an
example.

7.1 Mucoadhesive gel for the treatment of
mucositis: Gelclair

The gel used as a mouthwash helps the management of painful
symptoms deriving from oropharingeal mucositis. Due to its
mucoadhesive properties, it forms a protective film thus
alleviating relief against pain caused by many insults, including
chemio- and radiotherapy.

The composition of Gelclair (Caramella et al., 2015a)
comprises, besides the vehicle, flavouring agents and
preservatives, and the following mucoadhesive substances:
PVP, sodium hyaluronate, maltodextrin. PVP and sodium
hyaluronate are certainly the prevailing ones as responsible
for the mechanisms of bioadhesion and barrier film
formation, as pointed out in the following papers (Buchsel,
2008; Vokurka et al., 2011). The increased residence time of
the formulation was also proved by means of a washability test
using fluorescence markers (Rossi et al., 1999; Sandri et al., 2007;
Caramella et al., 2015b).

The mode of action of mucoadhesive polymers, specifically
hyaluronate sodium and PVP, is in line with the concept of
physical means as required for a medical device. Besides that, it
is expected that the level of risk assigned to Gelclair, based on rule 21,
and related the level of injury of the underlying mucosa, could be
higher in comparison to other mouthwashes.

TABLE 2 Examples of mucoadhesive products registered as medical devices and available on the market are given in the Table 2. Commercial name, company,
intended use are mentioned.

Device name Manufacturer Indication

ESOXX APHARM S.R.L. GERD

Gastrosoma REFLUX LABOMAR S.R.L. GERD

NEOBIANACID ABOCA S.P.A. SOCIETA’ AGRICOLA GERD

GENGIGEL RICERFARMA SRL Periodontal disease and other gingival tissue trauma

MUGARD NORGINE B.V. Oral mucositis

Episil Camurus AB Oral mucositis

Gelclair Biokosmes S.R.L. Oral mucositis

SAGINIL GEL EPITECH GROUP S.R.L. Vulvovaginitis/vaginal dryness secondary to atrophy

Gynexelle Hyalo-duo ICIM INTERNATIONAL S.R.L. Vulvovaginitis/vaginal dryness secondary to atrophy

IMMUNOVAG DEPOFARMA S.P.A. Vulvovaginitis/vaginal dryness secondary to atrophy
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7.2 Mucoadhesive gel for gastro-esophageal
reflux syndrome: ESOXX

The product is a combination of hyaluronic acid, chondroitin
sulfate, PVP, poloxamer 407, and contains xylitol C, sodium
benzoate, potassium sorbate as preservative, flavoring agents and
purified water. The gel acts as a physical barrier, protecting the
gastro-esophageal mucosa against the attach of gastric juice (Di
Simone et al., 2012). As for the composition, it is noted that PVP is
considered an adhesive substance in general as suggested by its
chemical nature, whereas chondroitin sulfate mainly favors the
reparative processes of the underlying mucosa. Instead, the
combination of hyaluronic acid with poloxamer represents a
rather innovative solution since a synergic effect has been
demonstrated between the two polymer types in promoting
jellification and gel strengthening. Mayol and colleagues (2008)
have demonstrated that the mechanical and mucoadhesive
properties of poloxamer blends (F127 and F68), known to
possess thermo-gelling properties, could be influenced by the
addition of low molecular weight (150 kDa) HA. The authors
evidenced that the presence of HA did not hinder the self-
assembling process of poloxamers into micelles and, thus, did not
significantly affect the thermo-gelling properties of poloxamer
blends. On the counterpart, the addition of HA was responsible
for an increase in poloxamer gel strength; the authors supposed that
HA formed secondary bonds, in particular hydrogen ones, with
micelles during poloxamer gelation, reinforcing the gel structure.
Such a hypothesis was confirmed by PCS (Photon Correlation
Spectroscopy) analysis: aggregates with hydrodynamic diameters
higher than those of poloxamer micelles were measured when HA
was added to poloxamer blends. Such results demonstrated that HA,
in the hydrated state, allow micelles formation, movement and
packing and interact with micelles through hydrogen bonds,
improving the mechanical properties of the resulting poloxamer
gels (gel network strengthening). In addition, a rheological
synergism between poloxamer/HA gels and mucin dispersion was
observed proving the mucoadhesive potential of the gels.

To note: the regulatory status of the medical devices registered in
Italy can be found on the website of the Ministry of Health using link
cited above. It is worth mentioning that presently the majority of
products are still registered according to the old Directive, pending
their re-evaluation according to the new Regulation.

8 Conclusion

The need to define the regulatory status of the family of substance-
basedmedical devices (SB-MD) has become rather urgent in view of the
complete implementation of the new Regulation (EU) 2017/745 which
requires a clear demarcation between SD-MDs and medicinals.
Mucoadhesive formulations are intended for oral/buccal, nasal,
vaginal administration but even ocular and gastro-intestinal
administration routes, therefore they do present different levels of
invasiveness and associated risks. Independently of the route, the
substances/polymers used are generally the same even though
different in types and grades. The number of papers published on
these substances and their pharmaceutical use has increased almost

exponentially since the mid-eighties and witnesses the interest of
scientists, engaged in pharmaceutical development both in academy
and industry, for these ingredients. Much is known about their
chemical-physical and pharmaco-technical properties. Also in vitro
cytotoxicity as well as ex vivo and in vivo animal toxicology have
been thoroughly investigated. Further to that, due to the highmolecular
weight, they are not absorbed through the common routes of
administration, which simplify life in supporting their ADME
pattern and toxicokinetic evaluation. In the literature information
are also available on specific interactions of these substances with
cellular components, which could evocate a pharmacological means,
specifically when the substance is administered through parenteral
routes, which is not typically the case of mucosal administration.
Therefore, an attentive literature search should be sufficient to justify
their use as functional excipients. The example of hyaluronic acid aims
at indicating possible argumentations that could be used to support the
prevailing mode of action of any specific mucoadhesive polymers and
justify their use in medical devices. Same argumentations could also
help in answering to request for clarification issued by the competent
authorities European Commission, (2009), Suharyani et al., 2021.
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